当前位置:文档之家› 个典型应用电路实例详解(电子制作)

个典型应用电路实例详解(电子制作)

个典型应用电路实例详解(电子制作)
个典型应用电路实例详解(电子制作)

电路1 简单电感量测量装置

在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。

一、电路工作原理

电路原理如图1(a)所示。

图1 简单电感测量装置电路图

该电路的核心器件是集成压控振荡器芯片MC1648 ,利用其压控特性在输出3脚产生频率信号,可间接测量待测电感L X值,测量精度极高。

BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L X值。

电路谐振频率:f0 = 1/2πLxC所以L X = 1/4π2 f02C

式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。

为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。

附表振荡频率(MHz)98 76 62 53 43 38 34

变容二极管C值 6 1

二、元器件选择

集成电路IC可选择Motoroia公司的VCO(压控振荡器)芯片。VR1选择多圈高精度电位器。其它元器件按电路图所示选择即可。

三、制作与调试方法

制作时,需在多圈电位器轴上自制一个刻度盘,并带上指针。RF标准线圈按图(b)所给尺寸自制。电路安装正确即可正常工作,调节电位器VR1取滑动的多个点与变容二极管的对应关系,可保证测量方便。该测量方法属于间接测量,但测量范围宽,测量准确,所以对电子爱好者和实验室检测电感量有可取之处。该装置若固定电感可变成一个可调频率的信号发生器。

电路2 三位数字显示电容测试表

广大电子爱好者都有这样的体会,中、高档数字万用表虽有电容测试挡位,但测量范围一般仅为1pF~20F,往往不能满足使用者的需要,给电容测量带来不便。本电路介绍的三位数显示电容测试表采用四块集成电路,电路简洁、容易制作、数字显示直观、精度较高,测量范围可达1nF~104F。特别适合爱好者和电气维修人员自制和使用。

一、电路工作原理

电路原理如图2所示。

图2 三位数字显示电容测试表电路图

该电容表电路由基准脉冲发生器、待测电容容量时间转换器、闸门控制器、译码器和显示器等部分组成。

待测电容容量时间转换器把所测电容的容量转换成与其容量值成正比的单稳时间t d。基准脉冲发生器产生标准的周期计数脉冲。闸门控制器的开通时间就是单稳时间t d。在t d时间内,周期计数脉冲通过闸门送到后面计数器计数,译码器译码后驱动显示器显示数值。计数脉冲的周期T乘以显示器显示的计数值N就是单稳时间t d,由于t d与被测电容的容量成正

比,所以也就知道了被测电容的容量。

图2中,集成电路IC1B电阻R7~R9和电容C3构成基准脉冲发生器(实质上是一个无稳多谐振荡器),其输出的脉冲信号周期T与R7~R9和C3有关,在C3固定的情况下通过量程开关K1b对R7、R8、R9的不同选择,可得到周期为11s、1.1ms和11ms的三个脉冲信号。

IC1A、IC2、R1~R6、按钮AN及C1构成待测电容容量时间转换器(实质上是一个单稳电路)。按动一次AN,IC2B的10脚就产生一个负向窄脉冲触发IC1A,其5脚输出一次单高电平信号。R3~R6和待测电容CX为单稳定时元件,单稳时间t d=1.1(R3~R6)CX。IC4、IC2C、C5、C6、R10构成闸门控制器和计数器,IC4为CD4553,其12脚是计数脉冲输入端,10脚是计数使能端,低电位时CD4553执行计数,13脚是计数清零端,上升沿有效。当按动一下AN后,IC4的13脚得到一个上升脉冲,计数器清零同时IC2C的4脚输出一个单稳低电平信号加到IC4的10脚,于是IC4对从其12脚输入的基准计数脉冲进行计数。当单稳时间结束后,IC4的10脚变为高电平,IC4停止计数,最后IC4通过分时传递方式把计数结果的个位、十位、百位由它的9脚、7脚、6脚和5脚循环输出对应的BCD码。

IC3构成译码器驱动器,它把IC4送来的BCD码译成十进制数字笔段码,经R11~R17限流后直接驱动七段数码管。集成电路CD4553的15脚、1脚、2脚为数字选择输出端,经R18~R20选择脉冲送到三极管T1~T3的基极使其轮流导通,这两部分电路配合就完成了三位十进制数字显示。

C7的作用是当电源开启时在R10上产生一个上升脉冲,对计数器自动清零。

二、元器件选择

电路中,IC1选用NE556;IC2选用CD4001;IC3选用CD4543;IC4选用CD4553。七段数码管可选用三字共阴极数码管。T1~T3选用8550(或其它PNP型三极管)。C1不应大于0.01F,C3选用小型金属化电容。R3~R9选用1/8W金属膜电阻。其他元器件没有特殊要求,按电路标注选择即可。

三、制作与调试方法

整个电路安装好后可装在一个塑料盒内,将数码管和量程转换开关装在面板上。在制作和调试时,关键是要调出11s、1.1ms和11ms的三种标准脉冲信号,调试时需要借助一台示波器,通过调整分别R7、R8和R9等三个电阻的阻值,就可方便地得到这三个脉冲信号,电路中的R7、R8、R9的阻值是实验数据仅供参考。电路其余部分无需调试,只要选择良好器件,安装正确无误,并在量程转换开关处标注相应倍率,就可得到一个经济实用、准确可靠的数字电容表。

四、使用方法

在测试电容时,把计数结果乘以所用量程的倍率得到的数值就是被测电容的容量。例如,当基准脉冲周期为1.1ms,定时电阻为10K时,量程倍率为0.1F,若测一个标称容量为4.7F的电容,按动一下AN后结果显示为49,该电容的容量就为49×0.1F=4.9F。

需要说明的是,在使用1pF~999pF量程时,由于分布电容的影响,测量结果减去分布电容值才是被测电容的准确值。可以这样测出该电容表的量程分布电容值,把量程打在1pF~999pF档,在不接被测电容的情况下,按动一下AN按钮,测的计数结果就是该挡的分布电容值,经实验该数值一般为10pF左右。

附表列出了各挡量程的组成关系。

附表基准脉冲周期定时电阻R 测量范围倍率

11s 10MΩ1pF~999pF ×1pF

11s 100KΩ1nF~9.99nF ×0.1nF

11s 10KΩ10nF~999nF ×1nF 1.1ms 10KΩ1F~99.9 F ×0.1 F

11ms 1KΩ

100F~9990

F

×10 F

电路 3 市电电压双向越限报警保护器

该报警保护器能在市电电压高于或低于规定值时,进行声光报警,同时自动切断电器电源,保护用电器不被损坏。该装置体积小、功能全、制作简单、实用性强。

一、电路工作原理

电路原理如图3所示。

图3 市电电压双向越限报警保护器电路图

市电电压一路由C3降压,DW稳压,VD6、VD7、C2整流滤波输出12V稳定的直流电压供给电路。另一路由VD1整流、R1降压、C1滤波,在RP1、RP2上产生约10.5V电压检测市电电压变化输入信号。门IC1A、IC1B组成过压检测电路,IC1C为欠压检测,IC1D 为开关,IC1E、IC1F及压电陶瓷片YD等组成音频脉冲振荡器。三极管VT和继电器J等组成保护动作电路。红色LED1作市电过压指示,绿色管LED2作市电欠压指示。

市电正常时,非IC1A输出高电平,IC1B、IC1C输出低电平,LED1、LED2均截止不发光,VT截止,J不动作,电器正常供电,此时B点为高电平,F4输出低电平,VD5导通,C点为低电平,音频脉冲振荡器停振,YD不发声。当市电过压或欠压时,IC1B、IC1C其中有一个输出高电平,使A点变为高电位,VT饱和导通,J通电吸合,断开电器电源,此时B点变为低电位,IC1D输出高电平,VD5截止,反向电阻很大,相当于开路,音频脉冲振荡器起振,YD发出报警声,同时相应的发光二极管发光指示。

二、元器件的选择

集成芯片IC可选用CD74HC04六反相器,二极管VD1~V D6选择IN4007,电容C1~C6均选择铝电解电容,耐压400V,稳压管选用12V稳压,继电器J选用一般6V直流继电器即可,电阻选用普通1/8或1/4W碳膜电阻器,大小可按图示。

三、制作和调试方法

调试时,用一台调压器供电,调节电压为正常值(220V),用一白炽灯作负载,使LED1、LED2均熄灭,白炽灯亮,然后将调压器调至上限值或下限值,调RP1或RP2使LED1或LED2刚好发光,白炽灯熄灭,即调试成功。

全部元件可安装于一个小塑料盒中,将盒盖上打两个孔固定发光二极管,打一个较大一点的圆孔固定压电陶瓷片,并用一个合适的瓶盖给压电片作一个助声腔,使其有较响的鸣叫声。

电路4 红外线探测防盗报警器

该报警器能探测人体发出的红外线,当人进入报警器的监视区域内,即可发出报警声,适用于家庭、办公室、仓库、实验室等比较重要场合防盗报警。

一、电路工作原理

电路原理如图4所示。

该装置由红外线传感器、信号放大电路、电压比较器、延时电路和音响报警电路等组成。红外线探测传感器IC1探测到前方人体辐射出的红外线信号时,由IC1的②脚输出微弱的电信号,经三极管VT1等组成第一级放大电路放大,再通过C2输入到运算放大器IC2中进行高增益、低噪声放大,此时由IC2①脚输出的信号已足够强。IC3作电压比较器,它的第⑤脚由R10、VD1提供基准电压,当IC2①脚输出的信号电压到达IC3的⑥脚时,两个输入端的电压进行比较,此时IC3的⑦脚由原来的高电平变为低电平。IC4为报警延时电路,R14和C6组成延时电路,其时间约为1分钟。当IC3的⑦脚变为低电平时,C6通过VD2放电,此时IC4的②脚变为低电平,它与IC4的③脚基准电压进行比较,当它低于其基准电压时,IC4的①脚变为高电平,VT2导通,讯响器BL通电发出报警声。人体的红外线信号消失后,

图4 红外线探测防盗报警器电路图

IC3的⑦脚又恢复高电平输出,此时VD2截止。由于C6两端的电压不能突变,故通过R14向C6缓慢充电,当C6两端的电压高于其基准电压时,IC4的①脚才变为低电平,时间约为1分钟,即持续1分钟报警。

由VT3、R20、C8组成开机延时电路,时间也约为1分钟,它的设置主要是防止使用者开机后立即报警,好让使用者有足够的时间离开监视现场,同时可防止停电后又来电时产生误报。该装置采用9-12V直流电源供电,由T降压,全桥U整流,C10滤波,检测电路采用IC5 78L06供电,交直流两用,自动无间断转换。

二、元器件选择

IC1采用进口器件红外探测器Q74,波长为9-10um。IC2采用运放LM358,具有高增益、低功耗。IC3、IC4为双电压比较器LM393,低功耗、低失调电压。其中C2、C5一定要用漏电极小的钽电容,否则调试会受到影响。R12是调整灵敏度的关键元件,应选用线性高精度密封型。其它元器件按电路图所示选择即可。

三、制作和调试方法

制作时,在IC1传感器的端面前安装菲涅尔透镜,因为人体的活动频率范围为0.1-10Hz,需要用菲涅尔透镜对人体活动频率倍增。安装无误,接上电源进行调试,让一个人在探测器前方7-10m处走动,调整电路中的R12,使讯响器报警即可。其它部分只要元器件质量良好且焊接无误,几乎不用调试即可正常工作。本机静态工作电流约10mA,接通电源约1分钟后进入守候状态,只要有人进入监视区便会报警,人离开后约1分钟停止报警。如果将讯响器改为继电器驱动其它装置即作为其它控制用。

电路5 禁烟警示器

本例介绍的禁止吸烟警示器,可用于家庭居室或各种不宜吸烟的场合(例如医院、会议室等)。当有人吸烟时,该禁止吸烟警示器会发出"请不要吸烟!"的语言警示声,提醒吸烟者自觉停止吸烟。

一、电路工作原理

电路原理如图5所示。

该禁止吸烟警示器电路由烟雾检测器、单稳态触发器、语言发生器和功率放大电路组成,烟雾检测器由电位器RP1、电阻器R1和气敏传感器组成。单稳态触发器由时基集成电路IC1、电阻器R2、电容器C1和电位器RP2组成。语音发生器电路由语音集成电路IC2、电阻器R3-R5、电容器C2和稳压二极管VS组成。音频功率放大电路由晶体管V、升压功放模块IC3、电阻器R6、R7、电容器C3、C4和扬声器BL组成。

图5 禁烟警示器电路图

气敏传感器末检测到烟雾时,其A、B两端之司的阻值较大,IC1的2脚为高电平(高于2Vcc/3),3脚输出低电平,语音发生器电路和音频功率放大电路不工作,BL不发声。

在有人吸烟、气敏传感器检测到烟雾时,其A、B两端之司的电阻值变小,使IC1的2脚电压下降,当该脚电压下降至VCC/3时,单稳态触发器翻转,IC1的3脚由低电平变为高电平,该高电平经R3限流、C2滤波及VS稳压后,产生4,2V直流电压,供给语音集

成电路IC2和晶体臂。IC2通电工作后输出语音电信号,该电信号经V和IC3放大后,推动BL发出"请不要吸烟!"的语音警告声。

二、元器件选择

Rl-R7选用1/4W碳膜电阻器或金属膜电阻器。RP1和RP2可选用小型线性电位器或可变电阻器。C1、C2和C4均选用耐压值为l6V的铝电解电容器;C3选用独石电容器。VS 选用1/2W、4·2V的硅稳压二极管。V选用S9013或C8050型硅NPN晶体管。IC1选用NE555型时基集成电路;IC2选用内储“请不要吸烟!”语音信息的语音集成电路;lC3选用WVH68型升压功放厚模集成电路。BL选用8Ω、1-3W的电动式扬声器。气敏传感器选用MQK-2型传感器。

三、制作与调试

该禁止吸烟警示器,可以作为烟雾报警器来检测火灾或用作有害气体、可燃气体的检测报警。调整RP1的阻值,可改变气敏传感器的加热电流(一般为13OmA左右)。调整RP2的阻值,可改变单稳态触发器电路动作的灵敏度。

电路6 采用555时基电路的简易温度控制器

本电路是采用555时基集成电路和很少的外围元件组成的一个温度自动控制器。因为电路中各点电压都来自同一直流电源,所以不需要性能很好的稳压电源,用电容降压法便能可靠地工作。电路元件价格低、体积小、便于在业余条件下自制。该电路制作的温度自动控制器可用于工业生产和家用的电加热控制,效果良好。

一、电路工作原理

电路原理如图6所示。

图6 采用555时基电路的简易温度控制器电路图

当温度较低时,负温度系数的热敏电阻Rt阻值较大,555时基集成电路(IC)的2脚电位低于Ec电压的1/3(约4V),IC的3脚输出高电平,触发双向晶闸管V导通,接通电加热器R L进行加热,从而开始计时循环。当置于测温点的热敏电阻Rt温度高于设定值而计时循环还未完成时,加热器R L在定时周期结束后就被切断。当热敏电阻Rt温度降低至设定值以下时,会再次触发双向晶闸管V导通,接通电加热器R L进行加热。这样就可达到温度自动控制的目的。

二、元器件的选择

三极管在电路中的使用(超详细 有实例)

一种三极管开关电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturatiON)。 1 三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为: 因此,基极电流最少应为:

模拟电路典型例题讲解

3.3 频率响应典型习题详解 【3-1】已知某放大器的传递函数为 试画出相应的幅频特性与相频特性渐近波特图,并指出放大器的上限频率f H ,下限频率f L 及中频增益A I 各为多少? 【解】本题用来熟悉:(1)由传递函数画波特图的方法;(2)由波特图确定放大器频响参数的方法。 由传递函数可知,该放大器有两个极点:p 1=-102rad/s ,p 2=-105rad/s 和一个零点z =0。 (1)将A (s )变换成以下标准形式: (2)将s =j ω代入上式得放大器的频率特性: 写出其幅频特性及相频特性表达式如下: 对A (ω)取对数得对数幅频特性: (3)在半对数坐标系中按20lg A (ω)及φ(ω)的关系作波特图,如题图3.1所示。

由题图3.1(a )可得,放大器的中频增益A I =60dB ,上限频率f H =105/2π≈15.9kHz , 下限频率f L =102/2π≈15.9Hz 。 【3-2】已知某放大器的频率特性表达式为 试问该放大器的中频增益、上限频率及增益带宽积各为多少? 【解】本题用来熟悉:由放大器的频率特性表达式确定其频率参数的方法。 将给出的频率特性表达试变换成标准形式: 则 当ω = 0时,A (0) =200,即为放大器的直流增益(或低频增益)。 当ω =ωH 时, ωH =106rad/s 相应的上限频率为 由增益带宽积的定义可求得:GBW=│A (0)·f H │≈31.84MHz 思考:此题是否可用波特图求解? 【3-3】已知某晶体管电流放大倍数β的频率特性波特图如题图3.2(a )所示,试写出β的频率特性表达式,分别指出该管的ωβ、ωT 各为多少?并画出其相频特性的渐近波特图。

电子电路分析方法

1.2.1电子电路分析方法 1.怎样才能学好电子技术 这个问题很大,解决这个问题是一个系统工程,首先需要时间,其次还要多看书和多实践,边看书边实践。 学好这门学科至少包括下列三方面的内容,这三方面技能缺一不可,并且相互影响,它们之间是一个不可分割的整体。 (1)掌握电路工作原理,也就是能够看懂电路图。 (2)了解故障分析理论和检查方法,也就是面对变化万端的故障现象能够做到心中有“谱”,有思路、有方法,能下手。 (3)具备动手操作的能力,也就是能够参与实践活动,在游泳中学会游泳,在动手实践中巩固学到的理论知识。 从学习方法上讲,看一遍书是不能解决问题的,看一本书是不行的,应进行系统的看书。 看书时,要先通读1~2遍,在通读过程中能看懂的就记下来,不能看懂的问题就暂时放一边,继续向下看。不要第一遍就精读,就想搞懂书中的所有问题,对初学者来讲这是不可能的,也不科学。通过几遍通读,对电路工作原理有了一定的整体了解之后,再去精读全书。

学习中,要以一本书为主教材,辅以多本同类型的书作为参考书,在主教材中有看不懂的部分时,可参考其他书的相关部分,搞懂问题。从理论与实践之间的关系上讲,理论不能脱离实践,实践要由理论来指导。 看看书,动动手,两者交错进行是一个好方法。实践中遇到问题去请教书本,这种带着问题读书的方法比单纯读书的效果要好得多。在实践中学到的感性知识又可以加深对理论知识的认识和理解。 从动手操作上讲,应先从简单的开始,循序渐进,逐步深入。例如,先熟悉一些常见元器件的外形特征,学着用万用表去检测它们的质量,不要一开始就去动手修理电器。 方法提示 对这门学科有些了解之后,应该集中精力和时间解决一个个小问题,积少成多,不要全面开花。例如,先分析电源电路工作原理,再试着自己装一个小小的稳压电源,然后去学着修理电源电路故障。在一段相对集中的时间内专门学习电源电路,这样就会对电源电路有比较深入的了解,直至能够掌握。 2.学习应从这里起步 电子技术的面很广,但学习时应该从元器件入手。

电气原理图设计方法及实例分析

电气原理图设计方法及实例分析 【摘要】本文主要对电气原理图绘制的要求、原则以及设计方法进行了说明,并通过实例对设计方法进行了分析。 【关键词】电气原理图;设计方法;实例 继电-接触器控制系统是由按钮、继电器等低压控制电器组成的控制系统,可以实现对 电力拖动系统的起动、调速等动作的控制和保护,以满足生产工艺对拖动控制的要求。继电-接触器控制系统具有电路简单、维修方便等许多优点,多年来在各种生产机械的电气控制 中获得广泛的应用。由于生产机械的种类繁多,所要求的控制系统也是千变万化、多种多样的。但无论是比较简单的,还是很复杂的控制系统,都是由一些基本环节组合而成。因此本节着重阐明组成这些控制系统的基本规律和典型电路环节。这样,再结合具体的生产工艺要求,就不难掌握控制系统的分析和设计方法。 一、绘制电气原理图的基本要求 电气控制系统是由许多电气元件按照一定要求连接而成,从而实现对某种设备的电气自动控制。为了便于对控制系统进行设计、研究分析、安装调试、使用和维修,需要将电气控制系统中各电气元件及其相互连接关系用国家规定的统一图形符号、文字符号以图的形式表示出来。这种图就是电气控制系统图,其形式主要有电气原理图和电气安装图两种。 安装图是按照电器实际位置和实际接线电路,用给定的符号画出来的,这种电路图便于安装。电气原理图是根据电气设备的工作原理绘制而成,具有结构简单、层次分明、便于研究和分析电路的工作原理等优点。绘制电气原理图应按GB4728-85、GBTl59-87等规定的标 准绘制。如果采用上述标准中未规定的图形符号时,必须加以说明。当标准中给出几种形式时,选择符号应遵循以下原则: ①应尽可能采用优选形式; ②在满足需要的前提下,应尽量采用最简单形式; ③在同一图号的图中使用同一种形式。 根据简单清晰的原则,原理图采用电气元件展开的形式绘制。它包括所有电气元件的导电部件和接线端点,但并不按照电气元件的实际位置来绘制,也不反映电气元件的大小。由于电气原理图具有结构简单、层次分明、适于研究等优点,所以无论在设计部门还是生产现场都得到广泛应用。 控制电路绘制的原则: ①原理图一般分主电路、控制电路、信号电路、照明电路及保护电路等。 ②图中所有电器触头,都按没有通电和外力作用时的开闭状态(常态)画出。 ③无论主电路还是辅助电路,各元件应按动作顺序从上到下、从左到右依次排列。 ④为了突出或区分某些电路、功能等,导线符号、连接线等可采用粗细不同的线条来表示。 ⑤原理图中各电气元件和部件在控制电路中的位置,应根据便于阅读的原则安排。同一电气元件的各个部件可以不画在一起,但必须采用同一文字符号标明。 ⑥原理图中有直接电联系的交叉导线连接点,用实心圆点表示;可拆卸或测试点用空心圆点表示;无直接电联系的交叉点则不画圆点。 ⑦对非电气控制和人工操作的电器,必须在原理图上用相应的图形符号表示其操作方式。 ⑧对于电气控制有关的机、液、气等装置,应用符号绘出简图,以表示其关系。 二、分析设计法及实例设计分析 根据生产工艺要求,利用各种典型的电路环节,直接设计控制电路。这种设计方法比较简单,但要求设计人员必须熟悉大量的控制电路,掌握多种典型电路的设计资料,同时具有丰富的设计经验,在设计过程中往往还要经过多次反复地修改、试验,才能使电路符合设计

从EMC角度考虑常用电路设计及PCB设计

从EMC角度考虑常用电路设计及PCB设计 A.电源电路 电源电路设计中,功能性设计主要考虑温升和纹波大小。温升大小由结构 很关键:大电容一般采用低ESR电容,小电容采用0.1UF和1000pF共用。电源电路设计中,电磁兼容设计是关键设计。主要涉及的电磁兼容设计有:传导发射和浪涌。 传导发射设计一般采用输入滤波器方式。外部采购的滤波器内部电路一般采用下列电路: Cx1和Cx2为X电容,防止差模干扰。差模干扰大时,可增加其值进行抑制;Cy1和Cy2为Y电容,防止共模干扰。共模干扰大时,可增加其值进行抑制。需要注意的是,如自行设计滤波电路,Y电容不可设计在输入端,也不可双端都加Y电容。 浪涌设计一般采用压敏电阻。差模可根据电源输入耐压选取;共模需要电源输入耐压和产品耐压测试综合考虑。 当浪涌能量大时,也可考虑压敏电阻(或TVS)与放电管组合设计。

1 电源输入部分的EMC设计 应遵循①先防护后滤波;②CLASS B规格要求的电源输入端推荐两级滤波电路,且尽量靠近输入端;③在电源输入端滤波电路前和滤波电路中无采样电路和其它分叉电路;如果一定有采样电路,采样电路应额外增加了足够的滤波电路。 原因说明: ①先防护后滤波: 第一级防护器件应在滤波器件之前,防止滤波器件在浪涌、防雷测试中损坏,或导致滤波参数偏离,第二级保护器件可以放在滤波器件的后面;选择防护器件时,还应考虑个头不要太大,防止滤波器件在PCB布局时距离接口太远,起不到滤波效果。 ②CLASS B规格要求的电源输入端推荐两级滤波电路,且尽量靠近输入端:CLASSB要求比CLASS A要求小10dB,即小3倍,所以应有两级滤波电路; CLASSA规格要求至少一级滤波电路;所谓一级滤波电路指包含一级共模电感的滤波电路。

确定版的50个典型经典应用电路实例分析

电路1简单电感量测量装置 在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。 一、电路工作原理 电路原理如图1(a)所示。 图1简单电感测量装置电路图 该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频 值,测量精度极高。 率信号,可间接测量待测电感L X BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X 时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L 值。 X 电路谐振频率:f0=1/2π所以L X=1/4π2f02C LxC 式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。 为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。 附表振荡频率(MHz)98766253433834

PCB电路版图设计的常见问题

PCB电路版图设计的常见问题 PCB设计中的注意事项 作为一个电子工程师设计电路是一项必备的硬功夫,然而原理设计再完美,假如电路板设计不合理性能将大打折扣,严峻时甚至不能正常工作。依照我的体会,我总结出以下一些PCB设计中应该注意的地点,期望能对您有所启发。 不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。(由于protel界面风格与windows视窗接近,操作适应也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。) 原理图设计是前期预备工作,经常见到初学者为了省事直截了当就去画PCB板了,如此将得不偿失,对简单的板子,假如熟练流程,不妨能够跃过。然而关于初学者一定要按流程来,如此一方面能够养成良好的适应,另一方面对复杂的电路也只有如此才能幸免出错。 在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件会显现看似相连实际未连(电气性能上)的情形。假如不用相关检测工具检测,万一出了问题,等板子做好了才发觉就晚了。因此一再强调按顺序来做的重要性,期望引起大伙儿的注意。 原理图是依照设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。 l、制作物理边框 封闭的物理边框对以后的元件布局、走线来说是个差不多平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但那个地点一定要注意精确,否则以后显现安装问题苦恼可就大了。还有确实是拐角地点最好用圆弧,一方面能够幸免尖角划伤工人,同时又能够减轻应力作用。往常我的一个产品老是在运输过程中有个别机器显现面壳PCB板断裂的情形,改用圆弧后就好了。

Saber常见电路仿真实例

Saber常见电路仿真实例 一稳压管电路仿真 (2) 二带输出钳位功能的运算放大器 (3) 三5V/2A的线性稳压源仿真 (4) 四方波发生器的仿真 (7) 五整流电路的仿真 (10) 六数字脉冲发生器电路的仿真 (11) 七分频移相电路的仿真 (16) 八梯形波发生器电路的仿真 (17) 九三角波发生器电路的仿真 (18) 十正弦波发生器电路的仿真 (20) 十一锁相环电路的仿真 (21)

一稳压管电路仿真 稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。下面就介绍一个简单例子,仿真电路如下图所示: 在分析稳压管电路时,可以用TR分析,也可以用DT分析。从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示: 从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输

出足以超出稳压管工作范围的电流。 二带输出钳位功能的运算放大器 运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路,其放大倍数是5,稳压二极管1N5233用于钳位输出电压. 对该电路执行的DT分析,扫描输入电压从-2V->2V,步长为0.1V,仿真结果如下图所示:

555电路应用实例

For our other free eBooks, Go to: 1 - 100 Transistor Circuits Go to: 101 - 200 Transistor Circuits Go to: 100 IC Circuits For more data on the 555, see these pages: 555-Page 1 for CD users: 555-Page 1 555-Page 2555-Page 2 555-Page 3555-Page 3 555-Test555-Test To learn about the development and history of the 555, go to these links: https://www.doczj.com/doc/d81252554.html,/Museum_Index.htm- a general discussion about the development of the transistor https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Index.htm- history of the 555 - Page1 https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Page2.htm- history of the 555 - Page2 https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Page3.htm- history of the 555 - Page3 https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Page4.htm- history of the 555 - Page4 https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Page5.htm- history of the 555 - Page5 https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Page6.htm- history of the 555 - Page6 https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Page7.htm- history of the 555 - Page7 https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Page8.htm- history of the 555 - Page8 https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Page9.htm- history of the 555 - Page9 https://www.doczj.com/doc/d81252554.html,/Transistors/LectureHall/Camenzind/Camenzind_Page10.htm- history of the 555 - Page10 For a list of every electronic symbol, see: Circuit Symbols. For more articles and projects for the hobbyist: see TALKING ELECTRONICS WEBSITE 84 CIRCUITS as of 12-9-2010 plus Frequency Divider, Constant Current, 170v Power Supply, Audio Frequency Meter, Toggle,

PCB新手初学必备50个经典应用电路实例分析

电路 1 简单电感量测量装 置 在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达 10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。 一、电路工作原理 电路原理如图1(a)所示。 图1 简单电感测量装置电路 图 该电路的核心器件是集成压控振荡器芯片MC1648 ,利用其压控特性在输出 3 脚产生频 值,测量精度极高。 率信号,可间接测量待测电感 L X BB809 是变容二极管,图中电位器VR1 对+15V 进行分压,调节该电位器可获得不同的电压输出,该电压通过 R1 加到变容二极管 BB809 上可获得不同的电容量。测量被测电感L X 时,只需将 L X 接到图中 A、B 两点中,然后调节电位器VR1 使电路谐振,在MC1648 的 3 值。 脚会输出一定频率的振荡信号,用频率计测量C 点的频率值,就可通过计算得出 L X 电路谐振频率:f0 = LxC所以L X = 1/4π2 f 2C 1/2π 式中谐振频率 f0 即为MC1648 的 3 脚输出频率值,C 是电位器 VR1 调定的变容二极管的电容值,可见要计算 L X 的值还需先知道 C 值。为此需要对电位器 VR1 刻度与变容二极管的对应值作出校准。

为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形R F(射频)电感线圈 L0。如图6—7(b)所示,该标准线圈电感量为μH。校准时,将RF 线圈 L0 接在图(a)的 A、B 两端,调节电位器 VR1 至不同的刻度位置,在 C 点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1 刻度盘不同刻度的电容量。附表给出了实测取样对应关系。 振荡频率(M H z)98 76 62 53 43 3834

常见电路设计(一)

常见电路设计(一) 文章主要阐述了电压信号、电流信号硬件方面的处理和调制;通过硬件对这些信号的处理,处理后的波形能够直接通过板卡采集,通过换算显示在测试界面上。因此,对于工控机板卡采集和处理的信号参数带来了方便,提高了测试精度。 标签:电压信号;电流信号;硬件处理 现在测试设备很多都是在向集成、综合方向发展,都需要在电脑上控制和采集各种信号,对以往的模拟电压表、电流表都很少用了,都是通过板卡采集、软件换算后显示在测试界面上。于是就对电路设计提出了更高的要求,有许多信号不能直接通过工控机的板卡直接采集,需要对一些信号通过硬件处理后采集。例如大于10V的电压信号、电流信号、不规则的波形信号等一些电路中出现的信号。 1 电压信号采集 如果测试设备采集的电压信号精度要求不是特别高的话,那就采用传统的电阻分压的方法(如图1)。通常电阻长时间通电,电阻的温度会升高导致电阻有微小的变化,因此高精度的电压采集不能通过这种方法采集。由于板卡采集的电压最大范围为±10V,故不能直接将超过此范围电压直接输入采集板卡里,为了解决此问题,需要将该电压降低后采集。电压采集主要采用传统的电阻分压采集如图1。此时采集到的电压为X= Y,然后将此公式反算回去即可求出输入电压,此公式为Y= X。通过软件编程界面上就可以显示出输入的实际电压。当然如果Y电压太大,通过R1和R2分压后X值还是大于10V,那就需要对R1和R2的电阻值进行合理的分配。如果需要高精度的电压,那需要专用的电压传感器和高精度的板卡。 图1 电压采集电路图 若信号(电压、波形等信号)仅仅是需要把幅值降低,而不需要具体数值的话,可以通过光电耦合器(6N136)芯片降压,通过光电耦合后除幅值降低外其它各种参数均未发生变化。信号输出的幅值大小可以通过调节R1和R2阻值的大小控制,但最大不会超过5V。如图2,这样采集板卡可以采集并处理信号中的各种参数。 2 电流信号采集 传统的电流采集是采集电流通过采样电阻时采样电阻之间的电压,用采集到的电压值除以该电阻值即为所测试的电流值(如图3),计算公式为I= 。该设备测试的电流范围为10mA~4A。实际电流为I= ,当测试大电流时,采样电阻R 可以很小,对产品的内阻R1影响很小,实际测试到的电流为I0= ,但是由于电流偏大,采样电阻R会发热导致采样电阻R的值变化,采集到的电压也随之变

50个典型应用电路实例详解

电路1 简单电感量测量装置 电路2 三位数字显示电容测试表 电路 3 市电电压双向越限报警保护器 电路4 红外线探测防盗报警器 电路5 禁烟警示器 电路6 采用555时基电路的简易温度控制器 电路7 采用555时基电路的自动温度控制器 电路8 采用CD4011的超温监测自动控制电路 电路9 数字温度计电路 电路10 热带鱼缸水温自动控制器 电路11 采用555时基电路的简易长延时电路 电路12 双555时基电路长延时电路 电路13 精确长延时电路 电路14 数字式长延时电路 电路15 循环工作定时控制器 电路16 多级循环定时控制器 电路17 抗干扰定时器 电路18 采用555集成电路的简易光电控制器 电路19 采用功率开关集成电路TWH8751的路灯自动控制器电路20 采用双D触发器CD4013的路灯控制器 电路21 使用氖灯的单键触摸开关 电路22 双键触摸式照明灯 电路23 触摸式延时照明灯 电路24 家用简易闪烁壁灯控制器 电路25 自动应急灯电路 电路26 12V供电的电子节能灯 电路27 高响度警音发生器 电路28 电子仿声驱鼠器 电路29 由HY560构成的语音录放电路 电路30 闪烁灯光门铃电路 电路3 1 由LM386构成的3W简易OCL功放电路 电路32 由TDA2009构成的1W高保真BTL功率放大器 电路33 具有音调控制功能的25W混合式Hi—Fi放大器 电路34 超级广场效果的耳机放大器 电路35 家用电器过压自动断电装置 电路36 电话自动录音控制器 电路37 电风扇自动温控调速器 电路38 水开报知器 电路39 新颖的鱼缸灯 电路40 小型电子声光礼花器 电路41 电源频率检测器 电路42 采用555时基电路的过流检测器电路 电路43 自制交流自动稳压器 电路44 采用555时基电路的过电压、过电流保护电路

电子电路分析实例

电子电路分析实例 Final revision by standardization team on December 10, 2020.

一款简单的恒流源电路图 如下图是一款简单的恒流源电路图,在该电路中:当±v,R b2、Rtii和Re被确定之后,c就被确定了,在一定范围内与负载电阻RL的大小无关,只要使管子的V伸工作在晶体管输出特性曲线的平坦部分,就可以保持Jc的不变。 (VT,Re反馈网络起到稳压) 1kHz低频载波振荡电路 所示的振荡电路设计在1 kHz载波振荡频率上,负载是影响尽量小的电压放大桥式振荡器,为了简化电路,使用两个2SB75晶体管,电源电压为12 V。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 0 能通过,使振荡器产生单一频率的输出。 低频电压放大器 低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 ( 1 )共发射极放大电路 图 1 ( a )是共发射极放大电路。 C1 是输入电容, C2 是输出电容, VT 就是起放大作用的器件, RB 是基极偏置 ,RC 是集电极负载电阻。 1 、 3 端是输入, 2 、 3 端是输出。 3 端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图 1

( b ),动态时交流通路见图 1 ( c )。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。 ( 2 )分压式偏置共发射极放大电路 图 2 比图 1 多用 3 个元件。基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。如果送回部分和原来的输入部分是相减的,就是负反馈。图中基极真正的输入电压是 RB2 上电压和 RE 上电压的差值,所以是负反馈。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。 LC 振荡器 LC 振荡器的选频网络是 LC 谐振电路。它们的振荡频率都比较高,常见电路有 3 种。( 1 )变压器反馈 LC 振荡电路 图 1 ( a )是变压器反馈 LC 振荡电路。晶体管 VT 是共发射极放大器。变压器 T 的初级是起选频作用的 LC 谐振电路,变压器 T 的次级向放大器输入提供正反馈信号。接通电源时, LC 回路中出现微弱的瞬变电流,但是只有频率和回路谐振频率 f 0 相同的电流才能在回路两端产生较高的电压,这个电压通过变压器初次级 L1 、 L2 的耦合又送回到晶体管 V 的基极。从图 1 ( b )看到,只要接法没有错误,这个反馈信号电压是和输入信号电压相位相同的,也就是说,它是正反馈。因此电路的振荡迅速加强并最后稳定下来。

个典型应用电路实例详解

个典型应用电路实例详解 The Standardization Office was revised on the afternoon of December 13, 2020

电路1 简单电感量测量装置 电路2 三位数字显示电容测试表 电路 3 市电电压双向越限报警保护器 电路4 红外线探测防盗报警器 电路5 禁烟警示器 电路6 采用555时基电路的简易温度控制器 电路7 采用555时基电路的自动温度控制器 电路8 采用CD4011的超温监测自动控制电路 电路9 数字温度计电路 电路10 热带鱼缸水温自动控制器 电路11 采用555时基电路的简易长延时电路 电路12 双555时基电路长延时电路 电路13 精确长延时电路 电路14 数字式长延时电路 电路15 循环工作定时控制器 电路16 多级循环定时控制器 电路17 抗干扰定时器 电路18 采用555集成电路的简易光电控制器 电路 19 采用功率开关集成电路TWH8751的路灯自动控制器电路20 采用双D触发器CD4013的路灯控制器 电路21 使用氖灯的单键触摸开关 电路22 双键触摸式照明灯 电路23 触摸式延时照明灯 电路24 家用简易闪烁壁灯控制器 电路25 自动应急灯电路 电路26 12V供电的电子节能灯 电路27 高响度警音发生器 电路28 电子仿声驱鼠器 电路29 由HY560构成的语音录放电路 电路30 闪烁灯光门铃电路 电路3 1 由LM386构成的3W简易OCL功放电路 电路32 由TDA2009构成的1W高保真BTL功率放大器 电路33 具有音调控制功能的25W混合式Hi—Fi放大器 电路34 超级广场效果的耳机放大器 电路35 家用电器过压自动断电装置 电路36 电话自动录音控制器 电路37 电风扇自动温控调速器 电路38 水开报知器 电路39 新颖的鱼缸灯 电路40 小型电子声光礼花器 电路41 电源频率检测器 电路42 采用555时基电路的过流检测器电路 电路43 自制交流自动稳压器

50个典型应用电路实例详解

电路1 简单电感量测量装置 在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。 一、电路工作原理 电路原理如图1(a)所示。 图1 简单电感测量装置电路图 该电路的核心器件是集成压控振荡器芯片MC1648 ,利用其压控特性在输出3脚产生频率信号,可间接测量待测电感L X值,测量精度极高。 BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L X值。 电路谐振频率:f0 = 1/2πLxC所以L X = 1/4π2 f02C 式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。 为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。 附表振荡频率(MHz)98 76 62 53 43 38 34 变容二极管C值 6 10 15 20 30 40 50

“模拟电子电路实例”教案——单管放大电路的仿真实现

“模拟电子电路实例”教案 ——单管放大电路的仿真实现 一、本节课的地位、作用: 模拟电子技术是电子信息专业与通信工程专业的专业必修课程,是进入电子与通信领域的基础理论和必备技能。该课程的核心内容就是研究如何将模拟信号不失真地放大与传输,所以放大电路是模拟电路中最基本也最重要的电路。 本节课重点讨论如何利用计算机仿真软件,实现带发射极稳定电阻的电容耦合型三极管单管放大电路的电路性能仿真,在基本原理讲解的基础上,配以形象的电路仿真和生动的互动交流,以期让学生更好的理解电路的工作原理与特性,并为后续差动放大电路的学习打下基础。 二、本节课的教学方法与手段: 在教学过程中,充分利用多媒体课件、软件仿真、人机互动等多种手段,提高学生学习兴趣与自觉性,发挥学生的主观能动性,力争做到“教、学、做”一体 三、视频特点介绍 本视频主要使用Ulead VideoStudio进行视频编辑,并配以Photoshop、Goldwave、Format Factory、屏幕录像大师、powerpoint等多种多媒体软件剪辑而成,片长15分43秒,在视频中使用了多种多媒体技术,如画中画、画外音、字幕、屏幕录像等等。由于课程内容主要以软件操作为主,所以PPT部分较为简单。另外,为便于学习与观看本视频全程附带字幕,共2646字。 四、本节课的教学组织与安排: 本节课分为基本介绍、工作界面介绍、电路图绘制、原理讲解、电路仿真、互动环节和课程总结七个部分,首先介绍实验所用的基本电路,然后简单介绍仿真软件,再在软件中绘制仿真电路图,并在绘制过程中逐步介绍各电器元件的功能与作用。在讲解、演示、实验的过程中强调各个部分的相互关系与重点、难点分析,用幽默诙谐的语言与生动形象的比喻加深学生对课程的理解与印象,并充分利用新型的多媒体软件进行演示,邀请学生参与到仿真中来,抓住学生的注意力和学习兴趣。

模拟电路仿真实例

模拟电子电路仿真 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB 对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,

电路设计中必须掌握的7个常用接口知识

电路设计中必须掌握的7个常用接口知识 我们知道,在电路系统的各个子模块进行数据交换时可能会存在一些问题导致信号无法正常、高质量地“流通”,例如有时电路子模块各自的工作时序有偏差(如CPU与外设)或者各自的信号类型不一致(如传感器检测光信号)等,这时我们应该考虑通过相应的接口方式来很好地处理这个问题。 下面就电路设计中7个常用的接口类型的关键点进行说明一下: (1)TTL电平接口: 这个接口类型基本是老生常谈的吧,从上大学学习模拟电路、数字电路开始,对于一般的电路设计,TTL电平接口基本就脱不了“干系”!它的速度一般限制在30MHz以内,这是由于BJT的输入端存在几个pF的输入电容的缘故(构成一个LPF),输入信号超过一定频率的话,信号就将“丢失”。它的驱动能力一般最大为几十个毫安。正常工作的信号电压一般较高,要是把它和信号电压较低的ECL电路接近时会产生比较明显的串扰问题。 (2)CMOS电平接口: 我们对它也不陌生,也是经常和它打交道了,一些关于CMOS的半导体特性在这里就不必啰嗦了。许多人都知道的是,正常情况下CMOS的功耗和抗干扰能力远优于TTL。但是!鲜为人知的是,在高转换频率时,CMOS系列实际上却比TTL消耗更多的功率,至于为什么是这样,请去问半导体物理理论吧。由于CMOS的工作电压目前已经可以很小了,有的FPGA 内核工作电压甚至接近1.5V,这样就使得电平之间的噪声容限比TTL小了很多,因此更加加重了由于电压波动而引发的信号判断错误。众所周知,CMOS电路的输入阻抗是很高的,因此,它的耦合电容容量可以很小,而不需要使用大的电解电容器了。由于CMOS电路通常驱动能力较弱,所以必须先进行TTL转换后再驱动ECL电路。此外,设计CMOS接口电路时,要注意避免容性负载过重,否则的话会使得上升时间变慢,而且驱动器件的功耗也将增加(因为容性负载并不耗费功率)。 (3)ECL电平接口: 这可是计算机系统内部的老朋友啊!因为它的速度“跑”得够快,甚至可以跑到几百MHz!这是由于ECL内部的BJT在导通时并没有处于饱和状态,这样就可以减少BJT的导通和截止时间,工作速度自然也就可以提上去了。But,这是要付出代价的!它的致命伤:功耗较大!它引发的EMI问题也就值得考虑了,抗干扰能力也就好不到哪去了,要是谁能够折中好这两点因素的话,那么他(她)就该发大财了。还有要注意的是,一般ECL集成电路是需要负电源供电的,也就是说它的输出电压为负值,这时就需要专门的电平移动电路了。 (4)RS-232电平接口: 玩电子技术的基本没有谁不知道它的了(除非他或她只是电子技术专业的“门外汉”)。它是低速串行通信接口标准,要注意的是,它的电平标准有点“反常”:高电平为-12V,而低电平为+12V。So,当我们试图通过计算机与外设进行通信时,一个电平转换芯片MAX232自然是少不了的了。但是我们得清醒地意识到它的一些缺点,例如数据传输速度还是比较慢、传输距离也较短等。 (5)差分平衡电平接口: 它是用一对接线端A和B的相对输出电压(uA-uB)来表示信号的,一般情况下,这个差分信号会在信号传输时经过一个复杂的噪声环境,导致两根线上都产生基本上相同数量的噪声,而在接收端将会把噪声的能量给抵消掉,因此它能够实现较远距离、较高速率的传输。工业上常用的RS-485接口采用的就是差分传输方式,它具有很好的抗共模干扰能力。 (6)光隔离接口: 光电耦合是以光信号为媒介来实现电信号的耦合和传递的,它的“好处”就是能够实现电气隔

常用DCDC电源电路方案设计

常用DCDC电源电路方案设计

常用DC /DC电源电路设计方案分析 1、DC/DC电源电路简介 DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等。结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。 2、DC/DC转换电路分类 DC/DC转换电路主要分为以下三大类: (1)稳压管稳压电路。 (2)线性 (模拟)稳压电路。 (3)开关型稳压电路 3、稳压管稳压电路设计方案 稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。比较常用的是并联型稳压电路,其电路简图如图(1)所示, 选择稳压管时一般可按下述式子估算: (3)Vin=(2-3)Vout (1) Uz=Vout; (2)Izmax=(1.5-3)I Lmax 这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。 有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403 ,REF02,TL431等。这里主要介绍TL431、REF02的应用方案。 3.1 TL431常用电路设计方案 TL431是一个有良好的热稳定性能的三端可调分流基准电压源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。该器件的典型动态阻抗为0.2Ω,参考电压源误差1%,输出电流为1.0-100mA。最常用的电路应用如下图3-1所示,TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图3-1所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显然,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。

相关主题
文本预览
相关文档 最新文档