当前位置:文档之家› 函数图像的三种变换平移变换

函数图像的三种变换平移变换

函数图像的三种变换平移变换
函数图像的三种变换平移变换

函数图像的三种变换

一 、平移变换

函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 沿水平方向左右平行移动

比如函数()y f x =与函数()(0)y f x a a =->,由于两函数的对应法则相同,x a -与x 取值范围一样,函数的值域一样。以上三条决定了函数的形状相同,只是函数的图象在水

平方向的相对位置不同,如何将函数()y f x =的图象水平移动才能得到函数()y f x =的图象呢?

因为对于函数()y f x =上的任意一点(11,x y ),在()y f x a =-上对应的点为

11(,)x a y +,因此若将()y f x =沿水平方向向右平移a 个单位即可得到

()(0)y f x a a =->的图象。同样,将()y f x =沿水平方向向左平移a 个单位即可得到()(0)y f x a a =+>的图象。

沿竖直方向上下平行移动

比如函数()y f x =与函数()(0)y f x b b =+>,由于函数()y f x =函数

()(0)y b f x b -=>中函数y 与y b -的对应法则相同,定义域和值域一样,因此两函数形

状相同,如何将函数()y f x =的图象上下移动得到函数()y b f x -=的图象呢?因为对于函数()y f x =上的任意一点(11,x y ),在()(0)y b f x b -=>上对应的点为11(,)x y b +,因此若将()y f x =沿竖直方向向上平移a 个单位即可得到()(0)y b f x b -=>的图象。同样,将()y f x =沿竖直方向向下平移a 个单位即可得到()(0)y b f x b +=>的图象。

据此,可以推断()y f x a b =±±(0,0)a b >>为水平方向移动a 个单位,“左加右减”,竖直方向移动b 个单位,“上加下减”。

例如,为了得到函数

的图象,只需把函数()2x y f x ==的图象上所有的点

向右平移3个单位得到3(3)2x y f x -=-=(“左加右减”),然后再向下平移1个单位,就得到函数3(3)121x y f x -=--=-(“上加下减”)的图象。

又如, 把函数2

(1)3y x =--的图象向右平移1单位,再向下平移1个单位后,所得

图象对应的函数解析式如何求出呢?首先把已知函数2

()(1)3y f x x ==--图象向右平移1

2(1)((1)1)3

y f x x =-=---,得

22(1)((1)1)3(2)3y f x x x =-=---=--,向下平移1个单位,即得22(1)1(2)31(2)4y f x x x =--=---=--,

二、对称变换

图象的对称性是函数在对称区间上值域具有不同特点的直观反应,函数图象的对称性反应在两个方面,一是两个函数图象间的对称情况,二是一个函数图象本身的对称情况。两个函数图象间的对称情况有两种形式:一是两图关于某条直线对称,二是两图象关于某点呈中心对称。

1、一般地,函数()y f a mx =+与()y f b mx =-的图象关于直线2b a

x m

-=对称。(0)m ≠ 证明:在函数()y f a mx =+的图象上任取一点M (00,x y ),则M 关于直线2b a

x m

-=

的对称点为'

M (002,2b a x y m -?-),也即(00,b a x y m

--)

。 ∵M(00,x y )在直线()y f a mx =+上 ∴00()f a mx y +=,则有,0[()]b a

f b m x m

---=0()f a mx +=0y ,'M (

00,b a

x y m

--)在函数()y f b mx =-上,同理,在函数()y f b mx =-上任意取一点M ,关于直线2b a

x m

-=的对称点也在函数()y f a mx =+的图象上。上述结论得证。

特别的,如果()()f a mx f b mx +=-,则说明此函数自身关于直线2b a

x m

-=对称,对照偶

函数

2、两个函数图象间的常见的轴对称情况有以下几种情况:对于函数()f x :

关于y 轴对称的函数解析式为()y f x =-;(0,1)a b m === 关于x 轴对称的函数解析式为()y f x =-;

3、一般地,函数()y f a mx =+与()y f b mx =--的图象关于点(

,0)2b a

m

-对称。(0)m ≠

证明:在函数()y f a mx =+的图象上任取一点M (00,x y ),则M 关于点(

,0)2b a

m

-

的对称点为'M (

002,2b a x y m -?--),也即(00,b a

x y m

---)

。 ∵M(00,x y )在直线()y f a mx =+上 ∴00()f a mx y +=,则有,0[()]b a

f b m x m

----=0()f a mx -+=0y -,'M (

00,b a

x y m

---)在函数()y f b mx =-上,同理,在函数()y f b mx =--上任意取一点M ,关于点(,0)2b a

m

-的对称点也在函数()y f a mx =+的图象上。上述结论得证。

特别的,如果()()f a mx f b mx +=--,则说明此函数自身关于点(,0)2b a

m

-对称,对照奇

函数

4、两个函数图象间的常见的点对称情况有以下几种情况:对于函数()f x :

关于原点对称的函数解析式为()y f x =--。(0,1)a b m ===

三、翻折变换

对于函数()f x

1,|()|y f x =是()y f x =保留x 轴上方的图像,再将x 轴下方的部分依据x 轴对称地向上翻折得到。2,|()|y f x =-是()y f x =保留x 轴下方的图像,再将x 轴上方的部分依据x 轴对称地向下翻折得到。

3,(||)y f x =是()y f x =保留y 轴右方的图像,再将y 轴右方的部分依据y 轴对称地向左翻折得到。4,(||)y f x =-是()y f x =保留y 轴左方的图像,再将y 轴左方的部分依据y 轴对称地向右翻折得到。 小练习1,作函数11y x =

+的图象,可以先做出1

()y f x x

==的图像,然后向左平移1个单位,得出1

(1)1

y f x x =+=+的图像,最后做翻折变换3,得到1

(||1)||1

y f x x =+=

+,即可。 如果先做翻折变换3,得到1

(||)||

y f x x ==

,再左移1个单位,则为

1

(|1|)|1|

y f x x =+=

+

小练习2,作函数|1|

1()

2

x -的图象.

由题,可以先做出1()()2

x

y f x ==的图像,然后做翻折变换3,得到||

1(||)()

2x y f x ==的图像,再向右平移1个单位,得到|1|1

(|1|)()2

x y f x -=-=如右图。

三、伸缩变换 对于函数()y f x =

()y f ax =的图像沿着水平方向伸缩为原图像的

1

a

,()y af x =的图像沿着垂直方向伸缩为原图像的a 倍。最好的学习方法是自己画图体验一下,推荐

22

22,2,2,,222

x x

x

x

x y y y y y =====?

高中数学第10讲 函数图像及其变换(教案)新人教版必修1

函数图像与变换 教学目标:掌握常见函数图像及其性质(高考要求B ),熟悉常见的函数图像(平移、对称、翻折)变换(高考要求B ). 教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折”等手段进行函数图像变换。 教学过程: 一.知识要点: 1.常见函数图像及其性质: (1)平移变换: ①y =f (x ) →y =f (x ±a )(a >0)图象 横向 平移a 个单位,(左+右—). ②y =f (x ) →y =f (x )±b (b >0)图象 纵向 平移b 个单位,(上+下—) ③若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. (2)对称变换: ①y =f (x ) →y =f (-x )图象关于 y 轴 对称; 若f (-x )=f (x ),则函数自身的图象关于y 轴对称. ②y =f (x ) →y =-f (x )图象关于x 轴 对称. ③y =f (x ) →y =-f (-x )图象关于原点 对称; 若f (-x )=-f (x ),则函数自身的图象关于原点对称. ④y =f (x ) →y =f -1(x )图象关于直线y =x 对称. ⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b ) 对称. 若f (x )=f (2a -x )(或f (a +x )=f (a -x ))则函数自身的图象关于直线x =a 对称. 若函数()y f x =的图象关于直线2 a b x +=对称()()f a mx f b mx ?+=- ()()f a b mx f mx ?+-= (3)翻折变换主要有 ①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称. ②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习: 1.若把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 则函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A ) A.y =f (x -1)-1 B.y =f (x +1)-1 C.y =f (x -1)+1 D.y =f (x +1)+1 2.已知函数y =f (x )的图象如图2—3,则下列函数所对应的图象中,不正确的是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x ) D.y =-f (x ) 解: y =f (|x |)是偶函数,图象关于y 轴对称. 图2—3

(完整版)一次函数图象的平移及解析式的变化规律

一次函数图象的平移及解析式的变化规律 我们在研究两个一次函数的图象平行的条件时,曾得出“其中一条直线可以由另外一条直线通过平移得到”的结论,这就涉及到一次函数图象平移的问题. 函数的图象及其解析式,是从“形”和“数”两个方面反映函数的性质,也是初中数学中数形结合思想的重要体现.在平面直角坐标系中,当一次函数的图象发生平移(平行移动)时,与之对应的函数解析式也随之发生改变,并且函数解析式的变化呈现出如下的变化规律: 一次函数()0≠+=k b kx y 的图象平移后其解析式的变化遵循“上加下减,左加右减”的规律: (1)上下平移,k 值不变,b 值“上加下减”:将一次函数()0≠+=k b kx y 的图象向上平移m 个单位长度,解析式变为()0≠++=k m b kx y ;将一次函数()0≠+=k b kx y 的图象向下平移m 个单位长度,解析式变为()0≠-+=k m b kx y . (2)左右平移,k 值不变,自变量x “左加右减”:将一次函数()0≠+=k b kx y 的图象向左平移n 个单位长度,解析式变为()()0≠++=k b n x k y ,展开得()0≠++=k b kn kx y ;将一次函数()0≠+=k b kx y 的图象向右平移n 个单位长度,解析式变为()()0≠+-=k b n x k y ,展开得()0≠+-=k b kn kx y . 注意: (1)无论一次函数的图象作何种平移,平移前后,k 值不变,b 值改变.设上下平移的单位长度为m ,则b 值变为m b ±;设左右平移的单位长度为n ,则b 值变为kn b ±. (2)上面的规律如下页图(51)所示.

函数 图像的平移变换与伸缩变换

函数()y f x =图像的平移变换与伸缩变换 在学习高中数学必修4的三角函数这部分内容的过程中,我们增加了三角函数的图像的变换这部分内容,主要要学习函数 y=Asin(x+)+m(A 0, 0)w j w 构的图像是由sin y x =的图像怎样变换得来的,这要涉及的变换有平移变换与伸缩变换。而我们在后来复习函数时,也要增加函数()y f x =的图像变换的内容。三角函数也属于函数,因此一般函数()y f x =的图像变换法则和方法对三角函数同样适用。所以为了使平移变换与伸缩变换这部分内容更具有一般性,我想站在一般函数的高度来研究函数图像的平移变换与伸缩变换。多年的教学生涯让我对这两种变换有了深刻的认识,能够高度概括这两种变换。现在我想把自己对这两种变换的认识写成论文,供大家借鉴使用,提出建设性意见。 大家知道,sin y x =的图像向上(下)平移10个单位,可得到 10sin y x -=(10sin y x +=),即s i n 10y x =+(sin 10y x =-)的图像;sin y x =的 图像向右(左)平移 10π,可得到sin()10y x p =-(sin()10 y x p =+)的图像;sin y x =的图像横向伸长至原来的2倍(横向缩至原来的12 ),可得到1sin 2 y x =(sin 2y x =)的图像;sin y x =的图像纵向伸长至原来的3倍(纵向缩短至原来的13),可得到1sin 3y x =(3sin y x =),即3s i n y x =(1sin 3y x =)的图像;我们可用表格把上述小题的变换内容与解析式的相应变化反

一次函数图象的平移规律

一次函数图象平移的探究 我们知道,一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b>0时,向上平移; 当b<0时,向上平移).例如,将直线y=-x向上平移3个单位长度就得到直线 y=-x+3,将直线y=-x向下平移1个单位长度就可以得到直线y=-x-1.需要注意的是,函数图象的平移,既可以上下平移,也可以左右平移.这里所说的平移, 是指函数图象的上下平移,而非左右平移. 以上平移比较简单,因为它是对最简单的一次函数即正比例函数进行平 移.对于一个一般形式的一次函数图象又该怎样进行平移呢? 【探究一】函数图像的上下平移 我们先从一些具体的函数关系开始. 问题1已知直线l:y=2x-3,将直线l向上平移2个单位长度得到直线l1,求直线l1的解析式. 分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线l1的解析式为y=2x+ b,由于直线l1的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢?注意到直线l1与两条坐标轴分别交于两点,而直线 l1与y轴的交点易求,这样就得到一个条件,于是直线l1的解析式可求.解:设直线l1的解析式为y=2x+b,直线l1交y轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b,得b=-1,从而直线l1的解析式为y=2x-1. 问题2已知直线l:y=2x-3,将直线l向下平移3个单位长度得到直线l2,求直线l2的解析式. 答案:直线l2的解析式为y=2x-6.(解答过程请同学们自己完成)

对比直线l和直线l1、直线l2的解析式可以发现: 将直线l:y=2x-3向上平移2个单位长度得到直线l1的解析式为:y=2x-3+2;将直线l:y=2x-3向下平移3个单位长度得到直线l2的解析式为:y=2x-3-3.(此时你有什么新发现?) 我们再来探究一般情况. 问题3 已知直线l:y=kx+b,将直线l向上平移m个单位长度得到直线l1,求直线l1的解析式. 简解:设直线l1的解析式为y=kx+p,直线l交y轴于点(0,b),向上平移m 个单位长度后变为(0,b+m),把(0,b+m)坐标代入l1的解析式可得,p=b+m.从而直线l1的解析式为y=kx+b+m. 问题4 已知直线l:y=kx+b,将直线l向下平移m个单位长度得到直线l2,求直线l2的解析式. 答案:直线l2的解析式为y=kx+b-m.(解答过程请同学们自己完成) 由此我们得到: 直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m, 直线y=kx+b向下平移m(m为正)个单位长度得到直线y=kx+b-m, 这是直线直线y=kx+b上下(或沿y轴)平移的规律. 这个规律可以简记为:函数值:上加下减 以上我们探究了直线y=kx+b的上下 (或沿y轴)的平移,如果直线y=kx+b 不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?【探究二】函数图像的左右平移

函数图像的三种变换

函数图像的三种变换 函数在中学数学及大学数学中都是极其重要的内容,函数思想是解决函数问题的理论源泉; 函数的性质是解决函数问题的基础,而函数的图象则是函数性质的具体的直观的反应。在高中阶段函数图象的变化方式主要有以下三种: 一 、平移变换 函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 1、 沿水平方向左右平行移动 比如函数)(x f y =与函数)0)((>-=a a x f y ,由于两函数的对应法则相同,x a x 与-取值范围一样,函数的值域一样。以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数)(x f y =的图象水平移动才能得到函数)0)((>-=a a x f y 的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)(a x f y -=上对应的点为),(11y a x +,因此若将)(x f y =沿水平方向向右平移a 个单位即可得到)0)((>-=a a x f y 的图象。同样,将)(x f y =沿水平方向向左平移a 个单位即可得到)0)((>+=a a x f y 的图象。 2、沿竖直方向上下平行移动 比如函数)(x f y =与函数)0()(>+=b b x f y ,由于函数)(x f y =函数)0)((>=-b x f b y 中函数y 与b y -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数)(x f y =的图象上下移动得到函数)(x f b y =-的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)0)((>=-b x f b y 上对应的点为),(11b y x +,因此若将)(x f y =沿竖直方向向上平移a 个单位即可得到)0)((>=-b x f b y 的图象。同样,将)(x f y =沿竖直方向向下平移a 个单位即可得到)0)((>=+b x f b y 的图象。 函数图象的平移变化可以概括地总结为: (1)函数)(x f y =的图象变为)0,0)((>>-=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (2)函数)(x f y =的图象变为)0,0)((>>+=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 (3)函数)(x f y =的图象变为)0,0)((>>+=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (4)函数)(x f y =的图象变为)0,0)((>>-=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 函数图象的平移的实质是有变量本身变化情况所决定的。 3、例题讲解 例1. 为了得到函数的图象,只需把函数的图象上所有的点( ) A. 向右平移3个单位长度,再向下平移1个单位长度 B. 向左平移3个单位长度,再向下平移1个单位长度 C. 向右平移3个单位长度,再向上平移1个单位长度 D. 向左平移3个单位长度,再向上平移1个单位长度 分析 把函数 x y 2=的图象向右平移3个单位,然后再向下平移1个单位,就得到函数123-=-x y 的图象。 故,本题选A 例2 把函数的图象向右平移1单位,再向下平移1个单位后,所得图象对应的函数解析式是( ). (A ) (B ) (C ) (D ) 分析 把已知函数图象向右平移1个单位, 即把其中自变量换成,得.

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求 二次函数 1.能根据实际情境了解 二次函数的意义; 2.会利用描点法画出二 次函数的图像; 1.能通过对实际问题中 的情境分析确定二次函 数的表达式; 2.能从函数图像上认识 函数的性质; 3.会确定图像的顶点、 对称轴和开口方向; 4.会利用二次函数的图 像求出二次方程的近似 解; 1.能用二次 函数解决简 单的实际问 题; 2.能解决二 次函数与其 他知识结合 的有关问 题; 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”.

二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; ¥ a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 , (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 \ ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(0

或缩短(a>1)到原来的1/a 倍,纵坐标不变。 ^ 4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

三角函数图象的平移和伸缩

3 得 y =A sin( x + )的图象? 向 ?上平 ( ? 移 k k ? 个 )或 单 向? 位 下长 ? (k 度 ?) → 得 y = A sin(x + )+k 的图象. y = sin x 纵坐标不变 横坐标向左平移 π/3 个单位 纵 坐标不变 横坐标缩短 为原来的1/2 y = sin(x + ) y = sin(2 x + ) 横坐标不变 纵坐标伸长为原 来的3倍 先伸缩后平移 纵坐标伸长(A 1)或缩短(0A 1) y =sin x 的图象 ??? ??????→ y = 3sin(2x + 三角函数图象的平移和伸缩 函数y = A sin(x + ) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A , , ,k 来相互转 化. A ,影响图象的形状, ,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由 引起的变 换称周期变 换,它们都是伸缩变换;由 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左( >0)或向右( 0) y = sin x 的图象 ??平 ? 移 ? 个单 ? 位长 ? 度 ?→ 得 y = sin(x +)的图象 横坐标伸长(0<<1)或缩短 (>1) 到原来的1(纵坐标不变) 得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0

横坐标伸长(0 1)或缩短(1) ????????→ 到原来的 1 (纵坐标不变) 向左( 0)或向右( 0) 得 y = A sin(x ) 的图象 ???平移 ?个 ? 单位 ??→ 得 y = A sin x ( x + )的图象??平 ?移 k ?个单 ?位长 ?度 ?→得 y = A sin( x +)+k 的图象. 纵坐标不变 y = sin x 横坐标缩短 为原来的1/2 纵坐标不变 横坐标 向左平移 π/6 个单位 横坐标不变 y = 3sin(2x + ) 纵坐标伸长为原 3 来的3倍 例1 将y = sin x 的图象怎样变换得到函数y = 2sin 2x + π +1的图象. 解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π 的图象;②将所得 图象的 横坐标缩小到原来的1,得y =sin 2x +π 的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin 2x + π 的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐 标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2 x + π 的 2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 得 y = A sin x 的图象 y = sin2 x y = sin(2x + )

一次函数图像平移的探究

一次函数图像平移的探 究 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一次函数图像平移的探究 我们知道,一次函数y=kx+b 的图像是一条直线,我们称它为直线 y=kx+b ,它可以看作由直线y=kx 平移∣b ∣个单位长度得到(当b >0时,向上平移;当b <0时,向上平移).或者说,直线y=kx 平移∣b ∣个单位长度得到直线y=kx+b (当b >0时,向上平移;当b <0时,向下平移).例如,将直线y=-x 向上平移3个单位长度就得到直线y=-x+3,将直线y=-x 向下平移1个单位长度就可以得到直线y=-x -1.需要注意的是,函数图像的平移,既可以上下平移,也可以左右平移.这里所说的平移,是指函数图像的上下平移,而非左右平移. 以上平移比较简单,因为它是对最简单的一次函数即反比例函数进行平移.对于一个一般形式的一次函数图像又该怎样进行平移呢让我们一起进行探究: 问题1 已知直线1l :y=2x -3,将直线1l 向上平移2个单位长度得到直线2l ,求直线2l 的解析式. 分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线2l 的解析式为y=2x+ b ,由于直线2l 的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢注意到直线1l 与两条坐标轴分别交于两点,而直线1l 与y 轴的交点易求,这样就得到一个条件,于是直线2l 的解析式可求. 解:设直线2l 的解析式为y=2x+b ,直线1l 交y 轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b ,得b =-1,从而直线2l 的解析式为y=2x -1.

“对称与平移”(一次函数)

求一次函数解析式----对称 若直线2l 与直线1l y k x b =+关于 (1)x 轴对称,则直线2l 的解析式为y kx b =-- 解:设直线2l 上的某一点A (x,y ),则点A 关于x 轴对称的点一定在直线1l y k x b =+上, 假设是点B ,那么B 点的坐标是(x, -y ),然后把点B 的坐标值代入它所在的 直线1l y k x b =+上,即得2l 的解析式为y kx b =-- (2)y 轴对称,则直线2l 的解析式为y kx b =-+ (3)原点对称,则直线2l 的解析式为y k x b =- (4)直线y =x 对称,则直线2l 的解析式为y k x b k =- 1 (5)直线y x =-对称,则直线2l 的解析式为y k x b k =+ 1 (6)直线y =2对称,则直线2l 的解析式为?

一次函数图象平移的三种类型 求一次函数图象平移后的解析式是一类重要题型,在各省市中考试题频繁亮相.在一次函数y kx b =+中常数k 决定着直线的倾斜程度:直线111y k x b =+与直线222y k x b =+平行 ?12k k =. 一、一次函数平移的三种方式: ⑴上下平移:在这种平移中,横坐标不变,改变的是纵坐标也就是函数值y .平移规律是上加下减. ⑵左右平移:在这种平移中,纵坐标不变,改变的是横坐标也就是自变量x .平移规律是左加右减. ⑶沿某条直线平移:这类题目稍有难度.“沿”的含义是一次函数图象在平移的过程中与沿着的那条直线的夹角不变.解题时抓住平移前后关键点坐标的变化. 二、典型例题: (1)点(0,1)向下平移2个单位后的坐标是 ___,直线21y x =+向下平移2个单位后的解析式是___. (2)直线21y x =+向右平移2个单位后的解析式是___. (3)如图,已知点C 为直线y x =上在第一象限内一点,直线21y x =+交y 轴于点A ,交x 轴 于B ,将直线A B 沿射线OC 方向平移 32个单位,求平移后的直线的解析式. 【解析】根据平移规律,很容易的解决前两道题, (1)题中 - ,21221y x x =+-=-; (2)题中2(2)123y x x =-+=-. ⑶题中首先过B 作'B B ∥OC ,然后过'B 作'B D x ⊥轴于D , ∵'32BB =,∴'3B D B D ==.直线21y x =+与x 轴的交点坐标为1(,0)2 -,∴52 O D =. ∴'B 坐标为5 (,3)2,设平移后解析式为2y x b =+,把5,32 x y = =代入得2b =-, ∴解析式为22y x =-. x 21 y x =+ A B C O y x = y 'B D

高中常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 例题:y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1 (x)函数的图像关于y=x 对称,若g (5)=2016,求)= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: b

反比例函数 f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三 象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较 3)、f (x )= d cx b ax ++ (c ≠0且 d ≠0)(补充一下分离常数) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2 ≠++=a c bx ax x f 顶点式:)0()()(2 ≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当00时,函数图象与x 轴有两个交点( );当<0时,函数图象与x 轴有一个交点( );当=0时,函数图象与x 轴没有交点。 ④)0()(2 ≠++=a c bx ax x f 关系 )0()(2 ≠=a ax x f 定 义 域:R 值 域:当0>a 时,值域为( );当0a 时;当0

一次函数图像的平移练习题

一次函数图像的平移练习题 一选择题 1.一次函数y=x图象向下平移2个单位长度后,对应函数关系式是 () A.y=x﹣2 B.y=2x C.y=1.5x D.y=x+2 2.一次函数y=2x+3的图象沿y轴向下平移4个单位,那么所得图象的函数解析式是() A.y=2x+2 B.y=2x-3 C.y=2x+1 D.y=2x-1 3.一次函数y=2x+3的图象沿y轴向下平移2个单位,那么所得图象的函数解析式是() A.y=2x-3 B.y=2x+2 C.y=2x+1 D.y=2x 4.正比例函数y=2x的图象沿x轴向右平移2个单位,沿y轴向上平移3个单位,得图象的函数解析式为() A.y=2x-4 B.y=2x+4 C.y=2x-1 D.y=2x+1 5.把直线y=-x+3沿y轴向下平移2个单位所得函数的解析式为() A.y=-3x+3 B.y=-x+5 C.y=-x+1 D.y=x+1 6.将直线y=-3x+1沿y轴向上平移3个单位,得图象的函数解析式为() A.y=-3x-2 B.y=-3x+4 C.y=-3x-1 D.y=-3x

7.直线y=-2x+1沿y轴向上平移2个单位,再沿x轴向左平移3个单位所得直线的解析式为() A y=-2x-5 B y=2x-5 C y=-2x-3 D y=2x-3 8.如图,把直线y=-2x向上平移后得到直线AB,直线AB过点(m,n),且2m+n=3,则直线AB的函数表达式是() A.y=-2x+3 B.y=-2x-3 C.y=-2x+6 D.y=-2x-6 9.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为() A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1 10.把直线y=kx+b向上平移2个单位,得到的直线y=-3x+m与函数y=-5x-2的图像交于y轴上,则k,b分别是()A -2,-3 B -3,-4 C -3,-5 D -2,-6 二填空题 1.一次函数y=-2x+p的图象一次平移后经过点A(-1,y1)、B(-2,y2),则y1____y2(填“>”、“<”、“=”) 2.已知函数y=k/x 的图象经过点(4,1/2 ),若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),则平移后的一次函数图象与x轴的交点坐标为________ 3.将一次函数y=2x+3的图象向右平移1个单位长度,再向上平移4个单位长度,平移后的函数表达式为________

函数图像的平移变换练习题

A 组 基础对点练 1.如图的曲线是幂函数y =x n 在第一象限内的图象.已知n 分别取±2,±1 2四个值,与 曲线C 1,C 2,C 3,C 4相应的n 依次为( ) A .2,12,-1 2,-2 B .2,12,-2,-1 2 C .-12,-2,2,1 2 D .-2,-12,1 2 ,2 解析:C 1,C 2对应的n 为正数,且C 1的n 应大于1; 当x =2时,C 4对应的值小,应为-2. 答案:A 2. 如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( ) 解析:直线l 在AD 圆弧段时,面积y 的变化率逐渐增大,l 在DC 段时,y 随x 的变化率不变;l 在CB 段时,y 随x 的变化率逐渐变小,故选D. 答案:D 3.函数y =xa x |x | (0<a <1)的图象的大致形状是( ) 解析:函数定义域为{x |x ∈R ,x ≠0},且y =xa x |x |=? ??? ? a x ,x >0,-a x ,x <0.当x >0时,函数是一 个指数函数,其底数0<a <1,所以函数递减;当x <0时,函数递增,所以应选D.

答案:D 4.函数f (x )=ln ??? ?x -1 x 的图象是( ) 解析:自变量x 满足x -1x =x 2-1 x >0,当x >0时可得x >1,当x <0时可得-1<x <0, 即函数f (x )的定义域是(-1,0)∪(1,+∞),据此排除选项A 、D 中的图象.当x >1时,函数x -1 x 单调递增,故f (x )=ln ????x -1x 单调递增. 答案:B 5. (2018·武昌调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( ) A .f (x )=2-x 2 2x B .f (x )=cos x x 2 C .f (x )=-cos 2x x D .f (x )=cos x x 解析:A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x →0+ 时,f (x )<0,与题图不符,故不成立.选D. 答案:D 6.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ) A .e x + 1 B .e x - 1 C .e -x +1 D .e -x -1 解析:与曲线y =e x 关于y 轴对称的图象对应的函数为y =e - x ,将函数y =e - x 的图象向左平移1个单位长度即得y =f (x )的图象,∴f (x )=e -(x +1) =e -x -1 ,故选D. 答案:D 7.函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( )

(完整版)高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1 a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1x y -= (2)x y )2 1(-= (3)x y 2log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

函数图象的平移与对称变换.doc

专题:函数图象的平移与对称变换 一.知识结构 1.利用描点法作函数的图象的基本步骤: ①确定函数的定义域 ②简化函数的解析式 ③讨论函数的性质(奇偶性、单调性、最值等) ④画出函数的图象 2.图象的平移变换 ①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意: (1)可以将平移变换化简成口诀:左加右减,上加下减 (2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-= 3.图象的对称变换 ①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。 ⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。 ⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形 二.题型选编 题组一:利用描点法作函数的图象 1.作出函数|5||2|)(--+=x x x f 的图象; 2.作出函数2 213)(-+=x x x f 的图象; 3.作出函数34)(2+-=x x x f 的图象; 题组二:利用图象的变换解决相应的问题 1.设函数)(x f y =图象进行平移变换得到曲线C ,这时)(x f y =图象上一点)1,2(-A 变

《函数图像的平移变换》专题

《函数图像的平移变换》专题 2014年( )月( )日 班级 姓名 【一次函数图像的平移】 画x x f 2)(=、22)(+=x x f 、22)(-=x x f 的图像 备用图 思考:已知x x f 2)(=,那么=+)1(x f ,=-)1(x f 。 对比上图,我们发现: ①函数22)1(+=+x x f 可以看作x x f 2)(=向 平移 单位得到,也可以看做x x f 2)(=向 平移 单位得到。 ②函数2-2)1-(x x f =可以看作x x f 2)(=向 平移 单位得到,也可以看做 x x f 2)(=向 平移 单位得到。 ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向()00()(a a a x f x f ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向(00)()(a a a x f x f 【反比例函数图像的平移】

画x x f 2)(= 、22)(+=x x f 、22)(+=x x f 的图像 备用图 思考:已知x x f 2 )(= ,那么=+)2(x f ,=+2)(x f 。 对比上图,我们发现: ①函数=+)2(x f 可以看作x x f 2 )(= 向 平移 单位得到。 ②函数=+2)(x f 可以看作x x f 2 )(=向 平移 单位得到。 ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向()00()(a a a x f x f ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向(00)()(a a a x f x f 【二次函数图像的平移】 画2)(x x f =、32)(2--=x x x f 、54)(2 --=x x x f 的图像

相关主题
文本预览
相关文档 最新文档