当前位置:文档之家› Varian 400MHz核磁共振谱仪使用 7

Varian 400MHz核磁共振谱仪使用 7

Varian 400MHz核磁共振谱仪使用 7
Varian 400MHz核磁共振谱仪使用 7

华中师范大学

Varian Plus-400MHz核磁共振谱仪

操作规程

化学学院编定

2014年3月

Varian Mercury plus 400M 核磁共振谱仪简易操作规程

1.打开空压系统,观察压力表示数是否正常。

2.登录,输入用户名和密码,进入VNMR操作界面。

3.在采集状态窗口中检查谱仪与计算机的联机状态,键入su,建立谱仪与计算机的联系。

4.键入命令pwd查看当前目录,将当前目录更改为在/export/home/用户名/vnmrsys/data下,

也可在data目录下建立以自己姓名全拼命名的文件夹。

5.进样:键入命令e,打开进样通道,小心放入样品;键入命令i,关闭进样通道。

6.选择实验区,键入命令jexpn,建议测量氢谱在exp1,测量碳谱在exp2。

7.锁场:点击acqi,lock off,spin off,将lockpower和lockgain置于最大值,调节Z0使

曲线呈向上台阶状,lock on。通过调节lockpower、lockgain和lockphase,使locklevel 在40-80左右。

8.自动匀场:键入命令gmapsys,点击autoshim on z。如果自动匀场不成功,或者自动匀

场后掉锁,重做锁场和匀场。

9.旋转样品:点击acqi,选择spin on,转速设为20,等待至旋转稳定。建议测碳谱不旋转。

10.选择实验参数:点击setup,选择测试核和溶剂种类,调出标准实验。更改实验参数。

11.采样:键入命令ga。采样结束后,spin off,lock off。

12.保存数据:键入命令svf,输入文件名。

13.数据处理:aph相位校正,dscale显示刻度,积分等等

14.打印谱图。键入打印命令,例如:pliv pscale ppf ppa page;pl pscale vp=vp+70 ppf(‘top’)

vp=vp-70 piv page等。

15.换样品:键入命令e,取出样品,放入下一个样品,键入i。回到第6步。

16.实验结束,取出样品,键入exit,退出VNMR操作界面,点击‘OK’确认退出。

17.每天最后一位实验者,关闭空压系统,放去冷凝水。

18.填写实验记录,离开实验室。

核磁谱仪的初级使用程序入门华中师范大学400M核磁仪是美国Varian公司(瓦里安公司已经被安捷伦公司收购)的产品型号:Mercury Plus 400。400M核磁软件有自动程序,但允许手动操作仪器,且实验效果较好。

1、仪器外观:

核磁共振仪主体主机柜打印机转子和量规量规的标尺

主计算机(sun)数据上传计算机空气压力表空气压缩机干燥机和压力计1.1开空气压缩机,红灯亮起,观察空气压力表,数值约在38psi处。

1.2确认谱仪内是否有核磁管?仪器室内只有两个核磁转子,如果发现只有一个,一般是仪器正在进行采样,说明仪器内已有核磁管。杜绝发生放两个样品管在谱仪内的情况发生。

仔细检查自带的样品管是否有严重的破损现象,使用干净无破损的好管。

2.放样品管

2.1处理样品管

2.1.1将样品管外表擦干净

2.1.2将样品管插入转子

2.1.3用量规测量样品管的长度

如下图

2.2登陆计算机(由于本实验室仪器常年运行,故此步骤可以省略)

2.2.1输入用户名:usersname

2.2.2输入密码:password

密码不会显示出来

如果无法登陆,在密码正确的情况下请选择“Option” ”Session” ”CDE”如果出现密码错误的提示,有两种可能:

(1)输入密码错误,大小写,数字键没按下等。

(2)被停机,此时数据也无法下载。

2.2.3进入操作系统:如下图

3认识核磁软件窗口:

2.3.1核磁操作界面主要由以下几部分组成:

(1)Input windows,用于输入命令

(2)Graphic windows,用于显示谱图

(3)Menu buttons,用于一些菜单控制

(4)Text windows,用于显示实验参数,设置实验等

(5)Acquisition status windows主要用于显示谱仪工作状态,包括样品管转数、是否锁场、是否正在采样、实验总的时间、剩余时间等.2.4进样品管、锁

场:

2.4.1单击“acqi”按钮(或在命令输入窗口中输入命令acqi),弹出一个对话框如下图:

进入氢——谱实验中

2.4.2样品管在量规中测量好高度后,在对话框中,首先LOCK按钮,查看SPIN 按钮是否存在,如存在请点击off按钮将spin关闭。

而且等到采样窗口的旋转值为零。才能开始放样品。

2.4.3单击eject按钮,听到较大的气流声后,观察核磁共振仪器顶部有无原有

样品管升起,

请检查梯子的位置,将其扶正,缓慢登上梯子,垂直缓慢取出原有的样品管。将新样品管和转子放入核磁进样,新样品管和转子在气流的作用下悬停在出气口,正压好盖压板。

2.4.4放样之后,单击insert按钮。等待样品管下降。听见响了两声后(第一声样品开始进入腔体,第二声表示样品到位),方可开始实验。对话框中的字体颜色变深,这时鼠标可以点击。

样品管缓缓进入磁体腔中

2.4.5查看SPIN按钮颜色是否变深,如存在请点击on按钮将spin打开。观察采样窗口的旋转值在10左右。(测定H谱需要,测定C-13谱可以省略。)

2.4.6点击Lock按键,结束放样,并同时锁场。

3.锁场和匀场:

3.1锁场:

3.1.1锁场前,可能会出现下图中的图形:

3.1.2接近锁场点:

锁场时,应调节z0,使锁信号升高。调整时,使用鼠标左键单击按钮,减少数值、鼠标右键增加数值。波形图中波的数目在减少,位置在升高。

3.1.3锁信号过强:

Lockpower和lockgain的数值一般不超过30。

3.1.4锁场成功:

通过仔细的调整,波形图的下面的红色字体LOCK OFF会变成绿色字体LOCKED,这一般表明锁场成功。

3.2匀场

3.2.1反复调整z1c和z2c,先粗调Z1C和Z2C,再细调Z1C和Z2C直到信号最强,然后,反复调整z1和z2,使信号最强。

3.2.2如果锁场困难,可先适当匀场,然后锁场。

3.2.3亦可调入标准场,使磁场处于较好状态,然后在进行锁场、匀场。方法:在命令输入窗口输入命令 rts(‘start’) su回车

3.2.4匀场成功,鼠标点击“close”按键。

4.设置实验参数:

在命令行输入jexp1“j1 su 回车”进入氢谱,或者输入jexp2进入碳谱。本机jexp3是19F谱,jexp4是31P谱。

未讲过的参数不允许随意修改和设置,否则有可能造成仪器损坏。一般自能调整菜单选者窗口的Acq&0bs栏目和Flags&Cond栏目。

4.1在文本显示窗口和菜单显示窗口进行有关设置。

在菜单选择窗口可以改动的子菜单。

在Acq&0bs栏目下,可以改动“solvent”的溶液种类,在“Transients”改变采样累加次数。

在Flags&Cond栏目下,一般可以改动“Rcvr Gain”的数值。

4.1.1设置溶液中溶剂种类:

椭圆线框中标明是氢原子,矩形线框溶剂类型是氘代氯仿。

在栏目solvenet中输入所用溶液,溶液名称如下:

重水:d2o 氘代甲醇:cd3od 二甲基砜DMSO:cd3socd3 氘代氯仿:cdcl3 氘代二氯甲烷:cd2cl2 氘代丙酮:cd3cocd3 氘代乙醇:cd3cd2od氘代苯:c6d6氘代乙酸:cd3cood 。

4.1.2设置采样累加次数:

在栏目nt中输入:

对于氢谱nt值一般设置为1,对于碳谱nt值一般设置为10,000,但是测量时间就会骤然增加。数值一般是4或8的倍数。

4.1.3 Rcvr gain增益调节:

计算机上这个值一般设置为30,如果在运行命令ga后出现adc overflow 提示,会有一声响声。应使Rcvr gain=10,或者Rcvr gain=0。如果Rcvr gain=0时任然出现adc overflow提示,可能需要将样品的浓度降低。

4.1.4设置谱宽:

在SW(谱宽,单位为Hz,乘以400为ppm。)处输入适当的数值。氢谱和碳谱不同。

4.2在命令行改变参数

4.2.1在命令输入窗口中,输入“命令=数值”后回车即可。如: nt=64 回车重新设置实验后,需重新设置各个参数。

4.3设置实验数值后,显示参数。

5.采集数据(测试)

5.1设置实验和相关参数后,在命令输入窗口使用“ga”命令开始测试。

5.1.1在命令输入窗口使用“ga”命令,并按下回车键。

“go”是执行测样品,得到FID。“ga”是执行测样品,得到FID后,再进行WFT处理,在计算机屏幕显示谱图。输入“aa”是停止测试。

5.1.2在碳谱测试时,由于nt值很大,等待时间很长,可以中途看谱,输入“wft”, “ds”,在每一个“ds”值后出现新的谱图,如果得到满意的图谱,可以输入“aa”停止测试。

5.2接收器溢出

5.2.1如果出现“ADC overfolw”提示,请在命令输入窗口中输入命令“aa”停止采样,在命令窗口输入“gain=0”,然后重新输入“ga”命令进行采样.

5.2.2输入gain=0 回车后,重新采样,如果还是过载,请将样品稀释后在进行实验。

5.3 在屏幕出现谱的图形后,要进行整理图谱。

6. 整理图谱

6.1在命令输入窗口中输入,可以察看谱图。

常见命令

wft(加窗函数傅立叶变换) ft (傅立叶变换) f full(显示全部谱图)aphx(自动调整相位) aph (调整相位) vsadj(自动调整谱图大小)Dscale (显示标尺) nl (定标尺0点) nrl (自动定标尺0点) ref(输入标尺基点的数值) Dc(电平校正) cdc(取消电平校正) bc(基线校正) ds (显示谱图) Inset(局部谱图展开)Expand(展开谱图)

6.1.1在命令行输入“aph”或者“ aph dc”回车,出现谱图。在谱图显示窗口中可以查看谱图的相位。如果相位不好,可以重新进行匀场和采样。

也可以在命令行输入“aph x”回车,计算机自动调整相位出现谱图。

6.1.2在命令行输入“wft”回车,出现谱图。在谱图显示窗口中可以查看谱图,如果不理想可重新进行匀场和采样。

6.1.3输入“dscale”显示谱图的标尺。或者用鼠标点击命令栏上“dscale”按键。

谱图下方出现标尺:

6.2.1放大谱图,首先在要放大的峰左侧单击鼠标左键,然后在其右侧单击鼠标的右键,出现的两个红线将峰扩起来。

6.2.2放大的区域选择后,单击“expand”此按钮将谱图展开。

6.2.3在命令行输入“nl”回车,在谱图中找到特征物质的特征峰。用鼠标左键点击峰的最高处,在命令行输入“ref”回车,命令行显示“”(请输入标尺基

点数值)。输入合适的数值。

也可以在命令行输入“nrl”回车,让计算机自动定出标尺基点。

6.3.1看完谱图局部的放大图后,再回看全图,单击“full”此按钮将全谱图显示在计算机屏幕上。

再次检查谱图,到此,获得较好的样品的NMR数据。

7.打印谱图:(学生跳过此步骤)

7.1.1在命令行输入“pl pscale”回车,

7.1.2在命令行输入“pir ppf”回车,

7.1.3在命令行输入“pl text page”回车,

本机一般不打印谱图。数据自己用网络传输至自己的计算机中用软件分析。

8 .谱图命名和保存。

8.1实验结束后,应保存谱图,否则所做的实验数据将丢失。

注意:本机数据只保留60天。每人限存60组数据,请实验后及时传送数

据到自己的计算机中。

由于本仪器每天测试的样品数据众多,所以必需给数据一个科学,易记,易找的名字、文件保存路径和文件夹。

文件名的格式为:“某年某月某日”-“某课题组某人第几个样品”-“什么谱”。例如:“20140309-wjxiaozhangli001-h1”。

文件夹:一般是课题组老师的名字。例如:XiaoWJ

文件保存路径:/export/home/Liu/usefidlib/XiaoWJ/文件名

8.1.1在命令行输入“ cd”回车。当文件保存的路径正确时,在命令行输入“svf”回车。按照文件名格式输入文件名,回车后,数据文件被保存在指定文件夹内。如果听到提示音,则文件名不被接收,需要重新输入命令保存实验数据。

8.2在命令行输入“pwd”回车,检查、确认文件保存的路径是否正确。如果文件保存路径不对,则需要更改文件储存路径。

8.2.1在命令栏用鼠标左键点击“ main menu”,“file”,“set directory”,“home”,“parent”,用鼠标右键点击进行翻页寻找正确的文件夹。找到后用鼠标左键点击点选正确的文件夹,在命令栏用鼠标左键点击“change”。在命令行上会显示正确的文件保存路径。

8.2.2在命令行输入“svf”回车。按照文件名格式输入文件名,回车。

8.3更改谱图名称:

8.3.1在命令栏用鼠标左键点击“ program”,“file manger”,“set directory”,

《近代物理实验》教学大纲

《近代物理实验》教学大纲 一、课程名称与编号 课程名称:近代物理实验编号:023315 二、学时与学分 本课程学时:84 本课程学分:5学分 三、授课对象 物理学专业学生,第六、七个学期做 四、先修课程 力学、热学、电磁学、光学、原子物理学、高等数学 五、课程的性质和目的 科学实验是理论的源泉,是自然科学的根本,也是工程技术的基础。物理学是一门实验科学,所有物理定律的形成和发展都是建立在客观自然现象的观察和研究的基础上的,并以实验结果为检验理论正确与否的唯一标准,重要的物理实验常常是新兴科学技术的生长点。 《近代物理实验》是继《普通物理实验》和《无线电电子实验》后的一门重要实验基础课程,本课程所涉及的物理基础知识面较广,并具有较强的综合性和技术性。 本课程的主要目的是:通过近代物理实验,丰富和活跃学生的物理思想,培养学生敏锐的观察能力,分析、归纳和综合能力,掌握新技术的能力,创新意识和综合素质。引导学生了解物理实验在物理概念的产生、形成和发展中的作用,学习近代物理中的一些常用方法、技术、仪器等知识,使他们具备良好的实验素养,严谨的科学作风,求实的科学精神,并具备一定的独立工作能力和科学研究能力。 六、主要内容、基本要求及学时分配 讲授部分 1、绪论(2学时) 理解近代物理实验课的特点,了解课程的内容、任务和学习方法。了解一些实验的史料,加深对近代物理实验的了解。 2、实验的误差分析与数据处理(4学时) 在普通物理验实训练的基础上,继续巩固和加强有关实验误差和数据处理的训练。如泊松分布、曲线的拟合等,可通过讲授或落实到一些实验题目中进行。 3、理解近代物理实验仪器的工作原理、使用常识(2学时) 掌握实验中的注意事项,包括人身安全及防护、通用仪器的正常使用。理解使用特殊仪

核磁共振谱(A)

教学目标:了解核磁共振的原理,在有机化合物结构表征中的应用。 教学重点:能解析简单的H-NMR谱图 教学安排: A >D4—>D5;100min 2— 具有奇数原子序数或原子质量的元素,如1H、13C、15N、17O、27A1、31P等原子在磁场中、适宜频率的无线电波幅射下会发生共振现象,称为核磁共振。(又写作NMR,nuclear maganetic resonanal)。如果是氢原子共振称为氢核磁共振(1H-NMR),如果是13C共振称为13C一核磁共振(13C-NMR)。所得的谱图常称为氢谱和碳谱。1H-NMR能给出分子中H和C的数目以及H的化学环境,故是表征有机化合物的重要工具,普遍被应用。这里主要介绍1H-NMR。 一、基本原理 1.原子核的自旋 质子与电子一样,是自旋的。有自旋量子数+1/2和-1/2 两个自旋态,其能量相等,处于 两个自旋态的几率相等。自旋时产生的自旋磁场的方向与自旋轴重合。在外磁场H 0作用下,两个自旋态能量是不再相等。能量低的是自旋磁场与外磁场同向平行,能量高的是自旋磁场与外磁场逆相平行。两种自旋态的能量差△E随着外磁场强度增加而变大。 2.核磁共振的条件 在外磁场中,质子受到电磁波(无线电波)幅射,只要电磁波的频率能满足两个相邻自旋态能级间的能量差△E,质子就由低自旋态迁跃到高自旋态,发生核磁共振。质子共振需要的电磁波的频率与外磁场强度成正比。

实现共振有两种方法: ν,为扫频。 ①固定外磁场强度H 0不变,改变电磁波频率 ②固定电磁波频率ν不变,改变磁场强度H 0,称为扫场。 两种方式的共振仪得到的谱图相同,实验室多数采用后一种,如60MHz,100MHz,400MHz 就是指电磁波频率。 3.核磁共振仪的构造及操作 核磁共振仪由可变磁场,电磁波发生器,电磁波接收器,样品管等部分组成,如下面图: 样品放在两块大电磁铁中间,用固定的无线电波照射,在扫描线圈中通直流电,产生微小的磁场,使总的外磁场逐渐增加。当磁场达到H 1时,试样的一种质子发生共振。信号经放 大记录,并绘制出核磁共振谱图,如上右图。 二、1H-NMR的化学位移 分子中的H与质子不同,由于化学环境(周围电子)不同,引起核磁共振信号位置的变化称为化学位移,用σ 表示,也曾用τ表示。 1.屏蔽效应

气相色谱仪使用方法及实验操作步骤

液相色谱仪、气相色谱仪、原子吸收分光光度计、红外光谱仪、核磁共振、原子发射光谱等分析仪器 气相色谱仪使用方法及实验操作步骤: A、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 B、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 C、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 D、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa 和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 E、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 F、关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。 高效液相色谱 我国药典收载高效液相色谱法项目和数量比较表: 鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。 三、色谱法分类 (3) 四、色谱分离原理 (3) II.基本概念和理论 (5) 一、基本概念和术语 (5) 二、塔板理论 (8)

Bruker布鲁克核磁共振仪器上机操作规程完整

核磁上机操作设置导向 一、打开气源,调节到0.5 Pa 的输出压力。常温下可以用压缩空气,变温 实验室要使用高纯氮。 二、依次按下BSMS盒子上的 里面的样品弹出,换上要做的样品。 三、按下BSMS盒子上的 后(“down”显示绿色)点选主菜单Spectrometer Data Acquisition Guide 打开实验设置向导。 1、新建文件:点击New Experiment;或输入命令“new”, 得到如下图:

【NAME】:文件名; 【EXPNO】:试验号(一般1H—11;13C—21;其他杂核--31);【PROCNO】:处理号; 【USER】:老师名; 【Solvent】:选择要进行试验的样品所用的氘代试剂; 【Experiment】选择所需做核磁谱的类型(建议打开已知的文件夹,在此基础上新建,此时新建文件的实验设置参数与已知文件夹相同)。 2、查看通道:点击Frequency Routing ;或输入命令“edasp”,确认选择 实验核种及连线。注意:只有19F 事可能需要改动连线,其他只需要看,而不需要改动。 3、锁场:点击Lock,选择需要锁场的氘代试剂;或者直接输入“lock_氘 代试剂简称(如lock h2o)”。 4、查看温度:只有在变温实验时才需要用到。 5、调谐:点击Probe Match;或者输入“atma”(自动调谐),或者“atmm” (手动调谐)。 6、Sample Rotation:依需求决定样品,是否需要旋转及转速设置。一般液 体转速为20Hz ,现在大多数样品不提倡旋转。 7、匀场:点击shim图标或者输入shim命令,得到如下图:

磁共振谱仪

永磁磁共振系统讲座 第三讲 磁共振谱仪 邹润垒包尚联 邹润垒先生,MRI系统工程师;包尚联先生,教授、博士生导师, 北京大学医学物理和工程北京市重点实验室主任,北京大学肿瘤物 理诊疗技术研究中心主任。 一前言 从第一讲中我们得知,MRI是继CT以后,医学放射领域又一次具有革命性的科学成果,它为医生和基础研究人员提供了又一个能够测量人体解剖、生理和心理信息的有效工具。MRI主要由磁体、谱仪、计算机三大部分组成。而MRI谱仪技术则是这一系统的另一关键部件。MRI谱仪包括数字射频发射部分和数字射频接收部分。其特点是接收到的射频信号经放大后直接进行高分辨高速A/D数字化转换。其它处理如正交混频(正、余弦)、检波、滤波等都在高速信号处理器控制下由硬件用数字处理完成。数字化信号在谱仪中处理信号的多少是衡量谱仪的一个重要指标,因为数字信号容易控制,又能减少干扰。由于MRI要求有较高的数字分辨率和实时采集速度,其所用的内存数据都在16比特以上。为了保证速度,所有的专门运算都由硬件完成。 二发射链和接收链 谱仪在MRI系统中的作用是控制射频(RF)发射器和接收器的发射和接收RF信号,执行脉冲序列,产生MRI信号并采集图像数据。谱仪可分为发射链和接收链。 发射链的作用是提供足够强度的共振激发B1场,向人体发送具有特定RF脉冲波形、脉宽、功率和重复周期的脉冲,这个脉冲波通过RF线圈,把能量耦合到样品的自旋核中去。发射链包括频率合成器、正交调制器、衰减器、RF功放推动机、发射机、RF开关,最终到RF发射线圈。具体说频率合成器是一个高度稳定的频率可调的标准信号源,可提供激发某层面的中心频率为ω0的RF信号。调制器可输出一定的带宽对应一定层厚的RF信号(ω0±Δω)。RF信号中心频率ω0和带宽Δω满足要求后,逐级放大,最后经末级功放(发射机)放大到足够功率后,匹配耦合馈入RF发射线圈,产生B1场脉冲(90o或180o或任意θ角)。 接收链的作用是接收MR信号,并把它数字化后送入计算机处理。接收链包括RF接收线圈、RF 低噪声前置放大器、RF放大器、衰减器、正交解调器(也叫正交相敏检波器),低通滤波器、音频放大器和模数转换器等。具体说,RF场B1激发之后,磁化强度M⊥在RF线圈中感应出MR信号调制的RF回波信号(其频率为拉莫频率ω0),这信号并载有空间编码信息。由于接收到的信号只有微伏量级,要把RF线圈的MR信号数字化,首先要对信号进行放大。在信号接收链中,首先使用的低噪声前置放

核磁共振机操作规程

高平市武承谋骨伤专科医院永安分院 核磁共振机操作规程 1.定义 核磁共振成像(MRI)是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。碰共振成像是利用原子核在磁场内共振所产生的信号经重建成像的一种成像技术,它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。 2.工作原理 被检患者躺在位于磁场均匀区域的患者床上,并放置好接收线圈。操作者通过计算机控制台向光纤谱仪发出产生序列脉冲的指令,光纤谱仪产生射频脉冲信号和梯度脉冲信号后分别被射频功率放大器和梯度功率放大器放大。经梯度功率放大器送往梯度线圈的梯度信号在X、Y、Z三个坐标上产生梯度场,这个梯度场叠加在磁体产生的基场上,从而实现对成像空间的三维空间编码。而经射频功率放大器送往射频发射线圈的射频脉冲信号施加到被检患者的被检部位,被检部位的被选层的质子被激励使其产生共振。施加射频脉冲的时间很短,当突然停止施加射频脉冲,被激励的质子开始释放能量(驰豫),接收线圈可以检测到磁共振信号并送往前置放大器,进行信号放大,然后光纤谱仪进行数据的采集并将采集的数据送往计算机控制台的主机进行原始数据处理,图像的重构及显示,最后将磁共振图像送往系统的输出设备(激光照相机、打印机),进行硬拷贝输出。 3.适用范围 该产品采用非侵入性而且无电离辐射的核磁共振方法获取患者的生理信息和临床信息供医生使用。该系统用于生成人体不同部位横断面、冠状面、矢状面、斜横断面影像,显示四肢(乳房组织、腋窝和乳房附近的胸壁)的内部结构。 MRI由不同的扫描序列可形成各种图像,如T1加权像、T2加权像、质子密度像等,还有水成像、水抑制成像、脂肪抑制、弥散成像、波谱成像、功能成像等,CT只能辨别有密度差的组织,对软组织分辨力不高,而MRI对软组织有较

核磁共振波谱仪

附件: 核磁共振波谱仪简介及样品要求 一、应用领域: 由于核磁共振技术具有深入物质内部,而不破坏样品的特点,已成为人们探索物质微观世界奥秘所必不可少的重要手段,广泛应用于有机化学、物理学、医学、分子生物学、石油化工、食品等领域。 根据本校所购买仪器的硬件参数可进行以下应用: 1、有机化合物分子结构的测定和有机反应历程研究。 2、互变异构现象和动态过程的研究 3、定量分析和分子量测定 二、核磁共振波谱仪硬件参数: 型号:A V ANCE III HD 400 MHz 产地及厂家:瑞士布鲁克 液体探头: 灵敏度: 1H灵敏度≥480:1(0.1% EB) 13C灵敏度≥200:1(ASTM) 31P灵敏度≥150:1(TPP) 15N灵敏度≥25:1 (90% formamide) 19F灵敏度≥500:1 (TFT)) 脉冲宽度: 1H pulse width ≤10 μs (0.1% EB sample) 19F pulse width ≤18 μs (TFT sample) 13C pulse width ≤10 μs (ASTM sample) 31P pulse width ≤8 μs (TPP sample) 15N pulse width ≤21 μs (90% formamide sample) 线形: 13C spinning lineshape ≤ 0.2/2/4Hz (50%/0.55%/0.11%, ASTM) 1H non-spinning lineshape ≤ 0.8/7/14Hz (50%/0.55%/0.11%, 1% CHCl ) 3固体探头:

核磁共振谱光谱

第八章核磁共振谱光谱 学习要求: 1、学会如何借助光学技术来分析化合物的结构。 2、掌握谱图分析,了解各种质子化学位移的位置。 3、知道影响化学位移的因素。 由上面的讨论可知,对于一个未知物,红外光谱可以迅速地鉴定出未知物分子中具有的哪些官能团,能指出是什么类型的化合物,但它难以确定未知物的精细结构。自20世纪50年代中期,核磁共振技术开始应用于有机化学,对有机化学产生了巨大的影响,已发展成为研究有机化学最重要的工具之一,成为有机化合物结构测定不可缺少的手段。 8.1基本原理 (1)核磁共振现象 核磁共振是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。核的自旋量子数与原子的质量数和原子序数之间存在着一定的关系:当原子的质量数和原子序数两者之间是奇数或两者均为奇数时,I≠0,该原子核就有自旋现象,产生自旋磁矩。如等。当原子的质量数和原子序数均为偶数时,I=0,原子核不能产生自旋运动,也没有磁矩,如等。 当I≠0的原子核置于一均匀的外磁场(H O)中时,核的自旋具有(2I+1)个不同的取向。对于氢原子核(I=1/2),其自旋产生的磁矩在外磁场中可有两种取向:一种是与外磁场方向相同,称为顺磁取向。该取向的磁量子数m=+1/2,或用α表示。另一种是与外磁场方向相反,称为反磁取向。该取向的磁量子数m=-1/2,或用β表示。 反磁取向的能量较顺磁取向的能量高,这两种取向的能量差⊿E与外加磁场的强度成正比。 ⊿E= 式中h为普朗克常量,γ为核常数,称为核磁比。对于氢原子,γ=26750。以上关系如图9-28所示。不过即使在很强的外加磁场中,⊿E数值也很小。对于氢原子核,当 H0=14092G(高斯,1G=10-4T)时,⊿E仅为2.5×10-5kJ/mol,当H0=23468G时,⊿E约为4×10-5kJ/mol,相当于电磁波谱中射频区的能量。 若外界提供电磁波,其频率适当,能量恰好等于核的两个自旋能级之差,hγ=⊿E则此原子核就可以从低能级跃迁到高能级,发生核磁共振吸收。核磁共振(Nuclear Magnetic Resonance)谱就是描述在不同电磁频率下的核磁共振吸收情况。 由上面的公式可得:bfsdjbchvbhsd 从上式可看出,一个特定的核(γ=常数),只有一种共振频率能使核从低能级跃迁至高能级,发生核磁共振。上式又叫共振条件。例如1H,当H0=1.0×104G时,γ=100MHz。而当H0=14092G时,13C和19F产生核磁共振所需要的频率分别为24.29和15.08MHz。 有机化学中研究得最多,应用得最广泛的是氢原子核(即质子1H)的核磁共振谱,又叫质子磁共振谱(Proton Magnetic Resonance),简写为PMR或1HNMR。近年来13C的核磁共振谱(13CNMR)有较大的发展,限于篇幅,这里只介绍核磁共振氢谱(1HNMR)。 (2)核磁共振仪简介: 图9-29为核磁共振仪示意图。其核心部件是一个强度很大的磁铁,样品管放在磁铁两极之间,样品管周围为射频线圈。其轴垂直于磁场方向,输入线圈的轴垂直输出线圈的轴。因而三者相互垂直,互不干扰。实现核磁共振的方法有两种:一是固定磁场H0,改变频率γ,这种方法叫扫频;另一是固定频率γ改变磁场H0,这种方法叫扫场。一般的核磁共振仪中多用扫场的方法。当磁场Ho和频率满足共振条件时,样品中的质子便发生能级跃迁,接收器就会收到信号,有记录仪记录下来。实验室中常用的核磁共振仪有60MHz,90MHz,100MHz,220MHz,甚至可到400MHz。 (3)化学位移和屏蔽效应:

微波,核磁共振法 水分,固形物,脂肪 快速测定仪 AOAC标准操作规程范文

水分和脂肪测定的标准方法:PVM1:2004(乳品)微波、核磁共振技术快速水分/固形物、脂肪测定仪 分析法 PVM 1:2004 论证人: GARY CARTWRIGHT 美国北卡罗来纳州立大学,食品科学学院,地址:7624/4,1 Schaub Hall, Ra leigh, NC 27695-7624联系电话:919-513-2488 研究人员:BOBBIE H. MCMANUS,1 TIMOTHY P. LEFFLER,and CINDY R. MOSER1 专利所属单位: CEM 公司 地址:3100 Smith Farm Rd, Matthews, NC 28105,联系电话: 704-821-7015 研发实验室:CEM Corp., 3100 Smith Farm Rd, Matthews, NC 28112 论证实验室:North Carolina State Uni versity, De partment of Food Science, Raleigh, NC 27695 方法摘要: 本方法利用微波干燥法和核磁共振分析法(NMR)检测乳制品水分/固形物与脂肪含量。方法利用微波干燥法测定乳制品水分/固形物含量,干燥后样品用于核磁共振法检测脂肪含量。 研发和论证实验室同时利用CEM SMART水分测定系统和SMART Trac脂肪测定系统分析乳制品水分,脂肪含量。样品包含牛奶,奶油,冰淇淋,酸奶油,酸奶,软奶酪,

马苏里拉奶酪,瑞士奶酪,格瓦拉奶酪。以上都是食谱中常见奶制品类食材。方法检测结果与AOAC中已经存在的水分固形物,脂肪含量测定方法的结果做对比。 1结果汇总: 1.1论证范围 本说明针对乳制品——牛奶,奶油,冰淇淋,酸奶,奶酪的水分/固形物、脂肪含量进行检测。 1.2数据来源 乳制品质量控制协会(DQCI服务中心)用AOAC Method 990.20中牛奶和奶油固形物分析法测试结果 DQCI服务公司提供乳制品粗脂肪分析数据,根据AOAC Method 989.05中关于牛奶奶油的方法测定。 CEM公司用AOAC Method 905.02方法测定酸奶、酸奶油样本,每个样本重复5次。用AOAC Method933.05方法测定奶酪样本。用AOAC Method952.06方法测定冰淇淋样本每个样本5次。CEM用AOAC Method 926.08细则中AOAC Method 990.20条款中奶酪样本水分含量分析法检测酸奶样本固形物所得数据。此外,用AOAC Method 941.08规定来检测冰淇淋固形物。标准方法每个酸奶,奶酪,冰淇淋样本重复测定5次。 研发实验室和论证实验室分别测试11种产品,每个样本都要用SMART (CEM生产的微波干燥系统)和SMART Trac(CEM生产的NMR系统)重复测定水分/固形物和脂肪含量各10次。 2 安全提示

400M核磁共振谱仪

上海工程技术大学教育研究 3/2007 400M 核磁共振谱仪 Nuclear Magnetic Resonance Spectrometer 国别:瑞 士 设备价格:21.6万美元联系人:任新峰 购置日期:2006年6月设备所在地:实训楼3423联系电话: 67791221 设备简介: 核磁共振是指原子核在静磁场中的作用下对固定频率的射频电磁波进行吸收的现象。核磁共振广泛应用于化学、生物、医学等领域。核磁共振的方法与技术作为分析物质的手段,由于其可深入物质内部而不破坏样品,并具有迅速、准确、分辨率高等优点而得以迅速发展和广泛应用,已经从物理学渗透到化学、生物、地质、医疗以及材料等学科,在科研和生产中发挥了巨大作用。核磁共振(Nuclear M agnetic Resonance,NMR)技术在过去的六、七十年的过程中得到了非常快速 的发展。特别是在有机化学、生物化学等领域是一个非常有力的工具。技术参数: 电源:220V(10%,50Hz)操作室温度:15~30 操作持续时间:连续操作相对湿度:<85% 控温设置范围:-150~350 控温精度:0.1 / 1H 灵敏度: 220!1(0.1%EB)13C 灵敏度: 160!1(ASTM)15N 灵敏度: 20!1(90%form amide) ? 61?

31P灵敏度:135!1(T PP) 变温范围:-150~150 Z-梯度场强度:50g/cm 分辨率:#0.45Hz(3%CHCL) 应用范围: 核磁共振波谱仪是化学、化工、制药、食品、生命科学、生物工程等领域中进行化合物的结构测定所不可缺少的大型分析仪器,用于化学化工学科教学、科研和研究生培养工作。核磁共振波谱仪是四大光谱分析仪器之一,也是一种权威的结构鉴定手段的首选仪器。 (上接第60页) 应用范围: 高效液相色谱仪是化学、化工、制药、食品、生命科学、生物工程等领域中进行化合物的定性和定量分析所不可缺少的分析仪器。主要可用于精细化工产品成分的定性和定量分析,精细有机合成、催化及反应工程、高分子材料化学、纳米材料的物理与化学特性、功能与生物材料等的研究,是用于化学化工学科教学、科研和研究生培养工作的重要测试仪器之一。 ? 62?

超导核磁共振谱仪的原理及应用指导书

超导核磁共振谱仪的原理及应用实验指导书 贵州大学精细化工研究开发中心(绿色农药与生物工程重点实验室) 1、实验类型及学时数 a)实验类型:设计性实验(研究性实验) b)学时数:10学时 2、实验目的和意义 核磁共振是1946年由美国斯坦福大学布洛赫(F.Block)和哈佛大学珀赛尔(,两人因此获得1952年诺贝尔物理学奖。50多年来,核磁共振已形成为一门有完整理论的新学科。 在各种各样的化学分析仪器中,核磁共振谱仪被公认为是一种非常重要的研究和测试工具,它的许多功能是其它手段无法代替的。 核磁共振谱仪可以给出小到原子核在分子中的精确位置及其周边环境的微小变化,大到整个人体的断层成像等具有丰富内涵的信息。被广泛用于工业、农业、化学、生物、医药、地球科学和环境科学等领域。 通过学习核磁共振波谱仪的构成、使用方法及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识);培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 3、实验原理 (1)基本原理 自旋不为零的粒子,如电子和质子,具有自旋磁矩。如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为 ΔE = γhB 0 (1) 其中:γ为旋磁比,h为约化普朗可常数,B0为稳恒外磁场。 如果此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

第三章核磁共振谱

第三章核磁共振谱 一、选择题 1.下列哪一组原子核的核磁矩为零;不产生核磁共振信号的是() A 2H、14N B 19F、12 C C 1H、13C D 16O、12C 2.在外磁场中,其核磁矩只有两个取向的核是( ) A 2H 19F 13C B 1H、2H、13 C C 13C、19F、31P D 19F 31P 12C 3.在外磁场中,质子发生核磁共振的条件为( ) A 照射频率等于核进动频率 B 照射电磁波的能量等于质子进动的能量 C 照射电磁波的能量等于质子进动的两个相邻能级差 D 照射电磁波的能量等于使核吸收饱和所需的能量 4. 不影响化学位移的因素是() A 核磁共振仪的磁场强度 B 核外电子云密度 C 磁的各向异性效应D内标试剂 5.自旋量子数I=1/2的原子核在磁场中,相对于外磁场,有多少种不同的能量状态?() A 1 B 2 C 4 D 0 6. 下列五个结构单元中的质子δ最大的是() A Ar-H B Ar-CH3 C HC-C=O D RCOOCH3 7.下面四个化合物中在核磁共振谱中出现单峰的是() A CH3CH2Cl B CH3CH2OH C CH3CH3 D CH3CH(CH3)2 8.下面四个化合物质子的化学位移最小的者是() A CH3F B CH4 C CH3Cl D CH3Br 9. 使用60MHz 核磁共振仪,化合物中某质子和四甲基硅烷之间的频率差为120Hz,其化学位移值δ为() A 120 B 1.20 C 0.20 D 2.0 10. 某化合物中两种相互偶合质子,在100兆周的仪器上测出其化学位移δ差为 1.1,偶合常数(J)为5.2Hz,在200兆周仪器测出的结果为( )。 A δ差为2.2,J为10.4Hz B 共振频率差为220Hz,J为5.2Hz C δ差为 1.1,J为0.4Hz D 共振频率差为110Hz,J为5.2Hz 11. 常见的碳谱是一条条单峰;这是因为 ( ) A 个相邻的碳同为13C的几率很少,它们不会偶合,所以都是单峰 B 除A的原因外,碳氢之间会相互偶合,使图谱相当复杂,常见的碳谱是全去偶得到的谱图 C 除A的原因外,碳氢之间是不同类型的原子核不会偶合,所以都是单峰 D 除A原因外,碳氢之间偶合常数很小,无法观察,所以一般碳谱都为单峰

核磁共振谱书

第十八章 核磁共振波谱分析 核磁共振即Nuclear magnetic Resonance Spectroscopy, 简称 NMR 。核磁共振波谱自1946年问世以来,经过50多年的连续波核磁共振 (CW-NMR )、 傅立叶变换核磁共振(FT-NMR )及近年发展的二维(2D-NMR )、三维(3D-NMR )乃至四维核磁共振(4D-NMR ),差谱技术、极化转移、波谱编辑技术及固体核磁共振技术。核磁共振谱仪由原来的永磁、电磁铁的质子(1H )共振频率为50MHz 、60 MHz 、80 MHz 、90 MHz 等核磁共振谱仪,发展到目前的300 MHz 、 500 MHz 、800 MHz 乃至900 MHz 及以上的超导核磁共振谱仪。核磁共振检测由原来的质子(1H )发展到现在的 13 C 、14/15N 、 19F 、31P 等多种核,从简单 的小分子化合物目前的肽、蛋白质等生物大分子。今天核磁共振已成为鉴定有机化合物结构及研究化学动力学等及为重要的方法。在有机化学、生物化学、物理化学、无机化学等领域及多种工业部门得到广泛的应用。 18.1基本原理 核磁共振的研究对象是具有磁矩的原子核。原子核是带正电的粒子,其自旋运动会产生磁矩。原子核的自旋运动与自旋量子数I 有关。 I =0的原子核没有自旋运动,不会产生磁矩,而 I ≠0的原子核有自旋运动,会产生磁矩。 原子核可按I 的数值分为以下三类: a) 中子数、质子数均为偶数, 则I =0,如12C 、16O 、32S 等。 b) 中子数、质子数其一为偶数,另一为奇数,则I 为半整数,如: 1 2I =;1H 、13C 、15N 、19F 、31P 、77Se 、113Cd 、119Sn 、195Pt 、199Hg 等; 3 2I =;7Li 、9Be 、11B 、23Na 、33S 、35/37Cl 、39K 、63/65Cu 、79/81Br 等; 5 2I =;17O 、25Mg 、55Mn 、67Zn 等; 7I=2、9 2等。 c)中子数、质子数均为奇数,则I 为整数,如()2H D 、6Li 、14N 等I =1;58Co , I =2;10B ,I =3。 由上述可知,只有b)、c)类原子核具有核磁共振现象。 氢原子(1H )原子核的1 2I =,所以磁量子数m 有两个值:12m =+、12m =-。 也就是说,1 H 在外加磁场0B 中,其核有两个自旋取向,12m =+时,自旋取 向与外加磁场方向一致,能量较低;1 2 m =-时,自旋取向与外加磁场方向 相反,能量较高。核的自旋角动量P 在z 轴上的投影z P 只能取一些不连续的 数值. z P m = 式中为普郎克常数, 2h π =;m=I ;I -1,…,-I +1,-I 。与此相应,原子核 磁矩在z 轴上的投影:

核磁共振谱习题答案

核磁共振谱习题 一.选择题 1.以下五种核,能用以做核磁共振实验的有(ACE ) A:19F9B:12C6C:13C6 D:16O8E:1H1 2.在100MHz仪器中,某质子的化学位移δ=1ppm,其共振频率与TMS相差(A )A :100Hz B:100MHz C:1Hz D:50Hz E:200Hz 3.在60MHz仪器中,某质子与TMS的共振频率相差120Hz则质子的化学位移为(E )A:1.2ppm B:12ppm C:6ppm D:10ppm E:2ppm 4.测试NMR时,常用的参数比物质是TMS,它具有哪些特点(ABCDE ) A:结构对称出现单峰B:硅的电负性比碳小C:TMS质子信号比一般有机物质子高场D:沸点低,且容易溶于有机溶剂中E:为惰性物质 5.在磁场中质子周围电子云起屏蔽作用,以下说法正确的是(ACDE ) A:质子周围电子云密度越大,则局部屏蔽作用越强 B:质子邻近原子电负性越大,则局部屏蔽作用越强 C:屏蔽越大,共振磁场越高D:屏蔽越大,共振频率越高 E:屏蔽越大,化学位移δ越小 6.对CH3CH2OCH2CH3分子的核磁共振谱,以下几种预测正确的是(ACD ) A:CH2质子周围电子云密度低于CH3质子 B:谱线将出现四个信号C:谱上将出现两个信号 D: 7.CH3CH2Cl的NMR谱,以下几种预测正确的是(D) A:CH2中质子比CH3中质子共振磁场高B:CH2中质子比CH3中质子共振频率高 C:CH2中质子比CH3中质子屏蔽常数大D:CH2中质子比CH3中质子外围电子云密度小E:CH2中质子比CH3中质子化学位移δ值小 8.下面五个化合物中,标有横线的质子的δ最小的是(A) A:CH4B:CH3F C:CH3Cl D:CH3Br E:CH 3l 9.下面五个化合物中,标有横线的质子的共振磁场H0最小者是(A) A:RCH2OH B:RCH2CH2OH C:RCH2Cl D:CHBr E:ArCH2CH3 10.下面五个结构单元中,标有横线质子的δ值最大的是(E) A:CH3-C B:CH3-N C:CH3-O D:CH3F E:CH2F2 11.预测化合物的质子化学位移,以下说法正确的是(C) A:苯环上邻近质子离C=O近,共振在高磁场 B:苯环上邻近质子离C=O近,屏蔽常数大 C:苯环上邻近质子离C=O近,化学位移δ大 D:苯环上邻近质子外围电子云密度大 12.氢键对化学位移的影响,以下几种说法正确的是(BCE) A 氢键起屏蔽作用B:氢键起去屏蔽作用C:氢键使外围电子云密度下降

核磁共振碳谱详解

核磁共振碳谱(13C-NMR) Produced by Jiwu Wen

?核磁共振碳谱的特点: 1. 化学位移范围宽。 碳谱(13C-NMR)的化学位移δC通常在0~220 ppm之间(对于碳正可达330 ppm)。 离子δ C 比较:1H-NMR的化学位移δ通常在0~10 ppm之间。Example:

2. 13C-NMR给出不与氢相连的碳的共振吸收峰。 核磁共振碳谱(13C-NMR)可以给出季碳,羰基碳,氰基碳,以及不含氢原子的烯碳和炔碳的特征吸收峰。 3. 13C-NMR的偶合情况复杂,偶合常数大。 核磁共振碳谱(13C-NMR)中偶合情况比较复杂,除了1H-1H偶合,还有1H-13C以及1H,13C与其它自旋核之间的偶合。1H-13C的偶合常数通常在125-250 Hz。因此在谱图测定过程中,通常采用一些去偶技术。 4. 13C-NMR的灵敏度低。

?核磁共振碳谱的去偶技术 1. 质子宽带去偶(也称为质子噪声去偶)。质子宽带去偶是一种双共振去偶技术,实验方法是:用一相当宽的频率(包括样品中所有氢核的共振频率)照射样品,消除13C-1H 之间的偶合,使每种碳原子只给出一条谱线。 2. 偏共振去偶(也称不完全去偶)。 这种去偶技术的实验方法是:采用一个频率范围很小、比质子宽带去偶功率弱很多的射频场(B 2),其频率略高于待测样品中所有氢核的共振吸收频率,使1H 与13C 之间在一定程度上去偶,不仅消除2J ~4J 的弱偶合,而且使1J 减小到J r (表观偶合常数)。J r 和1J 之间的关系如下: r 12J J B /2?ν λπ =

600MHz核磁共振波谱仪带参数为必须满足参数

600MHz核磁共振波谱仪(带*参数为必须满足参数) *1.600M超导磁体和防震装置, 液氦保持时间:≥150天;液氦消耗量:≤16ml/h *2. 射频发射系统, 射频通道数:3个及以上,各通道具有的功能:观察、脉冲及去偶。第二通道X多核功放最大输出功率:≥500W。氘数字锁场、梯度场系统及温控单元包括自动/手动匀场系统,包括精确的氘梯度自动匀场。 *3. 梯度场最大电流:≥10安培;高精度变温控制单元,控温范围:-120o C—+150 o C,精度:≤±0.1 o C,液氮致冷低温附件,低温极限可达-120 o C。具有磁共振热电偶自动控温功能。 *4. 探头:1H/19F-(15N-109Ag)5mm, 1H-{BB} 5mm Z向梯度的多核宽频正向超低温观察探头, 检测核:1H,19F及共振频率在15N-31P之间的核; 1H灵敏度≥2700:1(0.1%EB),13C灵敏度≥1600:1(10%EB),31P灵敏度≥1000:1(TPP),15N灵敏度≥170:1 (90% Formamide), 19F灵敏度≥2500:1 (TFT),90度脉冲宽度1H≤12us, 19F≤15us, 13C≤10us,31P≤12us,15N≤15us,探头变温范围:0 o C—+80 o C; 梯度强度≥60高斯/CM。探头全自动调谐和匹配附件:配备能调所有观测核的全自动调谐和匹配附件。1H/19F-(15N-109Ag)5mm Z梯度场多核二合一探头。检测核:1H和19F,以及共振频率在15N-109Ag之间的所有核.灵敏度:1H≥900:1(0.1%EB),13C≥330:1(ASTM),31P≥250:1(TPP),15N≥45:1( 90% Formamide in DMSO-D6),19F (1H去耦)≥950:1(TFT);90°脉宽:1H≤10μs(0.1%EB),13C≤12μs(ASTM),31P≤12μs (0.0485% TPP),15N≤18μs(90% Formamide),19F ≤12μs(TFT);探头变温范围:-120 o C—+150 o C, Z梯度场强度≥50GS/CM *5. 探头具备观测1H去偶后的19F图谱和1H&19F相关谱图功能 *计算机工作站:配置应以安装当月的主流配置为准,并保证该仪器的所有软件都能在计算机上正常安装运行。CPU主频: intel 四核3.6GHz处理器, 内存:≥4GB, 硬盘:≥1000G B, 运行平台:Windows 操作系统, 高速激光打印机.进口无油无水空压机1台, 进口涡旋空气压缩机1台,带干燥器和过滤器和储气罐。6KV A/1小时UPS电源,高温陶瓷转子5个。 *NMR软件: 1D,2D,3D NMR数据采集,控制及处理软件; 一维1H谱辅助分析软件一套; 自动测试谱仪性能:包括自动运行标准样品的梯度匀场、校准脉冲宽度、测试灵敏度; 60位自动进样器1套,带相同数量转子 技术服务:仪器安装完成后中标厂家的安装调试人员应在现场就仪器的使用及维护对用户进行现场培训。免培训费,差旅食宿自理。保修3年(自设备验收合格之日起计算)

核磁共振碳谱总结

第4章核磁共振碳谱 在C的同位素中,只有13C有自旋现象,存在核磁共振吸收,其自旋量子数I=1/2。13C NMR 的原理与1H NMR一样。由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。加之H核的偶合干扰,使得13C NMR信号变得很复杂,难以测得有实用价值的图谱。知道二十世纪七十年代后期,质子去偶技术和傅里叶变换技术的发展和应用,才使13C NMR的测定变的简单易得。 4.1 核磁共振碳谱的特点 1. 灵敏度低 由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。 2. 分辨能力高 氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。这样,复杂和分子量高达400的有机物分子结构的精细变化都可以从碳谱上分辨。同时13C 自身的自旋-自旋裂分实际上不存在,虽然质子和碳核之间有偶合,但可以用质子去偶技术进行控制。 3. 能给出不连氢碳的吸收峰 有机化合物分子骨架主要由 C 原子构成,因而13C NMR 能更全面地提供有关分子骨架的信息。而1HNMR 中不能给出吸收信号的 C=O、C=C、C≡C、C≡N以及季碳等基团,在13CNMR 中都可以直接给出特征吸收峰。13CNMR 可直接观测不带氢的含碳官能团,如羰基、氰基等。 4. 不能用积分高度来计算碳的数目 13C NMR的常规谱是质子全去偶谱。对大多数碳,尤其是质子化碳,他们的信号强度都会由去偶的同时产生的NOE效应而大大增强。因此不到呢国家的碳原子的数目不能通过常规共振谱的谱线强度来确定。 5. 弛豫时间T1可作为化合物结构鉴定的波谱参数 在化合物中,处于不同环境的13C核,他们的弛豫时间数值相差较大,可以达到2~3个数量级,通过T1可以致人结构归属,窥测体系的运动情况等。 4.2 核磁共振碳谱的测定方法 4.2.1 脉冲傅里叶变换法 同核磁共振氢谱。 4.2.2 核磁共振碳谱中的几种去偶技术 13C核的天然丰度很低,分子中相邻的两个 C 原子均为13C 核的几率极低,因此可忽略13C 核之间的偶合。 13C-1H 之间偶合常数很大,高达 120~320Hz,而13C 被偶合氢按 n+1 规律分裂为多重峰,使谱图不易解析,为提高灵敏度和简化谱图,须去掉1H 对13C 的偶合,方法有如下几种。 1. 质子带宽去偶法 又称噪声去偶,是最重要的去偶技术。在观察13C的同时,用一覆盖所有质子共振频率的射频照射质子,消除全部氢核对13C 的偶合,使每一个磁等价的13C 核成为一个信号,13CNMR呈现一系列单峰,同时由于 NOE 效应使13C 峰大为增强,信噪比提高。

第三章 核磁共振碳谱

第三章核磁共振碳谱 核磁共振氢谱是通过确定有机物分子中氢原子的位置,而间接推出结构的。事实上,所用有机物分子都是以碳为骨架构建的,如果能直接确定有机物分子中碳原子的位置,无疑是最好的办法。由于13C 核的天然丰度仅仅是1H的1/100,因而灵敏度很低。只有脉冲傅立叶核磁共振仪问世,碳谱才能用于常规测试。核磁共振碳谱测定技术近30年来迅速发展和普及。 图9.10 一甾类化合物核磁共振氢谱和碳谱 和核磁共振氢谱相比,核磁共振碳谱有许多优点:首先,氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。这样,复杂和分子量高达400的有机物分子结构的精细变化都可以从碳谱上分辨。如图9.10是一个结构较复杂的甾类分子的核磁共振谱,其氢谱各峰重叠,根本无法分辨(上图)。而碳碳谱则有24条清晰可见的谱线,非常容易分析(下图)。其次,碳谱直接反映有机物碳的结构信息,对常见的>C=O,>C=C=C<,-N=C=O和-N=C=S等有机物官能团可以直接进行解析。最后,利用核磁共振辅助技术,可以从碳谱上直接区分碳原子的级数(伯、仲、叔和季)。这样不仅可以知道有机物分子结构中碳的位置,而且还能确定该位置碳原子被取代的状况。当然,核磁共振碳谱也有许多缺点:主要是13C同位原子核在自然界中的丰度低,而且13C的磁极矩也只有1H的四分之一。这样,碳谱测定不仅需要高灵敏度的核磁共振仪器,而且所测的有机样品量也增加。另外,测定核磁共振碳谱的技术和费用也都高于氢谱。因此,往往是先测定有机物样品的氢谱,若难以得到准确的结构信息再测定碳谱,一个有机物同时测定了氢谱和碳谱一般就可以推断其结构。 核磁共振碳谱测定的基准物质和氢谱一样仍为四甲基硅烷(TMS),但此时基准原子是TMS分子中的13C,而不是1H。碳谱仍然需在溶液状态下测定,虽然溶剂中含有氢并不影响13C测定,但考虑到同一样品一般都要在测定碳谱前测定氢谱,所以仍然采用氘代试剂。

核磁共振仪原理

核磁共振波谱学简单介绍及其应用 学生姓名:蔡兴宇学号:20105052029 化学化工学院应用化学 指导老师:王海波职称:讲师 摘要:核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。核磁共振是一种探索、研究物质微观结构和性质的高新技术。目前,核磁共振已在物理、化学、材料科学、生命科学和医学等领域中得到了广泛应用。 关键词:核磁共振;量子力学;参数;能级分裂;电磁波 Abstract:nuclear magnetic resonance (NMR) spectroscopy is a branch of spectroscopy, and its resonant frequency in the radio frequency band, the corresponding transition is nuclear spin on the nuclear zeeman energy level transition. People usually mean by nuclear magnetic resonance (NMR) is the use of nuclear magnetic resonance phenomenon of molecular structure, the structure of human body internal information technology. Nuclear magnetic resonance (NMR) is a kind of exploration, research material microstructure and properties of high and new technology. At present, nuclear magnetic resonance (NMR) has been in physics, chemistry, materials science, life science and medicine has been widely applied in areas such as. Key words:nuclear magnetic resonance (NMR); Quantum mechanics; Parameters; Energy level splitting; The electromagnetic wave 引言 从19世纪40年代中期,美国哈佛大学珀塞尔和斯坦福大学布洛赫等人发现核磁共振现象以来,核磁共振技术飞速发展。目前,核磁共振已广泛地应用到物理、化学、生物特别是医学等各个领域。它是研究核结构和准确测量磁场的重要方法之一。化学家利用核磁共振技术解析分子结构即核磁共振的波谱分析。医学

相关主题
文本预览
相关文档 最新文档