当前位置:文档之家› 温室大棚控制系统设计毕业设计

温室大棚控制系统设计毕业设计

温室大棚控制系统设计毕业设计
温室大棚控制系统设计毕业设计

温室大棚控制系统设计

摘要

本课题运用STC89C52单片机、DS-18B20 数字温度传感器、继电器和M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系统,解决了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。该系统运行可靠,成本低。系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。

关键词:STC89C52单片机、DS-18B20 数字温度传感器、ULN-2003A集成芯片、温室、自动控制、自动检测

目录第1章绪论

§1.1选题背景

§1.2选题的现实意义

第2章系统硬件电路的设计

§2.1系统硬件电路构成系统整体框图

§2.1.2系统整体电路图

§2.1.3系统工作原理

§2.2温度传感器的选择

§2.2.1 DS18B20简介

§2.2.2 DS18B20的性能特点

§2.2.3 DS18B20的管脚排列

§2.2.4 DS18B20的内部结构

§2.2.5 DS18B20的控制方法

§2.2.6 DS18B20的测温原理

§2.2.7 DS18B20的时序

§2.2.8 DS18B20使用中的注意事项

§2.3单片机的选择

§2.3.1单片机概述

§2.3.2 AT89C2051芯片的主要性能

§2.3.3 AT89C2051芯片的内部结构框图

§2.3.4 AT89C2051芯片的引脚说明

§2.3.5使用AT89C2051芯片编程时的注意事项§2.4 RS-485通信设计

§2.4.1串行通信的分类

§2.4.2串行通信的制式

§2.4.3串行通信的总线接口标准

§2.4.4 RS-485的硬件设计

§2.5小结

第3章系统软件的设计

§3.1系统主程序

§3.2系统部分子程序

§3.2.1 DS18B20初始化子程序

§3.2.2 DS18B20读子程序

§3.2.3 DS18B20写子程序(有具体的时序要求) §3.2.4 DS18B20定时显示子程序

§3.2.5 DS18B20温度转换子程序

§3.3 DS18B20的流程图

第4章总结

参考文献

致谢

附录

第一章绪论

1.1选题背景

在人类的生活环境中,温湿度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度和湿度打着交道。自18世纪工业革命以来,工业发展与是否能掌握温湿度有着密切的联系。在冶金、钢铁、石化、水泥、玻璃、医药等行业,可以说几乎80%的工业部门都不得不考虑着温湿度的因素。温湿度不但对于工业如此重要,在农业生产中温度的监测与控制也有着十分重要的意义。我国人多地少,人均占有耕地面积更少。因此,要改变这种局面,只靠增加耕地面积是不可能实现的,因此我们要另辟蹊径,想办法来提高单位亩产量。温室大棚技术就是其中一个好的方法。温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度对生物生长的约束。而且,温室大棚能克服环境对生物生长的限制,能使不同的农作物在不适合生长的季节产出,使季节对农作物的生长不再产生过度影响,部分或完全摆脱了农作物对自然条件的依赖。由于温室大棚能带来可观的经济效益,所以温室大棚技术越来越普及,并且已成为农民增收的主要手段。

随着大棚技术的普及,温室大棚数量不断增多,温室大棚的温湿度控制便成为一个十分重要的课题。传统的温湿度控制是在温室大棚内部悬挂温度计和湿度计,通过读取温度值和湿度值了解实际温湿度,然后根据现有温湿度与额定温湿度进行比较,看温湿度是否过高或过低,然后进行相应的通风或者洒水。这些操作都是在人工情况下进行的,耗费了大量的人力物力。现在,随着国家经济的快速发展,农业产业规模的不断提高,农产品在大棚中培育的品种越来越多,对于数量较多的大棚,传统的温度控制措施就显现出很大的局限性。温室大棚的建设对温湿度检测与控制技术也提出了越来越高的要求。

今天,我们的生活环境和工作环境有越来越多称之为单片机的小电脑在为我们服务。单片机在工业控制、尖端武器、通信设备、信息处理、家用电器等各测控领域的应用中独占鳌头。时下,家用电器和办公设备的智能化、遥控化、模糊控制化已成为世界潮流,而这些高性能无一不是靠单片机来实现的。采用单片机来对温湿度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温湿度的技术指标,从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中必不可少且广泛应用的器件,尤其在日常生活中也发挥越来越大的作用。因此,单片机对温湿度的控制问题是一个工农业生产中经常会遇到的问题。因此,本课题围绕基于单片机的温室大棚控制系统展开了应用研究工作。

1.2选题的现实意义

随着单片机和传感技术的迅速发展,自动检测领域发生了巨大变化,温室环境自动监测控制方面的研究有了明显的进展,并且必将以其优异的性能价格比,逐步取代传统的温湿度控制措施.但是,目前应用于温室大棚的温湿度检测系统大多采用模拟温度传感器、多路模拟开关、A/D转换器及单片机等组成的传输系统。这种温湿度度采集系统需要在温室大棚内布置大量的测温电缆,才能把现场传感器的信号送到采集卡上,安装和拆卸繁杂,成本也高。同时线路上传送的是模拟信号,易受干扰和损耗,测量误差也比较大。为了克服这些缺点,本文参考了一种基于单片机并采用数字化单总线技术的温度测控系统应用于温室大棚的的设计方案闭,根据实用者提出的问题进行了改进,提出了一种新的设计方案,在单总线上传输数字信号。

本文介绍的温湿度测控系统就是基于单总线技术及其器件组建的。该系统能够对大棚内的温湿度进行采集,利用温湿度传感器将温室大棚内温湿度的变化,变换成数字量,其值由单片机处理,最后由单片机去控制液晶显示器,显示温室大棚内的实际温湿度,同时通过与预设量比较,对大棚内的温度进行自动调节,如果超过我们预先设定的湿度限制,湿度报警模块将进行报警。这种设计方案实现了温湿度实时测量、显示和控制。该系统抗干扰能力强,具有较高的测量精度,不需要任何固定网络的支持,安装简单方便,性价比高,可维护性好。这种温湿度测控系统可应用于农业生产的温室大棚,实现对温度的实时控制,是一种比较智能、经济的方案,适于大力推广,以便促进农作物的生长,从而提高温室大棚的亩产量,以带来很好的经济效益和社会效益。

第二章系统硬件电路的设计

2.1系统硬件构成及其测控原理

2.1.1系统硬件电路构成系统整体框图

图2-1 系统整体框图

2.1.2系统整体电路图

图2-2 系统整体电路图

2.1.3系统工作原理

本系统由如图2-1、图2-2所示,DHT11温湿度传感器采集数据,STC89C52单片机进行数据处理,LCD1602显示模块显示温湿度。由PWM控制温度调节模块进行温度调节,当温度小于18℃时,M4QA045电机停止运转,当温室大于28℃时,M4QA045电机全速运转,当温度处于18℃和28℃之间时,通过PWM控制M4QA045电机转速。由STC89C52单片机输出高低电平控制湿度报警模块,当湿度大于65%RH或者小于45%RH时,STC89C52单片机输出高电平,湿度报警模块报警,当湿度处于45%RH和65%RH之间时,STC89C52单片机输出低电平,湿度报警模块关闭。

2.2 显示模块的选择

2.2.1DS18B20简介

DS18B20数字温度传感器采用DS18B20可组网数字温度传感器芯片封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样等优点,适用于各种狭小空间设备数字测温和控制领域。

2.2.2 DS18B20的性能特点

2.2.2.1、适应电压范围更宽,电压范围:

3.0~5.5V,在寄生电源方式下可由数

据线供电

2.2.2.2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

2.2.2.3、DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温

2.2.2.4、DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内

2.2.2.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃

2.2.2.6、可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温

2.2.2.7、在9位分辨率时最多在9

3.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快

2.2.2.8、测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力

2.2.2.9、负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

2.2.3 DS18B20的管脚排列

2.2.

3.1、DS18B20的外形及管脚排列如下图:

DS18B20引脚定义:

(1)DQ为数字信号输入/输出端;

(2)GND为电源地;

(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

2.2.4 DS18B20的内部结构

DS18B20内部结构图:

2.2.5 DS18B20的控制方法

2.2单片机的选择

2.2.1单片机概述

单片微型计算机简称单片机,又称微控制器,嵌入式微控制器等,属于第四代电子计算机。它把中央处理器、存储器、输入/输出接口电路以及定时器叶数器集成在一块芯片上,从而具有体积小、功耗低、价格低廉、抗干扰能力强且可靠性高等特点,因此,适合应用于工业过程控制、智能仪器仪表和测控系统的前端装置。正是由于这一原因,国际上逐渐采用微控制器(MCU)代替单片微型计算机(SCM)这一名称。“微控制器”更能反映单片机的本质,但是由于单片机这个名称已经为国内大多数人所接受,所以仍沿用“单片机”这一名称。

1、单片机的主要特点有:

(1) 具有优异的性能价格比。

(2) 集成度高、体积小、可靠性高。

(3) 控制功能强。

(4) 低电压,低功耗。

2、单片机的主要应用领域:

(1) 工业控制

(2) 仪器仪表

(3) 电信技术

(4) 办公自动化和计算机外部设备

(5) 汽车和节能

(6) 制导和导航

(7) 商用产品

(8) 家用电器

因此,在本课题设计的温湿度测控系统中,采用单片机来实现。在单片机选用方面,由于STC89系列单片机与MCS-51系列单片机兼容,所以,本系统中选用STC89C52单片机。

2.2.2 STC89C52单片机的引脚说明

图2-3 STC89C52单片机引脚图

芯片引脚如图2-3所示:

VCC : 电源。

GND: 地。

P0口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0具有内部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。

P1口:是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4 个TTL 逻辑电平。对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX),具体如下表1所示。

在flash编程和校验时,P1口接收低8位地址字节。

P2口:P2口是一个具有内部上拉电阻的8 位双向I/O口,P2输出缓冲器能驱动4个TTL逻辑电平。对P2端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX @DPTR)时,P2口送出高八位地址。在这种应用中,P2口使用很强的内部上拉发送1。在使用8位地址(如MOVX @RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。

P3口:P3口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱动4 个TTL 逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。P3口亦作为AT89S52特殊功能(第二功能)使用,如上表2-1所示。在flash编程和校验时,P3口也接收一些控制信号。

RST: 复位输入。晶振工作时,RST脚持续2个机器周期高电平将使单片机复位。看门狗计时完成后,RST 脚输出96 个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。

ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8 位地址的输出脉冲。在flash编程时,此引脚(PROG)也用作编程输入脉冲。

在一般情况下,ALE 以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。如果需要,通过将地址为8EH的SFR的第0位置“1”,ALE操作将无效。这一位置“1”,ALE仅在执行MOVX或MOVC指令时有效。否则,ALE将被微弱拉高。这个ALE 使能标志位(地址为8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。

PSEN:外部程序存储器选通信号(PSEN)是外部程序存储器选通信号。当STC89C52从外部程序存储器执行外部代码时,PSEN在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN将不被激活。

EA/VPP:访问外部程序存储器控制信号。为使能从0000H 到FFFFH的外部程序存储器读取指令,EA必须接GND。为了执行内部程序指令,EA应该接VCC。在flash编程期间,EA也接收12伏VPP电压。

XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。

XTAL2:振荡器反相放大器的输出端。

程序存储器:如果EA引脚接地,程序读取只从外部存储器开始。对于89S52,如果EA 接VCC,程序读写先从内部存储器(地址为0000H~1FFFH)开始,接着从外部寻址,寻址地址为:2000H~FFFFH。

数据存储器:STC89C52有256 字节片内数据存储器。高128 字节与特殊功能寄存器重叠。也就是说高128字节与特殊功能寄存器有相同的地址,而物理上是分开的。当一条指令访问高于7FH的地址时,寻址方式决定CPU访问高128 字节RAM还是特殊功能寄存器空间。直接寻址方式访问特殊功能寄存器(SFR)

定时器2:定时器2是一个16位定时/计数器,它既可以做定时器,又可以做事件计数器。其工作方式由特殊寄存器T2CON中的C/T2位选择(如表2所示)。定时器2有三种工作模式:捕捉方式、自动重载(向下或向上计数)和波特率发生器。工作模式由T2CON中的相关位选择。定时器2 有2 个8位寄存器:TH2和TL2。在定时工作方式中,每个机器周期,TL2 寄存器都会加1。由于一个机器周期由12 个晶振周期构成,因此,计数频率就是晶振频率的1/12。

中断:STC89C52有6个中断源如表2-2所示:两个外部中断(INT0和INT1),三个定时中断(定时器0、1、2)和一个串行中断每个中断源都可以通过置位或清除特殊寄存器IE 中的相关中断允许控制位分别使得中断源有效或无效。IE还包括一个中断允许总控制位EA,它能一次禁止所有中断。定时器2可以被寄存器T2CON中的TF2和EXF2的或逻辑触发。程序进入中断服务后,这些标志位都可以由硬件清0。实际上,中断服务程序必须判定是否是TF2 或EXF2激活中断,标志位也必须由软件清0[1]。

2.2.3 STC89C52单片机最小系统

图2-4 晶振电路

图2-5 复位电路

如图2-4、图2-5所示,复位电路和时钟电路是维持单片机最小系统运行的基本模块。单片机最小系统是在以51单片机为基础上扩展,使其能更方便地运用于测试系统中,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被测试的技术指标,从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为在实时检测和自动控制领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大[2]。

2.5 温度调节模块设计

1、方案一

图2-12 方案一电路图

如图2-12所示,由PWM控制温度调节模块,当PWM端输入高电平时,电流经Q1放大,光耦导通,光耦输出电流经Q2放大后,使双向可控硅导通,M4QA045电机运转,当PWM端输入低电平时,双向可控硅控制端输入电流为0,交流电过零以后,双向可控硅截止,M4QA045电机停止运转[4]。

2、方案二

图2-13 方案二电路图

如图2-13所示,由PWM控制温度调节模块,当PWM端输入高电平时,电流经Q4放大,常开端5闭合,M4QA045电机运转,当PWM端输入低电平时,常开端5断开,M4QA045电机停止运转。

3、方案比较

方案一采用光耦隔离强电,方案二采用继电器隔离强电,但方案一没有实现强电与直流源的隔离,且方案一环节复杂,计算难度大,过多的环节延长响应时间,从而影响温度调整模块的性能,所以选择方案二[5]。

图2-14 电热器驱动电路

基于以上两个方案的分析,加热器驱动电路也同样选用继电器隔离,当温度低于18℃时,相应引脚输出高电平,电流经过三极管放大,继电器常开端闭合,电热器工作,当温度高于23℃时,相应引脚输出低电平,继电器常开端关闭,电热器不工作[6]。

2.6 湿度报警模块设计

图2-14 湿度报警模块电路图

如图2-14所示,由STC89C52单片机在BUZZER端输入信号控制湿度报警模块。当湿度大于65%RH或者小于45%RH时,BUZZER端输入高电平,电流经Q3放大,使蜂鸣器工作;当湿度处于45%RH和65%RH之间时,BUZZER端输入低电平,蜂鸣器不工作[7]。

第三章温室大棚控制系统软件设计

3.1 Keil C软件概述

单片机开发中除必要的硬件外,同样离不开软件,我们写的汇编语言源程序要变为CPU可以执行的机器码有两种方法,一种是手工汇编,另一种是机器汇编,目前已极少使用手工汇编的方法了。机器汇编是通过汇编软件将源程序变为机器码,用于MCS-51单片机的汇编软件有早期的A51,随着单片机开发技术的不断发展,从普遍使用汇编语言到逐渐使用高级语言开发,单片机的开发软件也在不断发展,Keil软件是目前最流行开发MCS-51系列单片机的软件,这从近年来各仿真机厂商纷纷宣布全面支持Keil即可看出。Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部份组合在一起。运行Keil软件需要Pen tium或以上的CPU,16MB或更多RAM、20M以上空闲的硬盘空间、WIN98、NT、W IN2000、WINXP等操作系统。掌握这一软件的使用对于使用51系列单片机的爱好者来说是十分必要的,如果你使用C语言编程,那么Keil几乎就是你的不二之选(目前在国内你只能买到该软件、而你买的仿真机也很可能只支持该软件),即使不使用C语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。

Keil C51开发系统基本知识Keil C51开发系统基本知识:

1. 系统概述

Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。用过汇编语言后再使用C来开发,体会更加深刻。

Keil C51软件提供丰富的库函数和功能强大的集成开发调试工具,全Wind ows界面。另外重要的一点,只要看一下编译后生成的汇编代码,就能体会到K eil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。在开发大型软件时更能体现高级语言的优势。下面详细介绍Keil C51开发系统各部分功能和使用。

2. Keil C51单片机软件开发系统的整体结构

C51工具包的整体结构,其中uVision与Ishell分别是C51 for Windows和for Dos的集成开发环境(IDE),可以完成编辑、编译、连接、调试、仿真等整个开发流程。开发人员可用IDE本身或其它编辑器编辑C或汇编源文件。然后分别由C51及A51编译器编译生成目标文件(.OBJ)。目标文件可由LIB51创建生成库文件,也可以与库文件一起经L51连接定位生成绝对目标文件(.ABS)。ABS文件

由OH51转换成标准的Hex文件,以供调试器dScope51或tScope51使用进行源代码级调试,也可由仿真器使用直接对目标板进行调试,也可以直接写入程序存贮器如EPROM中。

使用独立的Keil仿真器时,注意事项:

*仿真器标配11.0592MHz的晶振,但用户可以在仿真器上的晶振插孔中换插其他频率的晶振。

*仿真器上的复位按钮只复位仿真芯片,不复位目标系统。

*仿真芯片的31脚已接至高电平,所以仿真时只能使用片内ROM,不能使用片外ROM;但仿真器外引插针中的31脚并不与仿真芯片的31脚相连,故该仿真器仍可插入到扩展有外部ROM(其CPU的/EA引脚接至低电平)的目标系统中使用。

1、安装好了Keil软件以后,我们打开它。

2、我们先新建一个工程文件,点击“Project->New Project…”菜单。

3、选择工程文件要存放的路径 ,输入工程文件名 xdch 最后单击保存。

4、在弹出的对话框中选择 CPU 厂商及型号。

5、选择好STC89C52芯片,接着点击确定,弹出对话框。

6、新建一个 C51 文件, 单击左上角的New File,保存为DS18B20_4.C,(注意后缀名必须为.C),再单击“保存”。

7、存好后把此文件加入到工程中方法如下:用鼠标在Source Group1上单击右键, 然后再单击Add Files to Group Source Group 1。

8、选择要加入的文件, 找到MAIN.C后, 单击Add, 然后单击Close。

9、在编辑框里输入代码。

10、生成 .hex 烧写文件,先单击Options for Target。

11、在下图中,我们单击Output, 选中Create HEX F,再单击“确定”。

以上是Keil软件的基本应用[8]。

3.2 温室大棚控制系统程序设计

3.2.1整体系统框图

图4-1 系统整体框图

首先,初始化单片机设置中断,定义变量,然后初始化LCD1602显示模块,设置8位格式,2行,5*7矩阵显示,整体显示,关光标,不闪烁设定输入方式,增量不移位,清除屏幕显示。调用温湿度采集程序进行数据采集,经过数据转换程序,将十六进制转换成十进制,将十进制数据输出到LCD1602显示模块进行显示,根据温度调整电机转速,根据湿度判断是否报警,最后,进行新一轮的温湿度采集[9]。

3.2.2 LCD1602显示模块程序设计

基于PLC的温室控制系统的设计开题报告

郑州科技学院毕业设计(论文)开题报告

年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代代末开始出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化无人化的方向发展。 目前,一些经济发达的国家和地区已经研制并实现计算机自动化控制的现代高科技温室,并形成了令人惊险的植物工厂。而我国的温室系统属于半开放系统,温室内环境控制水平较低,仍靠人工根据经验来管理。而且,国内的控制系统主要用于单因子控制,因而设施现代化水平低,对温室环境的调控能力差,产品的质量难以得到保证。正是这些塑料大棚和日光温室对于解决城乡人民的蔬菜供应发挥着主力军的作用。 3.温室控制系统研制与开发的意义 温室是植物栽培生产中必不可少的设施之一,温度是影响植物生长发育最重要的因子之一。它的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。 虽然有些温室也安装有各种加热、通风和降温的设备,但其主要操作大多仍是由人工来完成的当温室面积较大或数量较多时,操作人员的劳动强度很大,而且也无法达到对温湿度的准确控制。本文介绍一种基于PLC和数字式温度传感器的温室控制系统。该系统实现了室内温度的自动测量和调节,大大降低了操作人员的劳动强度。 二、主要设计(研究)内容、设计(研究)思想、解决的关键问题、拟采用的技术方案及工作流程 1.研究内容: 温室的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。温室一般以采光和覆盖材料作为主要结构材料,它可以在冬季或其他不适宜植物露地生长的季节栽培植物,从而达到对农作物调节产期、促进生长发育、防治病虫害及提高产量的目的。温室环境指的是作物在地面上的生长空间,它是由光照、温度、湿度、二氧化碳浓度等因素构成的。温室控制主要是控制温室内的温度、湿度、通风与光照。

物联网温室大棚智能化系统解决方案

物联网温室大棚智能化系统
解决方案

目录
1、设计原则.............................................................................................................................................. 3 2、设计依据.............................................................................................................................................. 3 3、系统简介.............................................................................................................................................. 4 3、系统架构.............................................................................................................................................. 5 4、系统组成.............................................................................................................................................. 6
结构图................................................................................................................................................ 6 现场的监测设备: ........................................................................................................................ 7 智慧大棚系统结构: .................................................................................................................... 7 智慧农业大棚系统介绍 ................................................................................................................ 8 温度控制系统 ............................................................................................................................ 8 通风控制系统 ............................................................................................................................ 8 光照控制系统 ............................................................................................................................ 9 水分控制系统 ............................................................................................................................ 9 湿度控制系统 .......................................................................................................................... 10 视频监控系统 .......................................................................................................................... 10 控制系统平台: .......................................................................................................................... 10 应用软件平台:.......................................................................................................................... 11 视频监控系统:.......................................................................................................................... 11 农业溯源系统.............................................................................................................................. 12 种植环节: .............................................................................................................................. 12 物流环节: .............................................................................................................................. 12 其他:...................................................................................................................................... 12 室外气象观测站.......................................................................................................................... 13
5、系统特点............................................................................................................................................ 14 预测性:...................................................................................................................................... 14 强大的扩展功能:...................................................................................................................... 14 完善的资料处理功能:.............................................................................................................. 14 远程监控功能:.......................................................................................................................... 14 数据联网功能:.......................................................................................................................... 14
6、项目定位............................................................................................................................................ 14 7、控制逻辑............................................................................................................................................ 16
温度控制...................................................................................................................................... 16 控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 16 控制方式: .............................................................................................................................. 16
降温控制过程:.......................................................................................................................... 16 在软件中可以设定温度默认正常的上下限的值 .................................................................. 16 温度超过设定上限时 .............................................................................................................. 16
增温控制过程:.......................................................................................................................... 16 空气湿度控制.............................................................................................................................. 16
控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 17 控制方式: .............................................................................................................................. 17 增湿控制过程:.......................................................................................................................... 17 在软件可设定湿度默认正常的上下限的值; ...................................................................... 17 湿度低于设定下限时: .......................................................................................................... 17 除湿控制过程:.......................................................................................................................... 17

日光温室设计--方案

日光温室设计方案 一、结构设计说明 温室设计规格为东西长80m,南北宽8m,北墙高、顶高、骨架间距。顶部选用进口无滴膜单层覆盖,单栋温室占地面积640m2。 1、墙体北墙为(240+120+240)mm厚复合砖墙。内、外墙为240mm砖墙,中间120mm保温层(保温层可用炉灰或黄土)。 2、屋顶:单层薄膜。 3、操作间一侧北墙后砌筑楼梯,便于屋顶检修。北墙每隔设一通风洞,每套尺寸500mm×500mm,便于夏季通风。地面根据实际种植需要进行硬化或做其它处理。 4、温室前坡地面挖防寒沟。 5、朔州土建基础设计资料: 年平均气温一般为℃~℃左右。1月份最冷,平均气温为一℃~一℃,极端最低气温一℃(1971年1月21日)。从3月到5月,每个月气温平均升高8℃左右。7月份为最热,平均气温为℃~℃,最高气温可达℃(1961年6月10日)。秋季每个月气温平均下降7℃左右 二、温室技术性能指标 1、抗风载:m2 2、抗雪载:m2 3、顶部载荷:m2,需及时清雪。 4、墙基地基承载力:不小于100KN/m2且均匀。 5、电源参数:电压采用中国220/380V,50Hz标准。 三、主要系统设计 1、温室骨架:温室骨架形状及材料规格均经过严格周密的计算,并最终通过计算机辅助设计、绘图并制造,确保他们符合建筑标准和耐久性要求。结构计算依据最

不利的情况,甚至考虑到各种荷载同时作用下进行了测试,以确保结构的可靠性,各种型材的壁厚除考虑强度满足外还充分考虑了各种锈蚀、腐蚀的作用。经验证,结构的稳定性及强度都达到标准。 2、覆盖材料:日光温室的覆盖材料主要分为两部分,一部分为前坡采光面覆盖材料,另一部分为后坡保温覆盖材料。本次设计,温室南坡采光面采用单层PEP15丝聚乙烯无滴长寿膜,为希腊进口产品,该膜为防紫外线层、抗静电层、无滴层三层共挤,使膜里有抗露滴、防紫外线、保温的作用。该膜具有高、中温保温效果好,高透光率,高折射,防尘,抗流滴,抗病虫害,品质稳定,使用寿命长和超大尺寸等特点。薄膜的固定采用加强卡槽卡簧及压膜线固定,使用寿命3年以上。 后坡面采用建筑通用的彩钢复合保温板(中间夹100mm厚高溶质聚苯泡沫板);保温性能卓越,相比其它材料可节能10%以上,并可提高整个温室抗风能力。 复合保温板的主要技术参数: 厚度:100mm; 彩钢板厚度3mm,内层为乳白色,外层为彩色防老化漆,可根据实际选用颜色; 聚苯泡沫板厚度100 mm,每立方米容重:10kg/m3;

PLC温室大棚控制系统设计开题报告

滨州学院 毕业设计(论文)开题报告题目基于PLC温室大棚控制系统设计 系(院)自动化系年级2010级 专业电气自动化技术班级4班 学生姓名石瑞学号1023091219 指导教师王国明职称助教 滨州学院教务处 二〇一三年三月 开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用

的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下

智能温室大棚系统需求分析说明书

智能温室大棚系统软件需求分析说明书 小组成员:物联网12001 梁树强 物联网12001 于吉满 物联网12001 卜浩圻

目录 1.软件介绍3 2. 软件面向的用户群体 (3) 3. 软件应当遵循的规或规 (3) 4.软件围3 5. 软件中的角色3 6.软件的功能性需求4 6.0功能性需求分析4 6.0.1经管员功能性需求分类4 6.0.2用户功能性需求分类4 6.1 系统经管员功能细化5 6.2 用户功能细化6 7.系统功能模块用例图10 7.1系统经管员功能模块用例图10 7.2用户功能模块用例图11 8.软件的非功能性需求13 8.1 用户界面需求13 8.2 软硬件环境需求13 8.3 软件质量需求13 9.参考文献13

1.软件介绍 (1)该软件是智能温室大棚系统 (2)软件开发背景:随着社会和经济的发展,人们对物质生活的需求越来越高。中国人口众多,人均耕地面积很少,如何提高农作物产量,实行耕地面积利用率的最大化十分重要。为了提高单位面积上农作物的产量,国外纷纷提出了自己的智能温室大棚系统设计方案。所谓的智能温室大棚系统设计就是通过现代科学技术手段,调节农作物生长所需的各种环境条件,主要有光照、温度、土壤湿度、二氧化碳浓度这4个环境参数,从而使农作物处于最佳的生长环境中,进而最大幅度地提高农作物的产量。而开发此系统正是利用现代科技,来科学有序的发展农业,让人们从繁重的体力劳动中解放出来,体验到科技带来的快乐。 2.软件面向的用户群体 适应群体:以农作物为主要经济来源的企业或者个体劳动者,特别适合拥有多个温室大棚用来种植作物的用户。 该系统的开发,最大的好处是更加科学的经管温室大棚,细致化的从温度,湿度,二氧化碳浓度等可靠数据来分析和制定作物的更加适宜的环境。智能化的使用方法让用户对温室大棚的经管更加省时,省力,使使用者最终获得更大的收益。 3.软件应当遵循的规或规 1.数据库要求规完整,有系统崩溃手动恢复的功能 2.要求该软件的可扩展性好。 3.要求该软件整体的安全性强 4.要求该软件采集的数据准确性要高。 5.要求该软件组建的无线传感网稳定,安全性高。 4.软件围 本系统用C/S架构,安全性能和维护性高,并且用java语言对此系统进行的开发,移植性好。适合用户在不同的平台运行,灵活可靠,更加符合在温室大棚不同的设备硬件上进行移植。 5.软件中的角色 5.1经管员

温室大棚中温室自动化控制系统方案设计

温室大棚中温室自动化控制系统解决方案设计 温室自动化控制系统简介 温室自动控制系统是专门为农业温室、农业环境控制、气象观测开发生产的环境自动控制系统。可测量风向、风速、温度、湿度、光照、气压、雨量、太阳辐射量、太阳紫外线、土壤温湿度等农业环境要素,根据温室植物生长要求,自动控制开窗、卷膜、风机湿帘、生物补光、灌溉施肥等环境控制设备,自动调控温室内环境,达到适宜植物生长的范围,为植物生长提供最佳环境。 智能温室自动化控制系统是根据温室大棚内的温湿度、土壤水分、土壤温度等传感器采集到的信息,接到上位计算机上进行显示,报警,查询。监控中心将收到的采样数据以表格形式显示和存储,然后将其与设定的报警值相比较,若实测值超出设定范围,则通过屏幕显示报警或语音报警,并打印记录。 系统组网络以及通讯协议 (1)系统组网络组成 根据工艺运行的需求,我们做如下的网络系统设计:网络采用以太网络设计。每个站作为一个网络节点。这个网络采用性能可靠的工业以太网。可以将办公网络、自动控制网络无缝结合到该网络环境,实现“多网合一”。 整个系统可承载的数据分成如下的几个部分: 1:工业控制数据 2:采集数据 3:工业标准的MODBUS总线通讯 (2)组网特点 自动化控制系统是开放的控制系统,除了具有良好的网络通讯能力外,还具有与其它控制系统通讯功能和标准的对外通讯接口,以后可以任意扩展控制系统。 整个系统采用多级网络结构,即生产管理网和生产控制网,将过程实时数据、运行操作监视数据信息同非实时信息及共享资源信息分开,分别使用不同的网络。有效地提高了通讯的效率,降低了通讯负荷。 (3)采用的通讯协议

Modbus协议是应用于自动控制器上的一种通用协议。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一种通用工业标准。 现代农业大棚控制系统 (1)控制系统概述 随着社会经济的发展,设施农业作为农业可持续发展的一个重要途径,已经越来越受到世界各国的重视,而设施农业中问世工程的建设与发展是都市型发展的重要组成部分,是设施农业发展的高级阶段。希望通过改变植物生长的自然环境、.创造适合植物最佳的生长条件,避免外界恶劣的气候,达到调节产期,促进生长发育、防治病虫害等目的。 远程大棚监控系统是一种用于家庭、仓库(厂房、花棚和塑料薄膜大棚)内环境温湿度监控及控制的全自动远程智能调节系统。它通过控制加热器及制冷器(通风)对温度进行自动调节,同时通过控制加湿机及除湿机的工作自动调节环境的相对湿度,使环境的温度和湿度达到适宜的范围。 (2)大棚环境特点与调控 大棚因有塑料薄膜覆盖,形成了相对封闭与露地不同的特殊小气候。进行蔬菜大棚栽培,必须掌握大棚内环境的特点,并采取相应的调控措施,满足蔬菜生长发育的条件,从而获得优质高产。 大棚内环境条件: 1、光照 2、温度: 3、空气湿度 4、空气二氧化碳浓度 5、土壤湿度: (3)现代化大棚远程控制工艺 本方案使用腾控系列系列高速32位控制器、高性能温度湿度以及氧气传感器、视频设备等硬件通过目前的高速光纤网络建造一个现代化农业用温室大棚环境监控系统。本系统可自动监测调节农作物环境的温湿度、光照、O2浓度、通风、卷帘升降、滴灌控制、门禁、巡更等参数,通过HMI输出帮助种植者作全面

基于PLC的大棚温度自动控制系统设计

清华大学 毕业设计(论文) 题目基于PLC的大棚温度自动控制 系统设计 系(院)自动化系 专业电气工程与自动化班级2009级3班 学生姓名雷大锋 学号2009022321 指导教师王晓峰 职称副教授 二〇一三年六月二十日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 年月日

基于PLC的大棚温度自动控制系统设计 摘要 大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。 关键词:大棚,温度控制,PLC

玻璃大棚的设计要求

玻璃大棚指以玻璃作采光材料的温室,属于温室大棚的一种,在栽培设施中,玻璃大棚作为使用寿命长的一种形式,适合于多种地区和各种气候条件下使用。由于玻璃大棚相较于其他类型的温室大棚而言,外观美丽,设计独特,因此,深受广大用户的喜爱;那么,在日常生活中,玻璃大棚主要有哪些用途呢?下面就具体来介绍一下: 【玻璃大棚基础用材及施工特点】 行业内以跨度与开间的尺寸大小分为不的建设型号,又以不同的使用方式分为:蔬菜玻璃大棚、花卉玻璃大棚、育苗玻璃大棚、生态玻璃大棚、科研玻璃大棚、立体玻璃大棚、异形玻璃大棚、休闲玻璃大棚、智能玻璃大棚等等。其面积与使用方式可有温室主自由调配,小的有庭院休闲型的,大的高度可达10米以上,跨度可达16米,开间大可达10米,智能程度可达到一键控制。玻璃大棚的冬季采暖问题可采用多种供暖方式,其能耗费用居中,大都能接受。 (1)独立基础 通常利用钢筋混凝土。从施工方法上分,独立基础分为全现浇和部分现浇两种方式。全现浇采用施工现场支模、整体浇筑的方法进行;部分现浇方式采用基础短柱预制、基础垫层现场浇筑的方式进行。两种方式可根据具体情况选择采用。现浇方式具有整体性好、造价较低的特点;部分现浇方式造价较

高但施工速度快,施工质量较易保证。 (2)条形基础 通常采用砌体结构(砖、石),施工也采用现场砌筑的方式进行,基础顶部常设置一钢筋混凝土圈梁以安装埋件和增加基础刚度。此外,侧墙基础也可以采用独立基础与条形基础混合使用的方式,两类基础底面可位于同一标高处,也可根据承力情况和作用设置在不同标高处;独立基础承担温室柱底传来的力,条形基础仅作为分隔构件的一部分使用。 【玻璃大棚设计要求】 基础在设计之前,应对建设场区的地质资料进行认真的分析,一是场区地质勘察报告(用于重要的大型温室项目);二是施工现场测试(用于一般项目);三是根据经验和附近项目的参考地质资料(用于小型项目)。基础设计时,除满足强度的要求外,还应具有足够的稳定性和抵抗不均匀沉降的能力,与柱间支撑相连的基础还应具有足够的传递水平力的作用和空间稳定性。 温室底面应位于冻土层以下,采暖温室可根据气候和土质情况考虑采暖对基础冻深的影响。一般基础底部应低于室外地面0.5米以上,基础顶面与室外地面的距离应大于0.1米,以防止基础外露和对栽培的不良影响。除特殊要求外,温室基础顶面与室内地面的距离宜大于0.4米。

大棚温室自动控制系统毕业设计(精)

本设计为一闭环控制系统,由89C51单片机,A/D转换电路,温度检测电路,湿度检测电路、控制系统组成。温度检测电路将检测到的温度转换成电压,该模拟电压经ADC0809转换后,进入89C51单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作。实现了对大棚里植物生长温度及土壤和空气湿度的检测,监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。 该设计还具有对温度的实时显示功能,对棚内环境温度的预设功能。 第一章概述 大棚、中棚及日光温室为我国主要的设施结构类型。其主要功能是采用电路来自动控制室内的温度,以利于植物的生长。温室的性能指标: 1.温室的透光性能 温室是采光建筑,因而透光率是评价温室透光性能的一项最基本指标。透光率是指透进温室内的光照量与室外光照量的百分比。温室透光率受温室透光覆盖材料透光性能和温室骨架阴影率的影响,而且随着不同季节太阳辐射角度的不同,温室的透光率也在随时变化。温室透光率的高低就成为作物生长和选择种植作物品种的直接影响因素。一般,连栋塑料温室在 50%~60%,玻璃温室的透光率在60%~70%,日光温室可达到70%以上。 2.温室的保温性能 加温耗能是温室冬季运行的主要障碍。提高温室的保温性能,降低能耗,是提高温室生产效益的最直接手段。温室的保温比是衡量温室保温性能的一项基本指标。温室保温比是指热阻较小的温室透光材料覆盖面积与热阻较大的温室围护结构覆盖面积同地面积之和的比。保温比越大,说明温室的保温性能越好。 3.温室的耐久性

温室建设必须要考虑其耐久性。温室耐久性受温室材料耐老化性能、温室主体结构的承载能力等因素的影响。透光材料的耐久性除了自身的强度外,还表现在材料透光率随着时间的延长而不断衰减,而透光率的衰减程度是影响透光材料使用寿命的决定性因素。一般钢结构温室使用寿命在15年以上。要求设计风、雪荷载用25年一遇最大荷载;竹木结构简易温室使用寿命5~10年,设计风、雪荷载用15年一遇最大荷载。 由于温室运行长期处于高温、高湿环境下,构件的表面防腐就成为影响温室使用寿命的重要因素之一。钢结构温室,受力主体结构一般采用薄壁型钢,自身抗腐蚀能力较差,在温室中采用必须用热浸镀锌表面防腐处 理,镀层厚度达到150~200微米以上,可保证15年的使用寿命。对于木结构或钢筋焊接桁架结构温室,必须保证每年作一次表面防腐处理。 第二章比例微积分控制原理 3.1 比例积分调节器(PD 比例调节器具有误差,为解决此问题,可引入积分(Inte6raI环节,其方块图见图4—33l 比例微分调节器对误差的任何变化,都产生一个控制作用比,阻止误差的变化。c变化越快,pd越大,输出校正量也越大。它有助于减少超调,克服振荡,使系统趋于稳定;同时加快系统的响应速度,减小调整时间,从而改善了系统的动态特性。它的缺点是抗干扰能力变差。 3.2 PID调节器 积分器能消除镕差,提高精度,但使系统的响应速度变慢、稳定性变环。微分器能增加稳定性,加快响应速度。比例器为基本环节。三者合用,选择适当的参数,可实现稳定的控制。 图4—37为PID调节器的方块图。 第三章自动控制系统的设计

温室自动控制系统设计方案

(此文档为word格式,下载后您可任意编辑修改!) 参赛题目:温室自动控制系统 队长:朱继田 队员:杨建成 陶文波

温室自动控制系统 摘要:(300字以内) 温度是一种环境参数,温度自动控制在工农业生产中具有非常重要的作用。半导体制冷器(TEC)是一种比较先进的制冷装置,因为其小型化、无噪声、无污染的特点,在各种温度控制领域得到了广泛的应用,因此研究半导体制冷器温度的测量方法和设计灵活精确的温度自动控制系统具有重要的意义。 文章介绍了一种温度自动控制系统,该系统采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,AT89C52低电压、高性能半导体制冷器等元件。单片机通过温度传感器获取当前温度,进而控制半导体制冷器工作。 一、方案设计和论证 本系统由四大部分组成:1、温度检测装置;2、控制系统;3、执行机构; 4、显示同步。在其中2部分控制系统中,由于ATMEL公司的AT89C52单片机具有高密度、非易失性、低电压、高性能等优点,且满足本系统和电子设计大赛的两方面要求,因此采用AT89C52作为微控制器,该部分方案设计将在文章第三、四部分详细介绍。以下主要针对温度检测系统及执行机构两方面的内容进行方案设计和论证。 模块1 温度检测装置方案设计 对于温度的自动控制系统而言,温度检测是整个系统设计的第一步。如何选择温度传感器是这块电路的关键,它是直接影响整个系统的性能与效果的关键因素之一。 方案:选用数字式温度传感器DS18B20 论证: 数字温度传感器DS18B20最大特点之一是采用了单总线的数据传输,直接输出数字信号。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。因此便于单片机处理及控制,节省硬件电路。该系统可以由数字温度计DS18B20和 AT89C52单片机直接构成的温度测量装置。不仅如此,DS18B20最小分辨率为0.0625℃,满足该题温度分辨率为0.1℃的要求,因此温度传感器选用DS18B20。 模块2 执行机构 对于温度的自动控制系统而言,温度执行机构是整个系统设计最核心的一步。温度执行机构的构建直接影响整个控制模块的工作方式和效率。 方案一:可控硅调功器电路 论证 可控硅调控器电路是利用双向可控硅管和加热丝串接在交流220V、50Hz回路。在给定周期T内,AT89C52只要改变可控硅管的接通时间便可改变加热丝功率,以达到调节温度的目的。显然可控硅在给定周期T的100%时间内接通时间的功率最大。显然,对功率的调节从而调节温度达不到制冷效果,即使是通过外加风扇来带走外部热量也达不到,故不用此方案。

温室大棚控制系统-设计报告详解

哈尔滨师范大学 物联网感知综合课程设计报告 题目:温室大棚控制系统 年级: 2013级专业:物联网工程姓名:高英亮袁昊慈指导教师:李世明杜军

温室大棚控制系统 高英亮、袁昊慈 摘要中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。利用物联网的传感器技术实时采集温室环境的空气温湿度、土壤水分和光照度等因素,单片机将数据进行分析处理做出合理的控制决策,控制执行器进行自动喷灌,实现了计算机自动控制,按需、按期和按量喷灌。系统主要由温室环境信息采集模块、单片机模块和控制模块组成,采集模块包括光照度传感器和空气温湿度传感器。该系统采用传感器技术和单片机相结合,由上位机和下位机( 都用单片机实现) 构成,采用接口进行通讯,实现温室大棚自动化控制。本系统环保节能、节水、省力,具有很好的实用性和推广性。 1 引言 中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚内的温度、湿度与二氧化碳含量等参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜、水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。 目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。

大棚温湿度自动控制系统设计说明

大棚温湿度自动控制系统设计 摘要:本设计是基于STC89C52RC单片机的大棚温湿度自动控制系统,采用SHT10作为温湿度传感器,LCD1602液晶屏进行显示。SHT10使用类似于I2C总线的时序与单片机进行通信,由于它高度集成,已经包括A/D转换电路,所以使用方便,而且准确、耐用。LCD1602能够分两行显示数据,第一行显示温度,第二行显示湿度。这个控制系统能够测量温室大棚中的温度和湿度,将其显示在液晶屏LCD1602上,同时将其与设定值进行对比,如果超出上下限,将进行报警并启动温湿度调节设备。此外,还可以通过独立式键盘对设定的温湿度进行修改。通过设计系统原理图、用Proteus软件进行仿真,证明了该系统的可行性。 关键词:STC89C52RC,SHT10,I2C总线,独立式键盘,温湿度自动控制 Abstract: This design is an automatic temperature and humidity controller for greenhouses, with the STC89C52RC MCU being its main controller. It uses the SHT10 as the temperature and humidity sensor, and the LCD1602 to display the messages. The SHT10 uses a timing sequence much like the I2C to communicate with the micro-controller. Because it’s a highly integrated chip, it already includes an analog to digital converter. Therefore, it’s quite convenient to use, and also accurate and durable. The LCD1602 can display two lines of messages, with the first line for temperature and the second line for humidity. The design can measure the temperature and humidity in a greenhouse, and then display it on a LCD1602. Meanwhile, it compares the data with the set limit. If the limit is exceeded, then the system will send out a warning using a buzzer and activate the temperature and humidity controlling equipment. Besides, the set limit can be modified with the independent keyboard. Through schematic design and Proteus simulation, the feasibility of this design has been proved. Keywords: STC89C52RC, SHT10, I2C bus, independent keyboard, temperature and humidity control

相关主题
文本预览
相关文档 最新文档