当前位置:文档之家› 物理法拉第电磁感应定律的专项培优 易错 难题练习题及答案解析

物理法拉第电磁感应定律的专项培优 易错 难题练习题及答案解析

物理法拉第电磁感应定律的专项培优 易错 难题练习题及答案解析
物理法拉第电磁感应定律的专项培优 易错 难题练习题及答案解析

物理法拉第电磁感应定律的专项培优 易错 难题练习题及答案解析

一、法拉第电磁感应定律

1.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v?t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;

(2)金属杆速度为2.0m/s 时的加速度大小;

(3)根据v?t 图象估算在前0.8s 内电阻上产生的热量.

【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】

(1)由题图知,杆运动的最大速度为4/m v m s =,

有22sin sin m

B L v F mg F mg R

αα=+=+

安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安

得222222

212sin 182100.5

2/2/2

B L v F mg R a m s m s m α??----??===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:2

11sin 2

Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】

本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.

2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平

面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。

(1)求金属棒达到稳定时的速度是多大;

(2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少?

(3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46

【解析】 【详解】

(1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有

sin A mg F θ=

其中

,A E

F BIL I R r

==

+ 根据法拉第电磁感应定律,有E BLv = 联立解得:

m 1.6s

v =

(2) 根据能量关系有

2

1·sin 2

mgs mv Q θ=

+ 电阻R 上产生的热量

R R

Q Q R r

=

+ 解得:

0.0183J R Q =

(3) 当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:

sin mg ma θ=

根据位移时间关系公式,有

21

2

x vt at =+

设t 时刻磁感应强度为B ,总磁通量不变,有:

()BLs B L s x '=+

当t =1s 时,代入数据解得,此时磁感应强度:

5T 46

B '=

3.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为

0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下

滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取2

10/(m s 忽略ab 棒运动过程中对原磁场的影响).

()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;

()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.

【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J 【解析】 【详解】

()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。 ()2当金属棒匀速下落时,由共点力平衡条件得:mg BIL =

金属棒产生的感应电动势为:E BLv = 则电路中的电流为:E

I R r

=+ 由图象可得:11.27.0

/7m /s 2.1 1.5

x v m s t -=

==-n n 代入数据解得:0.1T B =

()3在0 1.5s ~,以金属棒ab 为研究对象,根据动能定理得:

21

2

mgh Q mv =+

解得:0.455J Q =

则电阻R 上产生的热量为:0.26J R R

Q Q R r

=

=+

4.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀

速向上运动;当金属杆受到平行于斜面向下大小为

2

F

的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:

(1)金属杆的质量;

(2)金属杆在磁场中匀速向上运动时速度的大小。 【答案】(1)4sin F m g α=;(2)2222

344tan RE RF

v B l B l μα

=-。 【解析】 【分析】 【详解】

(1)金属杆在平行于斜面向上大小为F 的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m ,速度为v ,由力的平衡条件可得

sin cos F mg mg BIl αμα=++,

同理可得

sin cos 2

F

mg mg BIl αμα+=+, 由闭合电路的欧姆定律可得

E IR =,

由法拉第电磁感应定律可得

E BLv =,

联立解得

4sin F

m g α

=

(2)金属杆在磁场中匀速向上运动时速度的大小

2222

344tan RE RF

v B l B l μα

=

-。

5.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.

【答案】0F E Blt g m μ??=- ??? ; R =220

B l t m

【解析】 【分析】 【详解】

(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ??

=-

???

④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E

R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦

联立④⑤⑥⑦式得: R =220

B l t m

6.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀

强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:

(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;

(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】

(1)0-3s 内,由法拉第电磁感应定律得:

122V B

E L L t t

?Φ?=

==?? T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上

(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N

外力F 大小为0.5N .方向沿斜面向上 (3)q =It ,E

I R r =+;E t

?Φ=?; 1?Φ=BL S 联立解得1 1.512

C 1.5C 1.50.5

BL S q R r ??=

==++

7.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小;

(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;

(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍

然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.

【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)

203

Q J =

【解析】 【分析】

t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】

(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ ) 根据P =I 2 R PQ 代入数据解得:B =2T

(2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s 感应电动势为:E 2=BLv 2=12 V 根据闭合电路欧姆定律:2

24MN PQ

E I A R R ==+

安培力为:F 安=BI 2L =8 N

规定沿斜面向上为正方向,对PQ 进行受力分析可得: F 2+F 安cos 37°=mg sin 37°

代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)

(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s 因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,

安培力做功:120

23

MN PQ BLv W BL x J R R =-??=-+安

【点睛】

本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培

力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.

8.如图所示,两根间距为L 的平行金属导轨,其cd

右侧水平,左侧为竖直的

1

4

画弧,圆弧半径为r ,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R 1的电阻,整个装置处在竖直向上的匀强磁场中。现有一根阻值为R 2、质量为m 的金属杆,在水平拉力作用下,从图中位置ef 由静止开始做加速度为a 的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好。开始运动后,经时间t 1,金属杆运动到cd 时撤去拉力,此时理想电压表的示数为U ,此后全属杆恰好能到达圆弧最高处ab 。重力加速度为g 。求:

(1)金属杆从ef 运动到cd 的过程中,拉力F 随时间t 变化的表达式; (2)金属杆从ef 运动到cd 的过程中,电阻R 1上通过的电荷量; (3)金属杆从cd 运动到ab 的过程中,电阻R1上产生的焦耳热。

【答案】(1)21222

11

()U R R t F ma R at +=+;(2)112Ut q R =;(3)22

11121()2R Q ma h mgr R R =-+ 【解析】 【分析】

利用法拉第电磁感应定律和电流公式联合求解。

根据能量守恒定律求出回路产生的总焦耳热,再求出R 1上产生的焦耳热。 【详解】

(1) 金属杆运动到cd 时,由欧姆定律可得 11

U

I R = 由闭合电路的欧姆定律可得 E 1=I 1(R 1+R 2) 金属杆的速度 v 1=at 1

由法拉第电磁感应定律可得 E 1=BLv 1 解得:1211()

U R R B R Lat +=

由开始运动经过时间t ,则 v=at 感应电流12

BLv

I R R =

+

金属杆受到的安培力 F 安 =BIL 由牛顿运动定律 F -F 安=ma

可得21222

11()U R R t

F ma R at +=+;

(2) 金属杆从 ef 运动到cd 过程中,位移2112

x at = 电阻R 1上通过的电荷量:

q I t =?

12

E

I R R =

+

E t ?Φ

=

? B S ?Φ=?

S xL ?=

联立解得:1

1

2Ut q R =

; (3) 金属杆从cd 运动到ab 的过程中,由能量守恒定律可得

2

12

Q mv mgr =

- 因此电阻R 1上产生的焦耳热为

1

112

R Q Q R R =

+ 可得

2211121

()2

R Q ma h mgr R R =

-+。 【点睛】

此题为一道综合题,牵涉知识点较多,明确求电动势、安培力、焦耳热的方法是解题的关键,灵活利用法拉第电磁感应定律和能量守恒的结论是解题的捷径。

9.如图所示足够长的光滑平行金属导轨MN 、PQ 组成的平面与水平面成37°放置,导轨宽度L=1m ,一匀强磁场垂直导轨平面向下,导轨上端M 与P 之间连接阻值R=0.3Ω的电阻,质量为m=0.4kg 、电阻r=0.1Ω的金属棒ab 始终紧贴在导轨上.现使金属导轨ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图像中的OA 段为曲线,AB 段为直线,导轨电阻不计.g=10m/s 2,忽略ab 棒在运动过程中对原磁场的影响.求:

(1)磁感应强度B 的大小;

(2)金属棒ab 在开始运动的2.0s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的2.0s 内,电阻R 产生的焦耳热. 【答案】(1)0.4B T = (2)6q C = (3) 5.4R Q J = 【解析】

(1)导体棒在沿斜面方向的重力分力与安培力平衡: 得sin mg BIL θ=

导体棒切割磁感线产生的电动势为: E BLv =

由闭合电路欧姆定律知:

E

I R r

=

+ 3.66/0.6

x v m s t =

== 联立解得:0.4B T = (2)6()()()

E BsL

q It t t C R r t R r R r R r ?Φ?Φ==

====+?+++ (3)由功能关系得:2

1sin 2

mgx mv Q θ=

+ 5.4R Q

Q R J R r

=

=+ 综上所述本题答案是:(1)0.4T (2)6C (3)5.4J

点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.

10.如图所示,足够长的固定平行粗糙金属双轨MN 、PQ 相距d =0.5m ,导轨平面与水平面夹角α=30°,处于方向垂直导轨平面向上、磁感应强度大小B =0.5T 的匀强磁场中。长也为d 的金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接触良好,棒的质量m =0.1kg ,电阻R =0.1Ω,与导轨之间的动摩擦因数3

μ=

,导轨上端连接电路如图所示。已知电阻R 1与灯泡电阻R 2的阻值均为0.2Ω,导轨电阻不计,取重力加速度大小g =10 m/s 2。

(1)求棒由静止刚释放瞬间下滑的加速度大小a ;

(2)假若棒由静止释放并向下加速运动一段距离后,灯L 的发光亮度稳定,求此时灯L 的实

际功率P和棒的速率v。

【答案】(1)a=2.5 m/s2 (2) v=0.8m/s

【解析】(1)棒由静止刚释放的瞬间速度为零,不受安培力作用根据牛顿第二定律有mg sinα-μmg cosα=ma

代入数据得a=2.5m/s2

(2)由“灯L的发光亮度稳定”知棒做匀速运动,受力平衡

有mg sinα-μmg cosα=BId

代入数据得棒中的电流I=1A

由于R1=R2,所以此时通过小灯泡的电流

21

0.5A

2

I I

==

2

22

0.05W

P I R

==

此时感应电动势12

12

R R

E Bdv I R

R R

??

==+

?

+

??

得v=0.8 m/s

【点睛】本题考查导体棒切割磁感线的过程中的最大值问题,综合了共点力的平衡、牛顿第二定律的应用、闭合电路的电路知识、电磁感应知识等知识点的内容,要注意正确理清题目设置的情景,注意电磁感应的过程中的能量转化的关系与转化的方向。

11.如图所示,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l,左侧接一阻值为R的电阻.区域cdef内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s.一质量为m、电阻为r的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.5v+0.4(N)(v

为金属棒速度)的水平外力作用,从磁场的左边界由静止开始向右运动,测得电阻两端电压随时间均匀增大.(已知:l=1m,m=1kg,R=0.3Ω,r=0.2Ω,s=1m)

(1)求磁感应强度B的大小;

(2)若撤去外力后棒的速度v随位移x的变化规律满足

()

22

B l

v v x

m R r

=-

+

(v0是撤去外力时,金属棒速度),且棒在运动到ef处时恰好静止,则外力F作用的时间为多少?

(3)若在棒未出磁场区域时撤出外力,画出棒在整个运动过程中速度随位移变化所对应的各种可能的图线.

【答案】(1)B=0.5T (2) t=1s (3)可能的图像如图:

【解析】(1)R 两端电压U ∝I ∝E ∝v ,U 随时间均匀增大,即v 随时间均匀增大. 所以加速度为恒量.

22

B l F v ma R r

-=+

将F =0.5v +0.4代入得: 220.50.4B l v a R r ??

-+= ?+?

?

因为加速度为恒量,与v 无关,所以a =0.4 m/s 2

22

0.50B l R r

-=+

代入数据得:B =0.5 T. (2)设外力F 作用时间为t .

2112

x at =

()

22

02B l v x at m R r ==+

x 1+x 2=s , 所以

()22212m R r at at s B l

++= 代入数据得0.2t 2+0.8t -1=0, 解方程得t =1 s 或t =-5 s(舍去). (3)可能图线如下:

【点睛】根据物理规律找出物理量的关系,通过已知量得出未知量.要善于对物体过程分析和进行受力分析,运用牛顿第二定律结合运动学公式解决问题.

12.如图所示,足够长的水平导体框架的宽度L=0.5m,电阻忽略不计,定值电阻

R=2Ω.磁感应强度B=0.8T的匀强磁场方向垂直于导体平面,一根质量为m=0.2kg、有效电阻r=2Ω的导体棒MN垂直跨放在框架上,该导体棒与框架间的动摩擦因数μ=0.5,导体棒在水平恒力F=1.2N的作用下由静止开始沿框架运动到刚开始匀速运动时,通过导体棒截面的电量共为q=2C,求:

(1)导体棒做匀速运动时的速度:

(2)导体种从开始运动到刚开始匀速运动这一过程中,导体棒产生的电热.(g取10m/s2)【答案】(1)v=5m/s (2)Q1=0.75J

【解析】

(1)当物体开始做匀速运动时,有:(1分)

又:(2分)

解得m/s (1分)

(2) 设在此过程中MN运动的位移为x,则

解得:m (1分)

设克服安培力做的功为W,则:

解得:W="1.5J " (2分)

所以电路产生的总电热为1.5J,导体棒产生的电热为0.75J (1分)

13.如图(a)所示,足够长的光滑平行金属导轨JK 、PQ 倾斜放置,两导轨间距离为L=l.0 m ,导轨平面与水平面间的夹角为θ=30°,磁感应强度为B 的匀强磁场垂直于导轨平面向上,导轨的J 、P 两端连接阻值为R=3.0Ω的电阻,金属棒ab 垂直于导轨放置并用细线通过光滑定滑轮与重物相连,金属棒ab 的质量m=0.20 kg ,电阻r=0.50 Ω,重物的质量M=0.60 kg ,如果将金属棒和重物由静止释放,金属棒沿斜面上滑距离与时间的关系图像如图(b)所示,不计导轨电阻, g=10 m/s 2 。求:

(1)t=0时刻金属棒的加速度

(2)求磁感应强度B 的大小以及在0.6 s 内通过电阻R 的电荷量; (3)在0.6 s 内电阻R 产生的热量。 【答案】(1)a=6.25m/s 2 2

55

C (3)Q R =1.8J 【解析】 【分析】

根据电量公式q=I?△t ,闭合电路欧姆定律E

I R r

=

+,法拉第电磁感应定律:E t ?Φ=?,

联立可得通过电阻R 的电量;由能量守恒定律求电阻R 中产生的热量。 【详解】

(1) 对金属棒和重物整体 Mg-mgsinθ=(M+m)a 解得:a=6.25m/s 2 ;

(2) 由题图(b)可以看出最终金属棒ab 将匀速运动,匀速运动的速度

3.5s

m v s t

?=

=?

感应电动势E=BLv 感应电流E

I R r

=

+ 金属棒所受安培力22B L v

F BIL R r

==

+ 速运动时,金属棒受力平衡,则可得

22sin B L v

mg Mg R r

θ+=+ 联立解得:5B T =

在0.6 s 内金属棒ab 上滑的距离s=1.40m 通过电阻R 的电荷量

25

5

BLs q C R s =

=+; (3) 由能量守恒定律得

21

sin ()2

Mgx mgx Q M m v θ=+++

解得Q=2.1 J

又因为

R R

Q Q R r

=

+ 联立解得:Q R =1.8J 。 【点睛】

本题主要考查了电磁感应与力学、电路知识的综合,抓住位移图象的意义:斜率等于速度,根据平衡条件和法拉第定律、欧姆定律等等规律结合进行求解。

14.如图甲所示,两竖直放置的平行金属导轨,导轨间距L =0.50m ,导轨下端接一电阻R =5Ω的小灯泡,导轨间存在一宽h =0.40m 的匀强磁场区域,磁感应强度B 按图乙所示规律变化,t =0时刻一金属杆自磁场区域上方以某一初速度沿导轨下落,t 1时刻金属杆恰好进入磁场,直至穿越磁场区域,整改过程中小灯泡的亮度始终保持不变.已知金属杆的质量m =0.10kg ,金属杆下落过程中始终保持水平且与导轨良好接触,不计金属杆及导轨的电阻,g 取10m/s 2.求:

(1)金属杆进入磁场时的速度v ; (2)图乙中t 1的数值;

(3)整个过程中小灯泡产生的总焦耳热Q .

【答案】(1)5m/s (2)0.04s (3)0.6J 【解析】

解:(1)金属杆进入磁场时受力平衡mg BIL =

E I R

=

E BLv =

整理得22

5m /s mgR

v B L =

=

(2)根据法拉第电磁感应定律1

B

E Lh t ?

=

? 0

1

B B BLv Lh t -=

? ()0100.04s

B B h t B v

-=

=

(3)整个过程中小灯泡产生的总焦耳热()2

12E Q t t R =+

20.08s h

t v

=

= 解得:0.6J Q =

15.如图甲所示的螺线管,匝数n =1500匝,横截面积S =20cm 2,方向向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化。则

(1)2s 内穿过线圈的磁通量的变化量是多少? (2)磁通量的变化率多大? (3)线圈中感应电动势大小为多少?

【答案】(1)8×10-3

Wb (2)4×10-3

Wb/s (3)6.0V 【解析】 【详解】

(1)磁通量的变化量是由磁感应强度的变化引起的, 则11B S Φ=,22B S Φ=,21?Φ=Φ-Φ。

43(62)2010Wb 810Wb BS --?Φ?=-??=?=

(2)磁通量的变化率为:

3

3810Wb/s 410Wb/s 2

t --?Φ?==?? (3)根据法拉第电磁感应定律得感应电动势的大小:

31500410V 6.0V E n

t

-==??=?Φ

? 答:(1)2s 内穿过线圈的磁通量的变化量8×

10-3Wb

(2)磁通量的变化率为4×10-3Wb/s (3)线圈中感应电动势大小为6.0V

相关主题
文本预览
相关文档 最新文档