当前位置:文档之家› 全站仪自动化监测系统RoboMos

全站仪自动化监测系统RoboMos

全站仪自动化监测系统RoboMos
全站仪自动化监测系统RoboMos

珞琪全站仪形变监测系统RoboMos

源自瑞士高端制造工艺,结合中国地理国情监测格局,珞琪软件RoboMos全站仪自动化监测系统为您提供全方位变形监测数据,可广泛应用于地质灾害,水库大坝,尾矿库,大型建筑,桥梁,地铁,高铁等形变监测项目。

一、系统框架

RoboMos系统由数据采集现场、服务器和客户端三大部分组成。各部分关系如图1所示。

图1RoboMos系统框架图

数据采集现场主要有测量机器人,反射棱镜以及通讯供电组件构成。

服务器端分为数据采集服务器,数据库服务器和网络服务器。采集服务器负责传感器的配置管理,周期测量的运行,以及形变监测数据的处理和分析。数据库服务器负责将采集服务器处理后的监测数据存储到硬盘中,供以后历史查询等使用。网络服务器负责在因特网上发布监测结果。

客户端可分为局域网客户端和因特网客户端。他们都可以通过浏览器来访问网络服务器发布的实时监测数据,并可进行查询分析

二、硬件组成

三、软件架构

RoboMos软件分为采集服务器和网络服务端软件两部分。

图2软件框架

采集软件运行在传感器服务器上,负责管理传感器采集数据。该软件用标准C++编写,可运行于Windows,Linux,MacOS等系统上。

图3软件主界面

图4软件配置界面

图5图形查看界面

PC服务端软件提供了测站管理,棱镜管理,实时数据查看,以及历史数据查询几大功能。该软件采用了多线程技术对传感器进行管理与监控,界面设计与数据传输,数据解算和数据存储相分离。稳定可靠,界面友好。

软件可连接多台全站仪,每台全站仪对应多个监测点。自动测量过程中,全站仪定向方式可以在后视定向和后方交会中自由选择。数据查看提供了三维查看,二维查看,以及历史曲线几种方式,从不同的角度显示了监测物的位移变化情况。

网络服务端软件用JSP语言编写,维护了一个动态的网站,客户端通过因特网访问该网站,浏览网站数据。

与采集服务端软件一样,客户端可以查看实时数据,也可对历史数据进行统计分析,并形成报表,本地打印存储。

四、系统优点

与常见的监测系统相比,RoboMos系统有如下特点:

1、多全站仪支持(可连接多台全站仪)

2、多种通讯方式(网络、串口)

3、多种数据库连接(SQL Server,Oracle,MySql,Access)

4、全站仪观测真三维平差模型

5、坐标转化功能

6、三维模型查看

7、二维底图导入(可导入CAD,MapInfo,JPG等格式地图底图)

8、多平台支持(可运行于Windows,Linux,MacOS等操作系统)

9、提供了Web客户端

自动化变形监测系统在地铁监测中的应用

自动化变形监测系统在地铁监测中的应用 摘要:随着我国城市化进程的不断加快,地铁已成为城市公共交通建设的重要 组成部分。由于地铁自身运营及临近地铁相关工程建设对地铁结构产生动态影响,如何对隧道结构及轨道开展自动化监测尤为重要。本文结合沈阳地铁二号线青年 公园站~青年大街站区间自动化监测项目来详细说明自动化监测技术在地铁变形 监测中的具体应用。 键词:轨道交通;地铁;自动化监测系统;变形监测 1、工程实例概况介绍 本基坑工程处于沈阳地铁二号线左线控制范围内,基坑结构边线距离地铁左 线结构边线距离约12米,基坑结构地下四层,深度约22米。该基坑的施工将对 地铁左线结构产生明显的影响,地铁左线结构将产生向上隆起和向基坑侧的水平 位移变形。为保证地铁结构的绝对安全,对运营的左线地铁结构采用基于高精度 智能型全站仪的自动化变形监测系统,来实时地监测左线地铁结构的三维变形。 2、针对运营的左线地铁结构采取的监测方法 采用基于高精度智能型全站仪的自动化变形监测系统,实时监测左线地铁结 构的三维变形。为确保监测数据的可靠,左线在布设自动化监测系统的同时,布 设人工监测点,人工监测与自动化监测系统相互校核。 3、使用的仪器设备及软件 瑞士徕卡TM50或TS30自动全站仪(0.5″,0.6mm+1ppm),武汉大学测绘 学院“GeoRDMAS”软件,Leica L型棱镜。 3.1 自动化变形监测系统简介 自动变形监测系统是用于控制测量机器人进行自动变形监测以及对监测过程 中所采集的数据进行管理与处理的软件,该系统将自动测量、实时显示测量成果、实时显示变形趋势等智能化的功能合为一体(详见图3-1)。 3.2 自动化变形监测系统优势 自动化变形监测系统使用的是全自动跟踪全站仪,它可以代替人完成对观测 目标的自动搜索、照准、跟踪、识别并且获取观测目标的距离、角度等数据,而 且精度高、可连续作业。由于地铁隧道内观测环境特殊性不同,传统的人工监测 方法缺乏同时性,而且作业效率低、观测周期长,仅适用于施工环境复杂、隧道 结构相对稳定不需要长期进行监测的工程。 4.自动化监测项目实施 4.1自动化监测内容 1)道床沉隆及水平位移监测; 2)结构侧壁沉隆及水平位移监测; 3)道床(轨道)差异沉降监测; 4)现场安全巡视。 4.2监测断面布设及点位埋设 自动化监测区间为约100米,70米施工基坑范围每10米布设1处监测断面,两侧各外延30米,15米一个断面,各设2个断面,共设12个断面,每个断面布设4个监测点,道床2个,侧壁2个(详见断面监测点布置示意图4-1、监测断 面位置示意图4-2)。 4.3自动化数据采集过程

自动化监测在地铁隧道检测中的运用 张宇

自动化监测在地铁隧道检测中的运用张宇 发表时间:2019-09-11T15:14:57.157Z 来源:《建筑学研究前沿》2019年10期作者:张宇周德春卢建军[导读] 论文主要介绍自动化监控系统的基本要求和在地铁隧道监控中的使用,以提供对相关项目的参考。 浙江华东工程安全技术有限公司摘要:由于地铁隧道是相当复杂、隐秘和对技术要求很高的项目,因此科学地引进自动化监测技术对地铁隧道检测工作至关重要,不仅能实时监测地铁隧道情况,还能有目的地不断优化改革,有效降低意外安全事故发生的概率,并为地铁运行提供安全保证。论文主要介绍自动化监控系统的基本要求和在地铁隧道监控中的使用,以提供对相关项目的参考。 关键词:自动化;监测;地铁隧道;安全运行引言地铁运行安全不仅直接关系到国民的生命安全,还会直接影响国家财产安全,因此将自动监控技术应用于地铁隧道监控不仅可以确保地铁安全运行,还可以实时监控隧道情况,排除安全风险,减少事故发生率。 1、地铁监控测量的现状目前,我国一些城市已经开始建设和运行城市地铁工程,但对于城市地铁运行状况,地铁工程的自动化监控控制尚未比较普遍,大多数地铁在监控阶段仍然按照传统的监控方式进行,存在更明显的问题。第一,地铁监控数据采集。地铁工程通常在监控工作进行过程中包括多个监控项目,根据监控项目的不同,人工使用的监控设备也有很大差异。其中许多监控设备依赖于人工手动测量,而相对先进的测量设备也是半自动状态,即人工通过仪器监控地铁项目,而监控设备自动存储收集的数据。这种工作方法受人为因素的影响,很容易出现一些误差。第二,数据处理。地铁工程监控数据处理过程通常需要人工手动处理,由于信息处理水平较低,人工手动处理过程中出现的错误相对较多,因此无法一次性提供地铁工程设计和施工的参考。第三,数据管理。对于地铁监控的数据信息,员工无法根据时间、项目等存储表单,从而对数据进行有效的分析和管理。 2、地铁轨道自动化监测系统 1(1)徕卡TM50全站仪;徕卡TM50全站是地铁隧道施工自动化监控过程中最常用的仪器,可实现焦距调节、正向镜子监控、数据自动记录、目标自动识别和校准,显着提高自动监控效率,而无需人为调节焦距和精密学校。(2)反射棱镜和计算机设备;在地铁隧道中,反射棱镜安装在轨道道床、管壁两腰等处,与LeicaTM50全站仪一起,组建成一套自动化跟踪监测系统。计算机设备连接到莱徕卡TM50全站,依靠专业监控系统来存储和分析数据,利用电缆设备、电源设备、存储设备、数据传输设备等来生成相应的监控报告。(3)自动监测软件GeoMoS监控软件;GeoMoS监控软件可以与LeicaTM50全站仪一起完成地铁隧道建设监控,并将获得的相关数据存储在SQL数据库中。GeoMoS监视软件还添加了监视周期,以确保监视操作不中断。(4)数据处理分析;GeoMoS所有的测量数据和结果数据都存放在一个SQL数据库中,无论用GeoMoS或第三方软件都可以本地或远程安全的访问这些数据进行分析。系统支持型号广泛的传感器,同时软件还设计为可以便捷地增加额外的传感器。联合使用一系列测量和大地传感器所采集到的数据,GeoMoS能帮助您将风险降到最低点。 GeoMoS采用严格的数据筛选和处理算法以确保从所连接的传感器上得到最高精度的数据。对于由GNSS和全站仪所组成的监测系统,GeoMoS可以采用最新的GNSS技术和徕卡GNSS Spider无缝联合进行高级监测。 3、地铁隧道施工中的自动化监测地铁隧道施工自动化监测实施需要关注两个问题。第一,设置监视位置,主要包括设置监视位置、设置监视点、设置参考点、设置LeicaTM50全站仪安装点等;第二,选择适当的监测方法,LeicaTM50全站仪安装完成后,将GPRS等信息链与具有监控系统的计算机相关联,计算机根据预设的工作周期监控地铁隧道,并对每个监控点进行比较分析。这意味着,如果监视时发现数据偏差很大,棱镜盖等问题,则会记录度量点,监视后续监视点,然后再次监视异常位置,这有助于消除监视错误,还有助于工作人员采取及时发现和纠正监视点问题的策略。 4、自动化监测在地铁隧道监测中的运用(1)监视地铁隧道的沉降;比起人工监控,我们在隧道道床上安装监控点,根据等级要求进行测量,自动监控方法能够更及时、更精确、更加准确和快速地提供监控数据,这是比人工监控更加常用的方法,也是实际做业中最常用的方法。(2)监视地铁隧道的收敛变化;使用徕卡全站仪等自动化方法,比人工全面监控和腰部收敛测量更快、更高效地反映隧道变形情况,可实现准确、高度准确,并且易于实时反馈施工对隧道保护区的影响程度,从而分析和判断隧道安全状态。(3)监测地铁隧道的水平位移。放置测量机器人,设定所需的监控点和稳定的基准点,以及启用隧道水平位移的自动监控。与手动测量相比,数据是实时的、连续的,更易于分析。(4)自动监测系统可保证施工参数。地铁工程不仅是城建重点交通项目,而且是国家社会最关注的民生项目,因此对工程质量要求很严格,可以保证以后地铁运行更加安全。依据自动监视技术及时给予施工反馈,不仅能降低失误率,还能不时判断施工手段、施工期限等是否符合预期要求,并及时制定调整优化方案。 5、自动化监测的优势 5.1弥补人工检测的不足自动监控可以通过传感器、网络和数据实时监控地铁隧道的状态,不仅节省了员工的工作时间,还提高了跟踪效率。自动监测技术可以通过数据可视化隧道的状态,可以显示人工检测不容易发现的安全隐患,并对隧道进行评价。及时发出安全和保安警告。自动监控是一种随时可用的技术,可以实时监控,而无需设置等待监视时间,便于测试设备且实时了解隧道变形情况。 5.2数据更为精准信息隧道的建设不仅要全面监测隧道的状况,还要以隧道安全证明为基础,需要对数据采集和分析进行自动监控、排序规则具有极高的精度,如果监测结果与实际值不匹配,必然会造成隐藏的安全风险。手动测试往往在数据上不太准确,会出现很大的错误,但自动监测技术,通过综合分析多个监测点,监测数据比手动数据的准确性较好,和实际更加一致。结束语

设备远程监测系统功能特点

设备远程监测系统功能特点 随着科学技术的进步与发展,机械设备逐渐趋向于全球化、自动化、高速化和复杂化,一方面使得设备状态监测和故障诊断技术变得越来越重要,另一方面使得其越来越专业化,对一般技术人员越来越难以掌握,这在某种程度上限制了设备远程监测技术的推广和发展。 设备远程监测系统软件由两部分组成:监测系统软件和前置机软件。监测系统,软件画面直观,界面友好,具备数据显示、模拟动画、数据查询、报警显示、生成曲线,报表等多项功能。前置机软件是平升公司专有的通信管理软件,支持国产及进口的各种组态软件,支持集成商自行开发的系统软件。 一、系统功能: ⑴、主动问询功能:生产监测中心主动问询获取每个起重设备被监测的数据。 ⑵、报警功能:通信中断等故障出现时,监测中心有报警显示。 ⑶、显示功能:显示器的界面上显示当时被监测设备的地址及主要数据。 ⑷、数据存储功能:服务器上的数据库中存储所有历史记录。

⑸、数据查询功能:监测中心可以查询任意时间段每个起重设备被监测的数据。 ⑹、曲线报表功能:所有存储数据可以自动生成分析曲线和报表。 ⑺、远程维护功能:通信模块具备远程参数设置和维护功能。 ⑻、拓展功能:可自由增减被监测起重设备的数量。通过增添设备,可增加其它功能。 二、系统特点: ⑴、可靠性高:系统及产品均为工业级设计,通信网络为专网,具有高可靠性。 ⑵、性能稳定:通信设备具有良好的自恢复功能,保证系统稳定运行。 ⑶、性价比高:系统功能多,前端设备可以远程维护,移动公司负责网络,系统维护费用低。 ⑷、技术先进:通信采用网络通信技术,国内先进水平。 远程监测方式远程监控系统仅仅向设备控制系统发出控制命令,而由设备自主的完成这个命令,远程监控系统不对设备的具体实现过程进行监控,设备完成任务后向远程监控系统报告。设备的操作控制完全由本地进行,设备在本地操作人员的监控下完成加工任务。远程监测方式设备的本地控制系统仅仅控制设备的执行机构,全部的操作控制由远程监控系统完成。

自动化变形监测

自动化变形监测技术的研发与应用 摘要:在各项工程的变形自动化监测方面,测量机器人正逐步成为首选的自动化测量技术设备。与传统人工测量手段相比,测量机器人以它的高精度、高稳定性和高可靠性等优越性,在变形监测中发挥越来越重要的作用。自动化变形监测能够在无人值守情况下完成变形监测,完全能够取代人工测量,同时还为我们提供了可视化的动态变形信息,做到了信息化施工,也避免了工程事故的发生。 关键词:自动变形监测;传统人工测量;自动全站仪;可视化 The development and application of automatic deformation monitoring Subtract:In the project of the automation deformation monitoring, measuring robot is gradually becoming the preferred automation measuring technology equipment.The system is simple operation, high automation level. Compared with the traditional artificial measurement methods, measuring robot to its high precision, high stability and high reliability etc- advantages in deformation monitoring playing more and more important- role. When no one guards,it can complete deformation monitoring and completely replace artificial measurement. At the same time, it also provides us with a visualization of the dynamic deformation information. We can do the informatization construction and avoid engineering accident. Key words: automatic deformation surveying ; The traditional artificial measurement; automatic total station; visualization 1 引言 传统的工程变形监测测量是靠人工实地测量,工作量大,测出的各项参数存在一定的系统误差和人工误差,还要受天气和现场条件状况的影响,资料的整理与分析周期也很长,不能及时地发现工程隐患。为了解决这些问题,测量机器人开始进入人们的视野。测量机器人通过CCD影像传感器和其它传感器对测量的“目标”进行识别,迅速做出分析、判断与推理,实现自我控制,并自动完成照准、读数等操作。自动化变形监测系统是采用测量机器人对各种工程进行自动化安全监测和数据处理的通用软件系统,可对各监测点进行实时监控、自动测量和变形过程显示等功能。国内外自动化变形监测系统的研究和开发也取得一定成果。例如,国内武汉大学张正禄开发研制的测量机器人变形监测系统等,国外德国Leica公司推出的Geomos(Geodetic Monitoring System)自动监测系统,已经相对比较完善。 2 系统整体设计 (1)工程管理:工程中保存着该变形监测项目在监测过程中的相关数据。 (2)系统初始化:实现各项通讯参数设置以及测量机器人的初始化设置等。 (3)学习测量:对所需观测的目标点进行首次人工测量,获取目标点概略空间位置信息,以便日后计算机控制测量机器人自动搜寻定位目标点,完成自动测量。

盆栽植物土壤水分监测及自动浇灌系统设计

2015年2月 吉林师范大学学报(自然科学版)?.1第1期Journal of Jilin Normal University (Natural Science Edition )Feb.2015 收稿日期:2014-10-10基金项目:国家自然科学基金项目(61305082);吉林师范大学第十二批大学科研基金项目(12234, 12235)第一作者简介:王立忠(1970-),男,吉林省四平市人,现为吉林师范大学信息技术学院副教授,硕士,硕士生导师.研究方向:电子技术. 盆栽植物土壤水分监测及自动浇灌系统设计 王立忠,蒋宁,程礼邦,段佳敏 (吉林师范大学信息技术学院,吉林四平136000) 摘要:基于单片机设计了一种能够根据土壤湿度进行自动控制,并带显示功能的盆栽植物浇灌系统.单片机根据土壤湿度传感器采集的信号对湿度进行自动控制.根据植物的需要设定湿度的下限和上限,在湿度高于上限值时不进行浇灌.若湿度低于下限值,通过传感器发出缺水信号,根据不同的情况来驱动水泵进行适当的浇 水.浇水装置采用滴灌方法, 有助于土壤对于水分的吸收和浇灌的均匀.通过定时器定时自动检测土壤湿度,确保及时为植物提供充足的水分,从而为盆栽植物的生长提供一个良好的环境. 关键词:盆栽植物;自动灌溉;单片机;湿度传感器 中图分类号:TP342文献标识码:A 文章编号:1674- 3873-(2015)01-0095-040引言 目前,盆栽植物作为一种绿色、天然、健康的植物,就成了人们追求高品质生活的首选,但随着社会的高速发展和生活节奏的加快,人们的生活越来越忙碌,因加班、出差、早起及各种各样繁杂的事情经常会将“照顾”盆栽植物的事忘在脑后.该款装置将花土水分监测和浇灌实现自动化,提高了植物的科学浇灌的 同时也减轻了人们的 “负担”.克服了传统的人工给盆栽植物浇水带来的局限性[1-2].装置不同于普通浇灌装置,根据不同植物对水分要求和灌溉时间的要求进行设定,可以在长时间“无人”情况下自动检测花土湿度,并根据花卉对湿度要求进行自动滴灌.盆栽植物土壤水分监测及自动浇灌系统基于单片机控制,再配合土壤湿度检测电路探测盆栽植物所在的土壤环境,由于传统的人工浇水具有不定时性和不均匀性,所以我们采用滴灌技术.本系统采用独立的节能电源设计,避免停电的问题.具有节水、节电、省时、环保等特点. 1系统方案设计 整个系统由土壤湿度传感器模块、单片机采集控制及信号输出电路模块(单片机、数据处理及显示模块)、水泵及供水模块、电源管理模块5个主要部分组成.系统构造框图如图1所示 . 图1系统框架图 系统的工作原理:土壤湿度检测模块来完成对盆栽植物土壤湿度的采集,单片机采集控制模块将从湿度传感器模块得到的土壤湿度数据与设定的土壤湿度数据进行比较,当达到设定的开启条件时发出水泵开启信号进行实时滴灌,湿度达到设定值时停止滴灌.滴灌设备根据单片机分析数据后,实现滴灌或者停

风电场及远程监控自动化管理系统

风电场及远程监控自动化管理系统 一、系统概述 风电场及远程监控自动化系统采用分层分布的体系结构,整个自动化系统分为三层:风场控制层、区域控制层和集中控制层。风场控制层设在风电场现场,为风电场运行 与管理提供完整的自动化监控,为上级系统提供数据与信息服务;区域控制层 设在区域风电场中央控制室,负责所辖风电场运行状态的监视与管理,为集中 控制层提供数据与信息服务;集中控制层作为总部或集团的风力发电监控中 心,全面掌控所有风电场运行状况,统筹资源调配。 建设风电场及远程监控自动化系统,实现各风电场设备的集中监视和管理,对提高公司综合管理水平、优化人员结构、提高风电场发电效益等十分重要。 提高风电场自动化水平 无人值班少人值守是风电场运营模式的发展方向,对风电场的设备状态、自动化水平、人员素质和管理水平都提出了更高的要求,是风电场一流的设备、一流的人才、一 流的管理的重要标志,建立可以实现风电场及远程监控自动化系统,是实现风 电场无人值班少人值守的必要条件,对全面提高风电场自动化水平有极大的促 进作用。 提高风电场群的经济效益 设置风电场及远程监控自动化系统,建立与当地气象部门的联系,根据气象部门对未来时段天气预报的预测信息,制定风电场在未来时段的生产计划,合理地安排人员调 配和设备检修计划,使资源得到充分利用,提高风电场群的经济效益。 提高风电场群在电网中的竞争优势 随着风电场群规模的日益扩大,风电发电量在电网中占的比重将越来越大,通过建立风电场及远程监控自动化系统,对各风电场的发电状况进行预测,并上报电网公司, 以利于电网公司电力调度计划的制定,提高发电公司在电网中的竞争优势。提高公司管理水平 由于风电场群具有风电场设备多且分布分散,地处偏远的特点,如果对每个风电场单独进行管理,需要消耗大量的人力物力。设置风电场及远程监控自动化系统,实现风 电场群的集中运行管理、集中检修管理、集中经营管理和集中后勤管理,通过 人力资源、工具和备件、资金和技术的合理调配与运用,达到人、财、物的高

浅析公路隧道施工自动化监测技术 陈昊

浅析公路隧道施工自动化监测技术陈昊 发表时间:2017-12-07T10:33:40.080Z 来源:《基层建设》2017年第25期作者:陈昊 [导读] 摘要:公路隧道施工监控量测作为新奥法施工的关键要素,是保证隧道现场施工安全和信息化设计的基础。 深圳市勘察研究院有限公司广东深圳 518000 摘要:公路隧道施工监控量测作为新奥法施工的关键要素,是保证隧道现场施工安全和信息化设计的基础。文章总结分析了公路隧道施工监控量测发展现状以及存在的问题,分析得出了公路隧道施工自动监测系统的基本构成以及制约自动监测技术发展的因素,为公路隧道自动监测技术的发展提出了建设性的建议。 关键词:公路隧道;自动化;监测技术 1 引言 我国目前绝大部分公路隧道设计施工采用了新奥法原理,其中公路隧道施工监控量测作为新奥法施工的关键要素,是保证隧道现场施工安全和信息化设计的基础。通过对施工现场监控量测数据分析,进一步对隧道围岩力学性能进行评价,进而可对隧道施工方法、支护参数等进行合理调整,从而做到信息化设计、施工,确保施工安全、围岩稳定、支护经济、质量可靠。目前隧道施工监控量测主要技术手段以人工监测为主,随着技术的进步,隧道施工自动化监测技术研究与应用也逐渐成为热点。然而受技术、经济的制约,其发展速度受到一定的限制,一些成熟的自动化监测系统很难得到广泛的推广应用。 2 隧道施工监测存在的主要问题和不足 2.1 现场监测人员整体技术水平偏低 目前隧道施工监控量测项目的现场工作人员多由在校生、实习生、专科生和非专业人员组成,其资历水平不够、现场整体水平明显偏低,一方面是工作的熟练程度不足,另一方面是专业知识积累还存在一定的缺陷,数据结果的准确性、可靠性难以保证。另外,现场测量人员的工作积极性和责任心不强,导致监控量测的数据不能够完全准确的反映实际情况。 2.2 量测数据分析不及时,监测预警指标不明确 受人员主观能动性的制约,许多量测数据采集完成后得不到及时的分析,部分项目存在监测数据迟滞分析,主观的认为监控量测只是提交监测周报和月报即可。受现场人员技术水平的制约,量测结果的分析深度不够,监测预警的概念不清,监测预警指标不明确,监测预警不准确。 2.3 施工方的配合度不够 公路隧道施工环境十分恶劣,对于中长距离以上的隧道,洞内照明、通风往往不良,加上洞内作业人员比较复杂,又对监控量测工作的认知不足,致使监控测点松动甚至破坏,造成检测数据的中断,数据无法连续反映围岩及支护的实际变化情况。公路隧道监控量测工作在开展过程中难免给施工计划带来影响,有时需占用施工作业空间和时间,对于中长隧道的工期及成本都有所影响,同时施工方对监测单位的信息反馈重视不足,认为其作用并不重要。 3 公路隧道自动化监测技术应用 3.1 监测传感器 隧道自动监测的传感器与采用人工手段的监测传感器是一致的,围岩变形的监测能够实现自动监测的传感器主要有测量机器人、激光位移计、静力水准仪、巴塞特收敛系统和自动隧道断面扫描系统等;对围岩及支护结构力学特性监测的传感器主要有压力盒、多点位移计、锚杆轴力计、混凝土应变计和钢筋计等,主要以振弦式和电阻式两种类型为主。选测项目以埋入式为主,对于施工隧道的抗干扰能力较强,而围岩变形检测需要稳定的安放于隧道内部,抗干扰能力较低,且成本较高。 3.2 监测数据的自动采集技术 根据目前隧道施工监测内容以及现有的传感器类型,其输出的信号类型主要有电压数据信号、振弦数据信号、电流数据信号、数字数据信号以及压电数据信号等。隧道施工自动监测的第一步就是需要对各类传感器采集输出的各种信号进行定时地自动采集和向外输出可识别的信号。目前市场上此类技术已比较成熟,多类信号数据均可成功实现集成和转化。 3.3 数据分析 选择隧道右洞围岩破碎位置处的3个断面为研究对象,挑选关键时间点的监测数据绘制曲线图。由于部分监测点在施工中遭到破坏,所以选择未被破坏数据连续的监测元件进行分析。(1)初期支护与围岩接触压力。围岩与初期支护间压力量测是为了了解初期支护的实际受荷情况,量测的数据可作为隧道结构设计计算的依据。而且实地量测的荷载基本上反映了结构与围岩全面相互作用的特征,能够更为直观准确地了解复合式支护结构的受力状态,从而能对支护结构做出有效地评价,并有针对性地提出合理的优化设计方案。围岩与初期支护接触压力分布总体上都呈现为“上大下小”:拱顶位置的围岩压力通常都较大;两侧拱腰中通常有一侧围岩压力较大,而另一侧围岩压力相对较小,本隧道断面的拱顶及拱腰位置的围岩压力较大,但在二次衬砌施作后都趋于稳定,最大值大多出现在拱顶。(2)初期支护与二次衬砌接触压力。对比围岩与初期支护间压力,在二衬施工时,初期支护间压力明显变小,说明二次衬砌自成型后即承受部分围岩压力,宜及时施作二次衬砌,尽早形成封闭结构,初期支护与二次衬砌接触压力均不大,由此可知该隧道所预设计的支护衬砌结构总体上是偏于安全的。 4 隧道自动化监测技术发展分析 4.1 隧道施工过程围岩自动监测技术瓶颈 隧道围岩位移自动监测技术手段多样,但是应用到隧道施工过程中依然存在诸多问题需要克服和攻关。(1)测量机器人和自动隧道断面扫描系统成本太高,受施工干扰大,监测基点及测点极易破坏,需要人工经常进行基点和测点的照准调试工作,同时仪器设备安放于隧道内极易被破坏,且其数据输出接口很少对外开放,难以与自动监测系统进行集成;(2)激光位移计技术目前仍然处于研究阶段,基本无成熟的产品投入生产,其量测精度和量程较小,其前端光敏原件受灰尘干扰较大,相关的信号处理技术还不成熟;(3)静力水准仪传感器之间采用物理连接,受施工干扰较大,量程较小,安装要求结构物表面平整,而隧道施工监测,测点位于初期支护上,平整度达不到要求;(4)巴塞特收敛系统为国外研发,成本较高,受施工干扰大,数据输出难对外开放以及与其他自动监测系统兼容。

土壤墒情在线监测系统概述

土壤墒情在线监测系统概述 灌溉在农业生产中是非常重要的一项农事工作,而节水灌溉则是近年来国家所倡导的一种灌溉方式。经实践证明,在田间作物增产灌溉和适时适量节水技术应用与研究中,都离不开田间墒情的监测和预报。通过应用土壤墒情在线监测系统对田间墒情的监测和预报,种植者可以根据土壤墒情在线监测系统提供的数据发现某块田地缺水了,然后及时进行灌溉,而当土壤水分达到过多时,就能提醒种植者进行排水,严格的按照墒情浇关键水,使得灌溉水得到有效利用,从而达到节水高产的目的。 那么,土壤墒情在线监测系统是什么?该系统怎样呢? 土壤墒情在线监测系统就是专业用来监测田间土壤墒情的设备,它可以利用其数据采集、传输和存储技术来实时获取田间的墒情旱情等信息,而工作人员通过这些数据信息,就可以分析出当前田间土壤的墒情情况。土壤墒情在线监测系统和传统土壤监测仪器相比具有很大优势,它可以实现全天24小时对土壤墒情的实时监测,做到每分每秒关注土壤墒情的变化情况,而且不需要工作人员看守,同时还能够将数据传输至平台,实现多点墒情监测,而这些都是过去的土壤墒情监测仪器所不具备的。 不仅如此,土壤墒情在线监测系统的好处远远不止只有这一点,农业种植人人都想作物增产,而作物要想增产,合理的灌溉措施是少不了的,而合理的灌溉离不开田间墒情的监测和预报,即离不开土壤墒情在线监测系统的应用,还有在农业种植过程中,农户也经常会遇到灌溉的问题,比如什么时候灌溉合适,灌溉多少合适,如果灌溉把控不好时间或者灌溉不及时,很容易影响农作物的正常生长,影响农作物的产量。所以如何使农作物得到适时、适量的灌溉,提高灌水效率,是非常重要的事情。而托普云农TZS-GPRS-I土壤墒情在线监测系统是专业用于监测与管理土壤墒情的专业系统。该系统可以通过实时监测,为作物灌溉提供可靠的数据支撑,提高水资源的利用率,提高种植效率。

农业大棚远程智能监控与PLC自动化控制系统项目解决方案

农业大棚远程智能监控与PLC自动化控制系统解决方案 目录 1 前言 (2) 1.1 智能农业远程智能监控系统的概念 (2) 1.2 实施农业远程智能监控系统的必要性 (2) 2 背景分析 (3) 3 大棚温湿度光照采集与自动化控制设计 (5) 3.1 系统设备组成 (9) 3.2 网络架构 (10) 3.3 采集原理 (11) 3.4 数据架构 (13) 3.5 设计原则 (14) 4 系统功能 (16) 4.1 功能架构 (16) 4.2 功能特点 (17) 4.2.1 数据采集 (17) 4.2.2 数据查询 (18) 4.2.3 数据分析与诊断 (18) 4.2.4 数据报警 (18) 4.2.5 视频监控 (19) 4.3 设备参数 (19) 4.3.1 数据采集与传输设备 (19) 4.3.2 温/湿度测试仪昆仑海岸 (20) 4.3.3 光照测试仪昆仑海岸 (25) 5 施工组织方案 (25) 5.1 施工方案介绍 (25) 5.2 施工计划安排 (26) 5.3 资源准备 (27) 5.4 施工内容 (27) 6 售后服务及承诺 (28) 7施工与验收时间表 (28)

1前言 1.1智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显著的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民

自动化监测系统说明

GSP温湿度自动监控系统 使用说明 前言 我司GSP自动监控系统是基于Windows平台下开发的自动化监控系统,拥有强大的多线程,多核处理器,系统稳定性高。适用于Win2000XP、Win2003、Vista、Win7操作系统。 基础功能包括:实时监控数据显示、超线自动报警、实时记录监控数据和报警数据、实时曲线图、历史数据查询打印、自动生成历史曲线图、历史数据导出、数据自动备份、系统运行日志、用户权限管理。 支持多种数据采集通讯方式,如RS232、485、422、无线电台、TCP以太网、GPRS远程无线通讯。 系统要求 CPU:主频2.1G以上 内存:1G以上 硬盘空间:可用空间不小于1G

基本功能操作说明: 一、主界面 软件主界面,采用温度、湿度组合方式进行显示,显示更直观有序。 二、用户登陆: 默认用户密码:0000,选择用户登陆(如图,初始密码为0000)注意:为了安全起见,建议在第一次登录后修改系统操作员密码,

并妥善保存其密码,选择【自动登陆】后,下一次用户可以直接进入系统,无需再次输入用户名和密码,不建议选择【自动登陆】。 三、修改公司名称和标题: 主要修改主界面的显示标题,用户可根据自己的实际填写。 四、退出系统: 退出系统时系统会有提示,询问用户是否真想退出,防止用户无意中退出系统,并且如果选择退出时输入密码选项,在退出系统时,还提示输入密码,密码验证后才能退出系统。

输入密码并且正确后才可以推出该自动监控系统软件。 五、选择基本设置。

数据采集间隔:数据采集间隔是指监控软件向温湿度监测设备定时发送数据请求命令的周期,单位可以是秒、分钟、小时。根据监测点的多少调节数据采集间隔,一般情况无需用户调节该选项,采用默认60秒即可。 数据保存间隔:是将采集到的温湿度数据及状态数据保存到数据库中的周期,利于数据长久保存,可虑到数据容量、数据的完整性及数据与温湿度监测设备的一致性系统采用默认数据保存间隔为10分钟,10分钟也满足GSP要求,不建议用户修改该选项,确实需要修改间隔,请联系该系统技术人员。 冷藏车数据保存间隔:根据GSP要求,冷藏车监测数据保存间隔要求间隔短,我们采用默认2分钟记录间隔,能够很好满足GSP 要求,同时能够保证数据的规律性,不建议用户修改该选项,确实需要修改冷藏车的数据保存间隔,请联系该系统技术人员。 报警记录间隔:报警记录间隔是指在某个监测点在报警期间对数据的记录间隔,GSP要求在报警期间加快报警数据记录频率,该项默认采用2分钟记录间隔,用户无需修改。 允许通讯失败次数:由于通讯本身存在线路不通的现象,该参数就是说明在通讯连续失败几次就认为确实线路有问题,需要检查线路或设备,软件会提示通讯异常,一般也不建议用户修改该参数,采用默认4次比较合理。 六、报警设置

监测自动化发展现状

我国大坝自动化安全监测现状 200930201489周杰华 我国大坝自动化安全监测的研究始于70年代末,80年代有了长足的进步,进入90年代中期以后,随着现代科学技术的迅猛发展,特别是传感技术、计算机和微电子技术、通信技术的巨大发展,我国大坝自动化安全监测技术的总体水平有了一个质的飞跃,监测自动化技术已渐趋成熟,大坝安全监测的实时性、稳定性、可靠性和实用性有了显著的提高。可以说21世纪大坝自动化安全监测已进入了推广应用的新时代。 一、概述 从1992年对83座水电站大坝开展了首轮水电站大坝安全监测设施更新改造工作开始,通过八年多的努力,绝大部分水电站大坝已完成以“完善化为主,着重配齐必要的监测项目,提高监测精度、稳定性和可靠性”为目标的更新改造工作,设置了必要的变形、渗流等监测项目,大坝安全监测设施的现状有了较大的改善,使这些大坝健全了监视其安全的耳目。但是,通过调查发现:由于客观因素的限制和变化以及人们认识水平的不断提高,部分大坝的监测设施还存在一些问题。如:有的大坝变形监测未设校核基点,或测点布置和结构不合理,或监测精度不能满足规范要求,或设备老化、受损,或自动化程度不高等。 在大坝自动化安全监测方面,根据对电力系统136座水电站大坝自动化安全监测调查情况看,有60座水电站大坝单个或多个监测项目采用了监测自动化技术,实现了数据的自动采集。其中,有33座大坝的变形、渗流等主要监测项目实现了监测自动化,有18座大坝的变形监测实现了自动化,有6座大坝的渗流监测实现了自动化。系统都有在线监测的功能(如数据的自动采集、传输、储存和处理),大多数系统还有离线分析、建立数学模型、报表制作、图形制作等功能。 大坝自动化安全监测的实现,提高了监测精度,改善了监测条件,减轻了劳动强度,增强了对大坝的在线监测能力,为今后实现在线监控和在线管理打下了良好的基础。同时对及时掌握大坝运行状态发挥了重要作用,也为大坝安全评价提供了科学依据。 从调查的资料中也可以看出,各大坝的监测自动化系统的规模、功能、稳定性、可靠性参差不齐,绝大多数基本能满足监测要求。但也有一些系统,特别是1995年以前建成的系统问题较多,有的已处于瘫痪状态(如盐锅峡),有的监测数据系列较差、精度低不能满足资料分析要求(如桓仁、回龙山的垂线,梅山的垂线,柘溪的垂线和量水堰、富春江的引张线,长潭的激光准直,枫树坝的采集单元等),急需进行改造完善。系统发生故障的原因主要有:传感器、设备元器件质量差,还有雷击、潮湿、鼠咬、浸水等外界因素。 二、下面分监测方法、监测仪器(传感器)、数据采集系统、监控管理系统四大部分对目前的监测自动化有关现状加以叙述。 1 监测方法 选择有效的监测方法是取得良好监测效果的保证。表1汇总了大坝自动化安全监测常用

隧道安全综合监测系统解决方案

隧道人员精确定位系统 方案建议书

隧道安全综合监测系统方案建议书 目录 前言 (3) 1. 系统简介 (4) 1.1. 系统概述 (4) 1.2. 系统基本功能 (4) 1.3. 拓展功能 (5) 1.4. 系统特点 (5) 2. 系统设计方案 (8) 2.1. 设计原理 (8) 2.2. 设备布置规则 (8) 2.3. 设计依据 (10) 2.4. 设计原则 (10) 2.5. 设备布置图 (11) 3. 系统技术规格 (11) 4. 系统组成 (14) 4.1. 系统示意图 (14)

前言 自十一五以来,我国加大了基础设施建设力度,中国交通建设事业进入了快速发展轨道。尤其在高速公路、铁路、城市轨道方面的建设突飞猛进。在公路、铁路建设方面,道路建设路线逐渐由平原、微丘向山区高原挺进,隧道、桥梁等结构物占线路的比重越来越大,隧道建设工程数量持续增长;在城市轨道建设方面,地铁具有节省土地、减少噪音、减少污染、节省资源等优点,成为各城市解决拥堵、提升城市交通运输能力的重要手段。由于隧道及城市地铁建设的造价高、运营管理相对复杂、施工环境恶劣、事故发生频率较高,常要求对隧道中人员数量进行统计、对施工现场环境进行监控。 目前市场上隧道安全监控系统中都没有与外界直接通话的无线通信系统,在遇到突发事故,如崩塌、涌水涌泥等事故,不能及时向隧道监控室汇报,很容易贻误抢险时机。如果有无线通信系统,施工人员在隧道中工作,可随时将隧道的掘进和安全情况汇报到隧道监控室,便于调度和及时处理突发事故。 当遇到隧道突发事故,对隧道施工人员的抢救缺乏可靠的位置信息,也缺乏语音通信手段,抢险救灾、安全救护的效率仍然不高,效果不理想。由于通信网络不畅,通信手段单一,网络承受能力差,往往造成领导层信息不畅通,指挥不足,数字不准,不利于事故的抢险,极易造成事故损失的扩大。隧道对利用相应的人员跟踪定位设备,全天候对施工人员进行实时自动跟踪和考勤,随时掌握每个员工在隧道的位置及活动轨迹、全隧道人员的位置分布情况等需求迫切。 深圳翌日科技致力于隧道安全建设,通过深入研究我国隧道现状,推出了“高精度隧道安全综合监测系统”。

11.王立忠5xiu---盆栽植物土壤水分监测及自动浇灌系统

盆栽植物土壤水分监测及自动浇灌系统设计 王立忠,蒋宁,程礼邦,段佳敏 (吉林师范大学 信息技术学院 吉林 四平 136000) 摘 要:基于单片机设计了一种能够根据土壤湿度进行自动控制,并带显示功能的盆栽植物浇灌系统。单片机根据土壤湿度传感器采集的信号对湿度进行自动控制。根据植物的需要设定湿度的下限和上限,在湿度高于上限值时不进行浇灌。若湿度低于下限值,通过传感器发出缺水信号,根据不同的情况来驱动水泵进行适当的浇水。浇水装置采用滴灌方法,有助于土壤对于水分的吸收和浇灌的均匀。通过定时器定时自动检测土壤湿度, 确保及时为植物提供充足的水分,从而为盆栽植物的生长提供一个良好的环境。 关键词:盆栽植物;自动灌溉;单片机;湿度传感器 中图分类号:TP342 文献标识码:A 0引言 目前,盆栽植物作为一种绿色、天然、健康的植物,就成了人们追求高品质生活的首选,但随着社会的高速发展和生活节奏的加快,人们的生活越来越忙碌,因加班、出差、早起及各种各样繁杂的事情经常会将“照顾”盆栽植物的事忘在脑后。该款装置将花土水分监测和浇灌实现自动化,提高了植物的科学浇灌的同时也减轻了人们的“负担”。克服了传统的人工给盆栽植物浇水带来的局限性[1-2]。装置不同于普通浇灌装置,根据不同植物对水分要求和灌溉时间的要求进行设定,可以在长时间“无人”情况下自动检测花土湿度,并根据花卉对湿度要求进行自动滴灌。盆栽植物土壤水分监测及自动浇灌系统基于单片机控制,再配合土壤湿度检测电路探测盆栽植物所在的土壤环境,由于传统的人工浇水具有不定时性和不均匀性,所以我们采用滴灌技术。本系统采用独立的节能电源设计,避免停电的问题。具有节水、节电、省时、环保等特点。 1系统方案设计 整个系统由土壤湿度传感器模块、单片机采集控制及信号输出电路模块(单片机、数据处理及显示模块)、水泵及供水模块、电源管理模块5个主要部分组成。系统构造框图如图1所示。 单片机模块 电源管理模块土壤湿度传感器模块 给水及灌溉 模块 数据处理及显示模块 图1系统框架图 系统的工作原理:土壤湿度检测模块来完成对盆栽植物土壤湿度的采集,单片机采集控 收稿日期:2014-10-10 基金项目:国家自然科学基金项目(61305082);吉林师范大学第十二批大学 科研基金项目(12234,12235) 第一作者简介:王立忠(1970-),男,吉林省四平市人,现为吉林师范大学信息技术学院副教授,硕士,硕士生导师。研究方向:电子技术.

JC-SD100隧道综合在线监测系统-技术方案160911

JC-SD100 隧道综合在线监测系统 技 术 方 案 江苏久创电气科技有限公司

一、系统概述 随着电网容量的增大,智能化、自动化水平的提高,以及智慧城市的发展,电缆用量越来越大,高压线路不得不通过地下隧道来铺设,通过这些隧道的线路因为在地下,很难掌握隧道内的情况。一旦隧道内出现特殊情况,就很难第一时间的了解现场情况,并采取相应措施,很容易造成重大的损失,会影响到电网的安全运行。 为了能够帮助电力巡检人员安全、方便、快捷地管理,集可视化、智能化、无人化于一体的现代智能监控系统已逐步原有传统的管理模式,先进的技术和设备将为电力电缆隧道的运行维护提供更多领域的技术支持和保障,进行全天候24小时的监控,通过系统配置的前端,可以了解现场的视频信息、电缆的温度及应力、环境温湿度、可燃气体及积水状况、井盖状态等,实现了电缆隧道环境及运行状态的在线实时监测,并可通过短信方式将信息发生至相关人员,对相关运行人员提供可靠的依据,更好的做出运行安排,减轻劳动强度,为电力安全运行提供保障。 隧道综合在线监测系统主要由测温及应力应变监测系统、视频监控、、环境温湿度监测、可燃气体监测、积水监测及井盖状态监测和中心平台等组成,利用现代高科技电子技术、传感器技术、计算机网络技术、通信技术、以及嵌入式技术,实现对隧道电缆温度及应力、隧道内温湿度、可燃气体、水位、视频信息等数据的采集和分析,实现电缆隧道设备远程监测,具有数据通信、数据查询、参数设置管理功能。本系统可以实时地监测隧道内的环境参量和设备的状态并通过多种方式通知用户,也可以远程控制各种辅助设备。系统通过网络进行集中式的管理,极大地方便了管理人员对现场的管理;系统的自动化程度高,为高压供电电缆正常运作和工作人员的人身安全提供了保障。最终实现了电缆隧道故障预警、分析处理,达到应急指挥、快速反应的目的,为运营提供有效的管理工具和管理模式。

自动化设备远程监控系统解决方案

自动化设备远程监控系统 自动化设备远程监控系统概述 随着科学技术的迅猛发展,各种设备制造商纷纷涌现,设备制造商已经成为生产力发展的重要组成部分。如何提高管理水平,提高企业效率和竞争力是从管理到基层面临的日益严峻的问题。对于如何提高设备运维效率和抓好售后管控,确实是工业设备自动化检测和控制设备制造商提升绩效的一大重点区域,而建立智能化、自动化的全方位远程设备监控以及管理系统是对本行业模式的变革,是科技创新+管理创新。 自动化设备远程监控系统软件是工控人的福音也是技术创新给工厂衍生的新的管理模式,改变了工人的作业形式以及更加高效的设备维护效率和低成本,通过大本营中心连接上千万台的设备运营数据并统一管理,可实现大屏、手机端、PC电脑端以及更多的终端软件系统实现远程设备的运维和管理控制,在工业4.0时代,远程运维平台也将越来越成熟和智能化,依靠数据可实现整个管理的数字化标准化。

自动化设备远程监控系统网络构架 架构中现场设备及PLC通过以太网或RS485/RS232/RS422串口方式接入HINET智能网关中(或者其他品牌网关),HINET智能网关依靠自身协议解析以及数据传输功能将解析好的数据通过4G或者有线网络传输至互联网,进而传输到服务器中,最后通过服务器中部署的数据平台系统,将设备监控监控数据、业务数据以及其他数据发布到监控大屏及各个监控端。 远程运维主要功能 远程运维主要实现原理是通过智能网关采集设备的数据,把数据通过通讯技术传输到处理中心进行数据的应用和计算,主要实现功能:GIS地图,试试监控,维保中心,历史数据,远程控制等应用。

通过HiNet工业智能网关在现场采集设备数据,然后把数据直接传输到远程监控云端。通过对这些数据的处理,具体可实现的功能如下: 1)远程监控。基于互联网架起了实时的数据链,打破了以往滞后式的信息互通模式。整个设备运行的数据链变得可视,客户可以在手机端、PC端掌握包装机机械设备的使用参数、生产运行,故障维修等情况。 2)可以通过预警等信号知道设备哪个部位?哪个零件?将要出现故障,以及出现的位置、时间和可能原因,以保养代替维修,最大化减少非计划性的停机时间。 3)故障告警,它可以通过电脑及手机app实时通知设备维护人员相关设备的运行状况,并把故障发生时的所有相关的数据都推送给设备维护人员,让维护人员全面掌握发生故障时的真实原因、状态并及时解决问题。

相关主题
文本预览
相关文档 最新文档