当前位置:文档之家› 基于最优分数阶傅里叶变换的模拟电路故障特征提取新方法

基于最优分数阶傅里叶变换的模拟电路故障特征提取新方法

基于最优分数阶傅里叶变换的模拟电路故障特征提取新方法
基于最优分数阶傅里叶变换的模拟电路故障特征提取新方法

 万方数据

 万方数据

 万方数据

 万方数据

第5期罗慧等:基于最优分数阶傅里叶变换的模拟电路故障特征提取新方法100l

故障模式数据空问的可分性得到增强,从而提高了故障

诊断准确性。凶此采用本文方法提取的故障特征不仪是

有效的,还具有良好的分类特性。

[2][3][4][5][6][7][8][9][10]参考文献

MOHAMMADIK,SEYYEDMAHDAYISJ.Onimpro—

vingtrainingtimeofneuralnetworksinmixedsignaleir-

cuitfaultdiagnosisapplications[J].MicroelectronicsRe—

liability,2008,48:781-793.

TANYH,HEYG,CUICH,eta1.Anovelmethodfor

analogfaultdiagnosisbasedonneuralnetworksandge—

neticalgorithms[J].IEEETransactionsonInstruments—

tionandMeasurement,2008,57(11):2631-2639.

GRASSOF,LUCH肌1AA,MANE‘l’rIS,eta1.A

methodfortheautomaticselectionoftestfrequenciesin

analogfaultdiagnosis[J].IEEE7l'ransactionsonInstru-

mentationandMeasurement,2007,56(7):2322-2329.

HUM,WH,HUG,eta1.Softfaultdiagnosisforaua—

logcircuitsbasedonslopefaultfeatureandBPneural

networks[J].TsinghuaScienceandTechnology,20()7,

12(1):26—31.

MIURAY。KATOJ.Adaptivefaultdiagnosisofanalog

circuitsbyoperation—regionmodelandX?-Yzoningmeth--

od[J].JournalofElectronicTesting:7FheoryandAppli—

cations,2008,24:223—233.

AMINIANM.AMINIANF.Amodularfault—diagnostic

systemforanalogelectroniccircuitsusingneuralnetworks

withwavelettransforma.sapreprocessor[J].IEEE

TTansactionsonJnstrnmentationandMeasurement.

2007,5(56):1546一1554.

QIL,’rA0R,ZHOUSY.Detectionandparameteresti—

mationofmulti?-componentLFMsignMbasedonthefrac?-

tionalFouriertransform[J].ScienceinChina,SetF,

2004,47(2):184—198.

ERTOSUNMG,ATLIH,OZAKTASHM.Complex

signalrecoveryfromtwo

fractionalFouriertransformin.

tensities—orderandnoisedependence[J].OpticsCom—

munications,2005,244(1~6):61-70.

SHARMASN,SAXENAR,SAXENAC.TuningofFIR

filtertransitionbandwidthusingfractionalFouriertrans—

form[J].SignalProcessing,2007,87:3147-3154.

TAOR,DENGB,WANGYUE.Researchprogressof

thefractionalFouriertransforminsignalprocessing[J].

SeienceinChina:SeriesFInformationScienees,2006,

49(1):1.25.

SINGHN,SINHAA.Opticalimageencryptionusing

fractionalFouriertransformandchaos[J].Opticsand

LaserinEngineering,2008,2(46):117—123.

[12]LIUMJ,GAOMG,FUT.RealtimeISARimagealgo-

rithmofmaneuveringtargetsbasedonthefractionalfou—

riertransfortnfC].20071“AsianandPacificConference

onSyntheticApertureRadar,Huangshan,China,2007:

667-670.

[13]BAtLSHANB,AYMIUB.Fractionalfouriertransformpre?

processingneuralnetworksanditsapplicationtoobject11ec—

ognition[J].NeuralNetworks,2002,15:131—140.

[14]AIJEVAT,BASTIAANSMJ.Onfractionalfouriertran8-

formmoments[J].SignalProcessingLetters,2000,7(ii):

320.323.

[15]Farzanaminian,Mehranaminian.Faultdiagnosisofaria-

logcircuitsusingbayesianneuralnetworkswithwavelet

transformaspreprocessor[J].JournalofElectronicTes-

ting:Theory

andApplications,2001(17):29-36.

作者简介

罗慧,现为南京航空航天大学博上研究

生,目前主要研究方向为模拟电路故障诊断

与测试等。

E-mail:1h821005@126.com

LuoHuiiscurrentlypursuingforPhDin

NUAA.Herresearchinterestsincludeanalog

circuitfaultdiagnosisandtesting,etc.

E—mail:Ih821005@126.corn

王友仁,1984年于东南大学获得学士

学位,1987年于东南大学获得硕上学位,

1996年于南京航空航天大学获得博十学

位,现为南京航空航天大学教授、博十生导

师,主要研究方向为检测技术与信号处理、

机载设备健康监测、仿生硬件与智能系统。

E—mail:wangyrae@nasa.edu.cn

WangYourenreceivedBScandMScfromSoutheastUniversity

in1984and1987,andPhDfromNUAAin1996,respectively.And

nowheisaprofessorandsupervisorforPhDinNUAA.His

main静

searchinterestsincludetesttechniqueandsign81processing,avion—

icsPI-LM.bionicshardwareandintelligentsystem.

E-mail:wangyrac@nasa.edu.cn

崔江,现为南京航空航天大学讲师、博

士研究牛,主要研究方向为模拟电路测试和

故障预测、智能信息处理等。

E—mail:cuijiang@nuaa.edu.cn

CuiJiangisalecturerandPhDcandidate

inNUAA.Hismainresearchinterestsinclude

analoguecircuittestandfaultdiagnostics,intelligent

information

processing,etc.

E—mail:cuijiang@nuaa.edu.cn

 万方数据

基于最优分数阶傅里叶变换的模拟电路故障特征提取新方法

作者:罗慧, 王友仁, 崔江, Luo Hui, Wang Youren, Cui Jiang

作者单位:南京航空航天大学自动化学院,南京,210016

刊名:

仪器仪表学报

英文刊名:CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT

年,卷(期):2009,30(5)

被引用次数:4次

参考文献(15条)

1.SHARMA S N;SAXENA R;SAXENA C Tuning of FIR filter transition bandwidth using fractional Fourier transform[外文期刊] 2007(12)

2.ERTOSUN M G;ATLI H;OZAKTAS H M Complex signal recovery from two fractional Fourier transform intensities-order and noise dependence[外文期刊] 2005(1-6)

3.QI L;TAO R;ZHOU S Y Detection and parameter estimation of multi-component LFM signal based on the fractional Fourier transform[期刊论文]-Science in China(Serial F)(Information Sciences) 2004(02)

4.AMINIAN M;AMINIAN F A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor[外文期刊] 2007(56)

5.MIURA Y;KATO J Adaptive fault diagnosis of analog circuits by operation-region model and X-Y zoning method[外文期刊] 2008(1/3)

6.HU M;W H;HU G Soft fault diagnosis for analog circuits based on slope fault feature and BP neural networks[外文期刊] 2007(01)

7.GRASSO F;LUCHETTA A;MANETTI S A method for the automatic selection of test frequencies in analog fault diagnosis[外文期刊] 2007(07)

8.Farzan aminian;Mehran aminian Fault diagnosis of analog circuits using bayesian neural networks with wavelet transform as preprocessor[外文期刊] 2001(17)

9.ALIEVA T;BASTIAANS M J On fractional fourier transform moments[外文期刊] 2000(11)

10.BARSHAN B;AYMIU B Fractional fourier transform pre- processing neural networks and its application to object recognition[外文期刊] 2002(1)

11.LIU M J;GAO M G;FU T Real time ISAR image algorithm of maneuvering targets based on the fractional fourier transform 2007

12.SING H N;SINHA A Optical image encryption using fractional Fourier transform and chaos[外文期刊] 2008(46)

13.TAO R;DENG B;WANG YUE Research progress of the fractional Fourier transform in signal processing [外文期刊] 2006(01)

14.TAN Y H;HE Y G;CUI CH A novel method for analog fault diagnosis based on neural networks and genetic algorithms[外文期刊] 2008(11)

15.MOHAMMADI K;SEYYED MAHDAYI S J On improving training time of neural networks in mixed signal circuit fault diagnosis applications[外文期刊] 2008(5)

引证文献(5条)

1.孙凤艳.王友仁.崔江.林华功率变换电路电解电容器故障预测方法研究[期刊论文]-电子测量与仪器学报2010(1)

2.崔江.王友仁兼顾后续分类器的小波特征选择及在模拟电路故障诊断中的应用[期刊论文]-仪器仪表学报2010(11)

3.梁涛年.陈建军参数不确定时滞系统分数阶PIλDμ控制器稳定域算法[期刊论文]-仪器仪表学报 2010(12)

4.陈乐文.刘杨.秦红磊分数傅里叶变换在GNSS信号捕获中的应用[期刊论文]-电子测量技术 2010(12)

5.梁涛年.陈建军参数不确定时滞系统分数阶PIλDμ控制器稳定域算法[期刊论文]-仪器仪表学报 2010(12)本文链接:https://www.doczj.com/doc/da9883803.html,/Periodical_yqyb200905019.aspx

文本特征提取方法

https://www.doczj.com/doc/da9883803.html,/u2/80678/showart_1931389.html 一、课题背景概述 文本挖掘是一门交叉性学科,涉及数据挖掘、机器学习、模式识别、人工智能、统计学、计算机语言学、计算机网络技术、信息学等多个领域。文本挖掘就是从大量的文档中发现隐含知识和模式的一种方法和工具,它从数据挖掘发展而来,但与传统的数据挖掘又有许多不同。文本挖掘的对象是海量、异构、分布的文档(web);文档内容是人类所使用的自然语言,缺乏计算机可理解的语义。传统数据挖掘所处理的数据是结构化的,而文档(web)都是半结构或无结构的。所以,文本挖掘面临的首要问题是如何在计算机中合理地表示文本,使之既要包含足够的信息以反映文本的特征,又不至于过于复杂使学习算法无法处理。在浩如烟海的网络信息中,80%的信息是以文本的形式存放的,WEB文本挖掘是WEB内容挖掘的一种重要形式。 文本的表示及其特征项的选取是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。将它们从一个无结构的原始文本转化为结构化的计算机可以识别处理的信息,即对文本进行科学的抽象,建立它的数学模型,用以描述和代替文本。使计算机能够通过对这种模型的计算和操作来实现对文本的识别。由于文本是非结构化的数据,要想从大量的文本中挖掘有用的信息就必须首先将文本转化为可处理的结构化形式。目前人们通常采用向量空间模型来描述文本向量,但是如果直接用分词算法和词频统计方法得到的特征项来表示文本向量中的各个维,那么这个向量的维度将是非常的大。这种未经处理的文本矢量不仅给后续工作带来巨大的计算开销,使整个处理过程的效率非常低下,而且会损害分类、聚类算法的精确性,从而使所得到的结果很难令人满意。因此,必须对文本向量做进一步净化处理,在保证原文含义的基础上,找出对文本特征类别最具代表性的文本特征。为了解决这个问题,最有效的办法就是通过特征选择来降维。 目前有关文本表示的研究主要集中于文本表示模型的选择和特征词选择算法的选取上。用于表示文本的基本单位通常称为文本的特征或特征项。特征项必须具备一定的特性:1)特征项要能够确实标识文本内容;2)特征项具有将目标文本与其他文本相区分的能力;3)特征项的个数不能太多;4)特征项分离要比较容易实现。在中文文本中可以采用字、词或短语作为表示文本的特征项。相比较而言,词比字具有更强的表达能力,而词和短语相比,词的切分难度比短语的切分难度小得多。因此,目前大多数中文文本分类系统都采用词作为特征项,称作特征词。这些特征词作为文档的中间表示形式,用来实现文档与文档、文档与用户目标之间的相似度计算。如果把所有的词都作为特征项,那么特征向量的维数将过于巨大,从而导致计算量太大,在这样的情况下,要完成文本分类几乎是不可能的。特征抽取的主要功能是在不损伤文本核心信息的情况下尽量减少要处理的单词数,以此来降低向量空间维数,从而简化计算,提高文本处理的速度和效率。文本特征选择对文本内容的过滤和分类、聚类处理、自动摘要以及用户兴趣模式发现、知识发现等有关方面的研究都有非常重要的影响。通常根据某个特征评估函数计算各个特征的评分值,然后按评分值对这些特征进行排序,选取若干个评分值最高的作为特征词,这就是特征抽取(Feature Selection)。

语音信号特征参数提取方法

语音信号特征参数提取方法 阮雄飞微电子学与固体电子学 摘要:在语音技术的发展过程中使用了大量的语音信号特征参数, 好的语音信号特征参数能对语音识别起至关重要的作用。本文对语音信号特征参数提取方法以及国内外研究现状进行了介绍,最后介绍了Hilbert-Huang 这一新兴理论成果以及在特征提取中的应用。 关键词:语音技术特征提取HHT 1 引言 语音信号是一种短时平稳信号,即时变的,十分复杂,携带很多有用的信息,这些信息包括语义、个人特征等,其特征参数的准确性和唯一性将直接影响语音识别率的高低,并且这也是语音识别的基础[1]。特征参数应该能够比较准确地表达语音信号的特征具有一定的唯一性。 上世纪40年代,potter等人提出了“visiblespeech”的概念,指出语谱图对语音信号有很强的描述能力,并且试着用语谱信息进行语音识别,这就形成了最早的语音特征,直到现在仍有很多的人用语谱特征来进行语音识别[2]。后来,人们发现利用语音信号的时域特征可以从语音波形中提取某些反映语音特性的参数,比如:幅度、短时帧平均能量、短时帧过零率、短时自相关系数、平均幅度差函数等。这些参数不但能减小模板数目运算量及存储量而且还可以滤除语音信号中无用的冗余信息。语音信号特征参数是分帧提取的, 每帧特征参数一般构成一个矢量, 所以语音信号特征是一个矢量序列。我们将语音信号切成一帧一帧, 每帧大小大约是20-30ms。帧太大就不能得到语音信号随时间变化的特性, 帧太小就不能提取出语音信号的特征, 每帧语音信号中包含数个语音信号的基本周期。有时希望相邻帧之间的变化不是太大, 帧之间就要有重叠, 帧叠往往是帧长的1/2或1/3。帧叠大, 相应的计算量也大[3]。随着语音识别技术的不断发展时域特征参数的种种不足逐渐暴露出来,如这些特征参数缺乏较好稳定性且区分能力不好。于是频域参数开始作为语音信号的特征比如频谱共振峰等。经典的特征提取方法主要有LPCC(线性预测倒谱系数)、MFCC(美尔频率倒谱系数)、HMM(隐马尔科夫模型)、DTW(动态时间规整)等。 2 语音信号特征参数提取方法

快速傅里叶变换的意义

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 傅里叶变换属于谐波分析。 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 1、为什么要进行傅里叶变换,其物理意义是什么? 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。 因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 2、图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区

微机故障常见的检测方法与处理方法

平时常见的微机故障现象中,有很多并不是真正的硬件故障,而是由于某些设置或系统特性不为人知而造成的假故障现象。认识下面的微机假故障现象有利于快速地确认故障原因,避免不必要的故障检索工作。 1、电源插座、开关很多外围设备都是独立供电的,运行微机时只打开计算机主机电源是不够的。例如:显示器电源开关未打开,会造成“黑屏”和“死机”的假象;外置式MODEM电源开关未打开或电源插头未插好则不能拨号、上网、传送文件,甚至连MODEM都不能被识别。打印机、扫描仪等都是独立供电设备,碰到独立供电的外设故障现象时,首先应检查设备电源是否正常、电源插头/插座是否接触良好、电源开关是否打开。 2、连线问题外设跟计算机之间是通过数据线连接的,数据线脱落、接触不良均会导致该外设工作异常。如:显示器接头松动会导致屏幕偏色、无显示等故障;又如:打印机放在计算机旁并不意味着打印机连接到了计算机上,应亲自检查各设备间的线缆连接是否正确。 3、设置问题例如:显示器无显示很可能是行频调乱、宽度被压缩,甚至只是亮度被调至最暗;音箱放不出声音也许只是音量开关被关掉;硬盘不被识别也许只是主、从盘跳线位置不对……。详细了解该外设的设置情况,并动手试一下,有助于发现一些原本以为非更换零件才能解决的问题。 4、系统新特性很多“故障”现象其实是硬件设备或操作系统的新特性。如:带节能功能的主机,在间隔一段时间无人使用计算机或无程序运行后会自动关闭显示器、硬盘的电源,在你敲一下键盘后就能恢复正常。如果你不知道这一特征,就可能会认为显示器、硬盘出了毛病。再如Windows、NC的屏幕保护程序常让人误以为病毒发作……多了解微机、外设、应用软件的新特性、多向专家请教,有助于增加知识、减少无谓的恐慌。 \[] 5、其它易疏忽的地方 CD-ROM的读盘错误也许只是你无意中将光盘正、反面放倒了;软盘不能写入也许只是写保护滑到了“只读”的位置。发生了故障,首先应先判断自身操作是否有疏忽之处,而不要盲目断言某设备出了问题。 微机故障常见的检测方法

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

故障特征提取的方法研究(1)解析

故障特征提取的方法研究(1) 摘要:针对常规特征提取方法存在 着问题不足,提出了基于BP神经网络和基于互信息熵的特征提取方法,并通过特征提取实例加以说明。结果表明这两种方法是可行和有效的。 关键词:特征提取故障诊断神经网络互信息熵 随着科学技术的发展,现代设备的结构日趋复杂,其故障类型越来越多,反映故障的状态、特征也相应增加。在实际故障诊断过程中,为了使诊断准确可靠,总要采集尽可能多的样本,以获得足够的故障信息。但样本太多,会占用大量的存储空间和计算时间,太多的特征输入也会引起训练过程耗时费工,甚至妨碍训练网络的收敛,最终影响分类精度。因此要从样本中提取对诊断故障贡献大的有用信息。这一工作就是特征提取。 特征提取就是利用已有特征参数构造一个较低维数的特征空间,将原始特征中蕴含的有用信息映射到少数几个特征上,忽略多余的不相干信息。从数学意义上讲,就是对一个n维向量X=[x1,x2,…,xn]T进行降维,变换为低维向量Y=[y1,y2,…,ym]T,m

傅里叶变换的应用

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化

主要电力设备故障图像特征及识别方法研究改

摘要 摘要内容 伴随着我国电网规模的日益加大,各类变电设备的运作状态是促使其安全高效运行的最为主要的因素之一。对于各类变电设备的在线状态监测系统的推广越来越发普及。研究基于图像特征的电力设备自动故障识别具有重要意义。 本文对各类主要电力设备,研究各类变电设备故障识别分类及相应故障的图像特征,以及基于红外与紫外图像特征的故障识别方法。对于紫外放电成像技术图像的处理与特征提取,本文从紫外成像技术的基本原理出发,在讲解紫外放电图片特性的基础上,对紫外放电图像使用灰度化预处理,以及应用中值滤波等方法对图像进行降噪。并通过canny算子边缘检测计算紫外光斑面积判断是否发生放电故障。针对红外故障图像,本文在红外成像原理的基础上,对红外图像进行超像素分割及HSV空间颜色提取,对应用卷积神经网络对红外故障图像故障区域检测进行理论上的研究。 关键词:红外成像紫外成像图像处理

ABSTRACT With the increasing scale of China's power grid, the operation of various types of substation equipment is one of the most important factors to promote the safe and efficient operation. The popularization of the on-line condition monitoring system for all kinds of transformer equipment is becoming more and more popular. Research on image feature based automatic fault recognition of power equipment is of great significance. In this paper, various types of main power equipment, the study of various types of substation equipment fault identification and classification of image features, as well as infrared and ultraviolet image features based on fault identification method. For ultraviolet discharge imaging technique to image processing and feature extraction, this paper from the basic principle of UV imaging technology of on the explanation of the ultraviolet discharge picture characteristics based and discharge on the UV image using grayscale preprocessing and application of median filtering method of image in noise reduction. And through the Canny operator edge detection to determine whether the area of the UV spot to determine whether the discharge fault. Aiming at the

文本特征提取方法研究

文本特征提取方法研究 ______________________________________________________ 一、课题背景概述 文本挖掘是一门交叉性学科,涉及数据挖掘、机器学习、模式识别、人工智能、统计学、计算机语言学、计算机网络技术、信息学等多个领域。文本挖掘就是从大量的文档中发现隐含知识和模式的一种方法和工具,它从数据挖掘发展而来,但与传统的数据挖掘又有许多不同。文本挖掘的对象是海量、异构、分布的文档(web);文档内容是人类所使用的自然语言,缺乏计算机可理解的语义。传统数据挖掘所处理的数据是结构化的,而文档(web)都是半结构或无结构的。所以,文本挖掘面临的首要问题是如何在计算机中合理地表示文本,使之既要包含足够的信息以反映文本的特征,又不至于过于复杂使学习算法无法处理。在浩如烟海的网络信息中,80%的信息是以文本的形式存放的,WEB文本挖掘是WEB内容挖掘的一种重要形式。 文本的表示及其特征项的选取是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。将它们从一个无结构的原始文本转化为结构化的计算机可以识别处理的信息,即对文本进行科学的抽象,建立它的数学模型,用以描述和代替文本。使计算机能够通过对这种模型的计算和操作来实现对文本的识别。由于文本是非结构化的数据,要想从大量的文本中挖掘有用的信息就必须首先将文本转化为可处理的结构化形式。目前人们通常采用向量空间模型来描述文本向量,但是如果直接用分词算法和词频统计方法得到的特征项来表示文本向量中的各个维,那么这个向量的维度将是非常的大。这种未经处理的文本矢量不仅给后续工作带来巨大的计算开销,使整个处理过程的效率非常低下,而且会损害分类、聚类算法的精确性,从而使所得到的结果很难令人满意。因此,必须对文本向量做进一步净化处理,在保证原文含义的基础上,找出对文本特征类别最具代表性的文本特征。为了解决这个问题,最有效的办法就是通过特征选择来降维。 目前有关文本表示的研究主要集中于文本表示模型的选择和特征词选择算法的选取上。用于表示文本的基本单位通常称为文本的特征或特征项。特征项必须具备一定的特性:1)特征项要能够确实标识文本内容;2)特征项具有将目标文本与其他文本相区分的能力;3)特征项的个数不能太多;4)特征项分离要比较容易实现。 在中文文本中可以采用字、词或短语作为表示文本的特征项。相比较而言,词比字具有更强的表达能力,而词和短语相比,词的切分难度比短语的切分难度小得多。因此,目前大多数中文文本分类系统都采用词作为特征项,称作特征词。这些特征词作为文档的中间表示形式,用来实现文档与文档、文档与用户目标之间的相似度计算。如果把所有的词都作为特征项,那么特征向量的维数将过于巨大,从而导致计算量太大,在这样的情况下,要完成文本分类几乎是不可能的。特征抽取的主要功能是在不损伤文本核心信息的情况下尽量减少要处理的单词数,以此来降低向量空间维数,从而简化计算,提高文本处理的速度和效率。文本特征选择对文本内容的过滤和分类、聚类处理、自动摘要以及用户兴趣模式发现、知识发现等有关方面的研究都有非常重要的影响。通常根据某个特征评估函数计算各个特征的评分值,然后按评分值对这些特征进行排序,选取若干个评分

脑电信号特征提取及分类

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴脑和兔脑上记录

故障特征提取的方法研究.

故障特征提取的方法研究 2008-01-20 摘要:针对常规特征提取方法存在着问题不足,提出了基于BP神经网络和基于互信息熵的特征提取方法,并通过特征提取实例加以说明。结果表明这两种方法是可行和有效的。 关键词:特征提取故障诊断神经网络互信息熵 随着科学技术的发展,现代设备的结构日趋复杂,其故障类型越来越多,反映故障的状态、特征也相应增加。在实际故障诊断过程中,为了使诊断准确可靠,总要采集尽可能多的样本,以获得足够的故障信息。但样本太多,会占用大量的存储空间和计算时间,太多的特征输入也会引起训练过程耗时费工,甚至妨碍训练网络的收敛,最终影响分类精度。因此要从样本中提取对诊断故障贡献大的有用信息。这一工作就是特征提取。 特征提取就是利用已有特征参数构造一个较低维数的特征空间,将原始特征中蕴含的有用信息映射到少数几个特征上,忽略多余的不相干信息。从数学意义上讲,就是对一个n维向量X=[x1,x2,…,xn]T进行降维,变换为低维向量Y=[y1,y2,…,ym]T,m

5.图像的频域增强及傅里叶变换

5.图像的频域增强及傅里叶变换 傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方而,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分呈:,通过低通滤波器来滤除髙频一一噪声;边缘也是图像的髙频分量,可以通过添加髙频分量来增强原始图像的边缘; 2?图像分割Z边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来汁算纹理特征 英他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据:常用的离散余弦变换是傅立叶变换的实变换:傅立叶变换傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一左存在。冈萨雷斯版<图像处理>里而的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决泄。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时, 讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里而);时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;频移性:函数在时域中乘以』wt,可以使整个频谱搬移W U这个也叫调制左理,通讯里而信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输): 卷积泄理:时域卷积等于频域乘枳:时域乘积等于频域卷积(附加一个系数)。(图像处理里而这个是个重点)信号在频率域的表现在频域中,频率越大说明原始信号变化速度越快:频率越小说明原始信号越平缓。当频率为O时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化快慢。高频分疑解释信号的突变部分,而低频分量决左信号的整体形象。 在图像处理中,频域反应了图像在空域灰度变化剧烈程度,也就是图像灰度的变化速度, 也就是图

傅里叶变换公式

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。 非确定性信号(随机信号):给定条件下 取值是不确定的 按取值情况分类:模拟信号,离散信 号

数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式 周期信号时域表达式 T:周期。注意n的取值:周期信号“无始

无终” # 傅里叶级数的三角函数展开式 (n=1, 2, 3,…) 傅立叶系数: 式中T--周期;0--基频, 0=2/T。 三角函数展开式的另一种形式: 周期信号可以看作均值与一系列谐波之和--谐波分析法 频谱图 周期信号的频谱三个特点:离散性、谐波性、收敛性 例1:求周期性非对称周期方波的傅立叶级数并画出频谱图 解:

解: 信号的基频 傅里叶系数 n次谐波的幅值和相角 最后得傅立叶级数 频谱图 幅频谱图相频谱图 二、周期信号傅里叶级数的复指数形式 欧拉公式 或 傅立叶级数的复指数形式

复数傅里叶系数的表达式 其中a n,b n的计算公式与三角函数形式相同,只是n包括全部整数。 一般c n是个复数。 因为a n是n的偶函数,b n是n的奇函数,因此# 即:实部相等,虚部相反,c n与c-n共轭。 c n的复指数形式 共轭性还可以表示为 , 即:c n与c-n模相等,相角相反。 傅立叶级数复指数也描述信号频率结构。它与三角函数形式的关系 对于n>0 (等于三角函数模的一半) (与三角函数形式中的相角相等)

数据挖掘中特征提取的分析与应用

数据挖掘中特征提取的分析与应用

摘要:数据挖掘中需要对数据进行各种分析,在一切分析前需要做好数据预处理。然而经过数据清理、数据集成、数据变换后,数据集仍然会非常大!在海量的数据上直接进行复杂的数据分析与挖掘将需要很长时间,使得这种分析不现实或不可行。数据归约技术可以用来得到数据集的归约表示,它小得多,但仍接近于保持原数据的完整性。这样,在归约后的数据集上挖掘将更有效,并产生相同或几乎相同的分析结果。通过这种方法从大量特征中提取出最具有代表性的特征根据需要分析有用的信息。随着社会的发展,传统的基于信物或口令的安全系统显得越来越脆弱,不能够满足现代安全系统的需要。基于特征提取的指纹识别随之产生,在众多的指纹属性中提取端点和分叉点两大明显特征,进行数据挖掘与分析。 关键词:数据挖掘;数据预处理;数据归约;维归约;特征提取;指纹识别 前言:数据挖掘中需要对数据进行各种分析,在一切分析前需要做好数据预处理。然而经过数据清理、数据集成、数据变换处理后,数据集仍然会非常大!在海量的数据上直接进行复杂的数据分析与挖掘将需要很长时间,使得这种分析不现实或不可行。此时数据归约技术显得尤为重要,通过数据归约技术的数据立方体聚集、维归约、数据压缩、数值压缩、离散化和概念分层产生策略将数据集归约表示,保持原数据的完整性。这样,在归约后的数据集上挖掘将更有效,并产生相同或几乎相同的分析结果。通过这种方法从大量特征中提取出最具有代表性的特征根据需要分析有用的信息。数据挖掘中的特征提取被广泛应用,其中指纹识别则是最典型的应用。 正文:数据挖掘中的特征提取的分析与应用经过数据清理、数据集成、数据变换预处理后,数据量仍然会很大,直接进行分析,肯定会降低挖掘过程的速度和效率。而通过数据归约的数据立方体聚集、维归约、数据压缩、数值压缩等策略可以‘压缩’数据集,而又不损害数据挖掘的结果。 简而言之,数据归约是通过聚集、删除冗余特性或聚类的方法来压缩数据。数据立方体聚集是作用于数据立方体中的数据;维归约可以检测并删除不相关、弱相关或冗余的属性或维;数据压缩使用编码机制压缩数据集;数值压缩用替代的、较小的数据表示替换或估计数据。本文就维归约的特征提取进行详尽的分析与应用说明,首先介绍维归约的概念。 一、维归约 用于数据分析的数据可能包含数以百计的属性,其中大部分属性与挖掘任务不相关,是冗余的。尽管领域专家可以挑选出有用的属性,但这可能是一项困难而费时的任务,特别是当数据的行为不清楚的时候更是如此。遗漏相关属性或留

波长变换的信号特征研究论文

波长变换的信号特征研究论文 摘要:通过对小波变换所进行的理论分析和计算机模拟发现,利用小波变换具有的高低频分离的特点,可在不丢失原信号重要信息成分的前提下,将原光谱信号的边缘部分进行滤化处理,消除了噪音信息,重构出更加清晰的光谱特征图形,从而提高了信号的清晰度,为信号的预处理提供了更加方便的条件。该信号特征提取的方法,与傅氏变换相比较,具有多项明显的优点,在实际工程应用中具有重要的意义。 关键词小波变换傅氏变换;信号 一、引言 在当今科技飞速发展的信息时代,信息资源中的信号应用日益广泛,信号的结构越来越复杂,为了更加清楚地分析和研究实际工程信号的有用信息,对信号进行预处理是至关重要的。例如,对于环境的监测,其中对空气成分的检测已经成为必不可少的环节,其方法是将空气中的某一成分(例如丁烯)进行特征的提取,提取的信息中仍然会存在着由一系列高频信号构成的噪音信号。由于这些边缘部分的存在,使原信号的基本特征在光谱信号中不能完全清晰地呈现,导致某些信息的细微环节部分难以识别,致使研究目的无法实现。 本文通过对小波变换所进行的理论分析和计算机模拟发现,利用小波变换具有的高低频分离的特点,可在不丢失原信号重要信息成分的前提下,将原光谱信号的边缘部分进行滤化处理,消除了噪音信息,重构出更加清晰的光谱特征图形,从而提高了信号的清晰度,为信号的预处理提供了更加方便的条件。 二、傅氏变换与小波变换 近年来,小渡变换已经成为对信号、图像等进行分析不可或缺的实用工具之一,其实质是对原始信号的滤波过程。与傅氏变换相比较,小波变换的优势在于,对分析信号可进行任意的放大平移并对其特征进行提取。对复杂信号作小波变换,进行多分辨率分析,在信号图象分析领域已占据着相当重要的地位。 已有的科研成果表明,物质的荧光光谱取决于物质的原子分子结构,所以不同的物质具有不同的荧光光谱。非线性荧光光谱是利用大功率超短激光脉冲和气体的非线性作用得到的;对于这种非线性荧光光谱的研究,主要集中在形成原理、

数据挖掘中用于分类的时序数据特征提取方法

计 算 机 系 统 应 用 https://www.doczj.com/doc/da9883803.html, 2012 年 第21卷 第 10 期 224 专论 ·综述Special Issue ① 林 珠1, 邢 延2 1(广东省计算中心, 广州 510033) 2 (广东工业大学 自动化学院, 广州 510006) 摘 要: 特征提取在提高分类的准确性中起着非常关键的作用. 对时序特征提取的方法进行归纳分类, 将有利于对特征提取整体性, 全面性的认识. 回顾现有的时间序列中特征提取的方法, 将其总结为四大类, 它们分别是基于基本统计方法的特征提取、基于模型的特征提取、基于变换的特征提取、基于分形维数的特征提取. 针对每一类的特征提取方法, 进一步研究了它相应的分类方法和它在时间序列数据中的应用邻域. 关键词: 时序数据; 分类; 特征提取 Survey of Feature Extraction Approaches for Time Series Classification LIN Zhu 1, XING Yan 2 1(Guangdong Computer Center, Guangzhou 510033, China) 2 (Guangdong University of Technology, Guangzhou 510006, China) Abstract : The main contributions of this paper are: 1) The main feature extraction approaches are classified into four categories; 2) The main idea of each category is analyzed, the advantages and disadvantages are pointed out; 3) The guidelines of choosing suitable feature extraction approach is suggested. Key words : time series; classification; feature extraction 1 引言 时序数据(time series data)广泛存在于现实生活中,是指同一种现象在不同时间上的相继观察值排列而成的一组数字序列, 其时间轴上的采样值通常又被称为特征[1]. 时序数据普遍存在于许多重要应用邻域, 比如DNA 序列、金融数据、传感器网络监控数据、移动对像跟踪数据、机器故障检测数据等等. 由于时序数据与时间相关联, 因而其数据量一般都是非常庞大的, 这就对时序数据挖掘技术提出了更高的要求[2]. 在时序数据挖掘的研究与应用领域, 时序数据分类是重要任务之一[1,2]. 例如, 依据语音信号的波形识别出说话人的性别和年龄, 依据心电图的时序波形识别出病者所患的病症, 依据地震波的历史数据, 去识别地震的类型, 依据在机器运转过程中进行故障检测和识别故障类型, 甚至在客户关系管理中根据某段时间的客户 购买信息, 识别不同的消费群体等等. 衡量分类技术优劣的核心指标是分类准确率, 而提高分类准确率途径有两种: 一是改进分类器; 二是采用特征提取技术(feature extraction). 特征提取是在分类前对数据时间采样值上进行适量的归约, 以达到减少数据量同时提高分类准确率(底线是不牺牲分类准确率)的目的. 时间序列除了具有的趋势性、季节性、周期性等一般特征之外, 不同的时序数据又存在不同的个别特征. 如金融数据, 普遍具有“高峰厚尾”和“平方序列微弱而持续的自相关”的特点; 而地震波则具有强度随时序延伸而减弱的特点; 语音信号幅度具有一定的范围, 并以零幅和近零幅的概率高, 而且长时间的语音信号会有相当多的无信号区间, 即所谓的语音寂静区间; 心电信号则具有很强的周期性, 它的主要特征是 ① 基金项目:广东省科技计划项目基金(2011B060500049, 2010B090400545, 2010A040300006) 收稿时间:2012-02-06;收到修改稿时间:2012-03-04

相关主题
文本预览
相关文档 最新文档