当前位置:文档之家› 分子标记遗传图谱的构建方法---完整

分子标记遗传图谱的构建方法---完整

分子标记遗传图谱的构建方法---完整
分子标记遗传图谱的构建方法---完整

分子标记遗传图谱的构建

检测出的每个分子标记反映的都是相应染色体座位上的遗传多态性状态。为了有效地分析利用分子标记所提供的遗传信息,人们希望知道不同分子标记在染色体上的相对位置或排列情况,也就是要构建分子标记的遗传连锁图谱。利用DNA标记构建遗传连锁图谱在原理上与传统遗传图谱的构建是一样的。其基本步骤包括:选择适合作图的DNA标记;根据遗传材料之间的DNA多态性,选择用于建立作图群体的亲本组合;建立具有大量DNA标记处于分离状态的分离群体或衍生系;测定作图群体中不同个体或株系的标记基因型;对标记基因型数据进行连锁分析,构建标记连锁图。至今为止,已构建了许多植物的高密度分子标记连锁图。本章侧重介绍利用DNA标记构建分子遗传连锁图谱的原理与方法。

第一节作图群体的建立

要构建DNA标记连锁图谱,必须建立作图群体。建立作图群体需要考虑的重要因素包括亲本的选配、分离群体类型的选择及群体大小的确定等。

一、亲本的选配

亲本的选择直接影响到构建连锁图谱的难易程度及所建图谱的适用范围。一般应从四个方面对亲本进行选择,首先要考虑亲本间的DNA多态性。亲本之间的DNA多态性与其亲缘关系有着密切关系,这种亲缘关系可用地理的、形态的或同工酶多态性作为选择标准。一般而言,异交作物的多态性高,自交作物的多态性低。例如,玉米的多态性极好,一般自交系间配制的群体就可成为理想的RFLP作图群体;番茄的多态性较差,因而只能选用不同种间的后代构建作图群体;水稻的多态性居中,美国康乃尔大学S.D.Tanksley实验室1988年发表的RFLP连锁图谱是以籼稻和爪哇稻之间的杂交组合为基础构建的(McCouch et al. 1988)。在作物育种实践中,育种家常将野生种的优良性状转育到栽培种中,这种亲源关系较远的杂交转育,DNA多态性非常丰富。第二,选择亲本时应尽量选用纯度高的材料,并进一步通过自交进行纯化。第三,要考虑杂交后代的可育性。亲本间的差异过大,杂种染色体之间的配对和重组会受到抑制,导致连锁座位间的重组率偏低,并导致严重的偏分离现象,降低所建图谱的可信度和适用范围;严重的还会降低杂种后代的结实率,甚至导致不育,影响分离群体的构建。由于各种原因,仅用一对亲本的分离群体建立的遗传图谱往往不能完全满足基因组研究和各种育种目标的要求,应选用几个不同的亲本组合,分别进行连锁作图,

以达到相互弥补的目的。第四,选配亲本时还应对亲本及其F1杂种进行细胞学鉴定。若双亲间存在相互易位,或多倍体材料(如小麦)存在单体或部分染色体缺失等问题,那末其后代就不宜用来构建连锁图谱。

二、分离群体类型的选择

根据其遗传稳定性可将分离群体分成两大类:一类称为暂时性分离群体,如F2、F3、F4、BC、三交群体等,这类群体中分离单位是个体,一经自交或近交其遗传组成就会发生变化,无法永久使用。另一类称为永久性分离群体,如RI、DH群体等,这类群体中分离单位是株系,不同株系之间存在基因型的差异,而株系内个体间的基因型是相同且纯合的,是自交不分离的。这类群体可通过自交或近交繁殖后代,而不会改变群体的遗传组成,可以永久使用。

构建DNA连锁图谱可以选用不同类型的分离群体,它们各有其优缺点,因此应结合具体情况选用。

(一)F2代群体

F2群体是常用的作图群体,迄今大多数植物的DNA标记连锁图谱都是用F2群体构建的。不论是自花授粉植物,还是异花授粉植物,建立F2群体都是容易的,这是使用F2群体进行遗传作图的最大优点。但F2群体的一个不足之处是存在杂合基因型。对于显性标记,将无法识别显性纯合基因型和杂合基因型。由于这种基因型信息简并现象的存在,会降低作图的精度。而为了提高精度,减小误差,则必须使用较大的群体,从而会增加DNA标记分析的费用。

F2群体的另一个缺点是不易长期保存,有性繁殖一代后,群体的遗传结构就会发生变化。为了延长F2群体的使用时间,一种方法是对其进行无性繁殖,如进行组织培养扩繁。但这种方法不是所有的植物都适用,且耗资费工。另一种方法是使用F2单株的衍生系(F3株系或F4家系)。将衍生系内多个单株混合提取DNA,则能代表原F2单株的DNA组成。为了保证这种代表性的真实可靠,衍生系中选取的单株必须是随机的,且数量要足够多。这种方法对于那些繁殖系数较大的自花授粉植物(如水稻、小麦等)特别适用。

(二)BC1群体

BC1(回交一代)也是一种常用的作图群体。BC1群体中每一分离的基因座只有两种基因型,它直接反映了F1代配子的分离比例,因而BC1群体的作图效率最高,这是它优于F2群体的地方。BC1群体还有一个用途,就是可以用来检验雌、雄配子在基因间的重组率上是否存在差异。其方法是比较正、反回交群体中基因的重组率是否不同。例如正回交群体为(A ×B)×A,反回交群体为A×(A×B),则前者反映的是雌配子中的重组率,后者反映的是雄配子中的重组率。

虽然BC1群体是一种很好的作图群体,但它也与F2群体一样,存在不能长期保存的问题。可以用F2中使用的类似方法来延长BC1群体的使用时间。另外,对于一些人工杂交比较困难的植物,BC1群体也不太合适,因为一是难以建立较大的BC1群体,二是容易出现假杂种,造成作图的误差。

顺便一提,对于一些自交不亲和的材料,可以使用三交群体,即(A×B)×C。由于存在自交不亲和性,这样的三交群体中不存在假杂种现象。

(三)RI群体

RI(重组自交系)群体是杂种后代经过多代自交而产生的一种作图群体,通常从F2代开始,采用单粒传的方法来建立。由于自交的作用是使基因型纯合化,因此,RI群体中每个株系都是纯合的,因而RI群体是一种可以长期使用的永久性分离群体。理论上,建立一个无限大的RI群体,必须自交无穷多代才能达到完全纯合;建立一个有限大小的RI群体则只需自交有限代。然而,即使是建立一个通常使用的包含100~200个株系的RI群体,要达到完全纯合,所需的自交代数也是相当多的。据吴为人等(1997)从理论上推算,对一个拥有10条染色体的植物种,要建立完全纯合的RI作图群体,至少需要自交15代。可见,建立RI群体是非常费时的。在实际研究中,人们往往无法花费那么多时间来建立一个真正的RI群体,所以常常使用自交6~7代的“准”RI群体。从理论上推算,自交6代后,单个基因座的杂合率只有大约3%,已基本接近纯合。然而,由于构建连锁图谱时涉及到大量的DNA标记座位,因而虽然多数标记座位已达到或接近完全纯合,但仍有一些标记座位存在较高的杂合率,有的高达20%以上(李维明等2000)。尽管如此,实践证明,利用这样的“准”RI群体来构建分子标记连锁图谱仍是可行的。

在RI群体中,每一分离座位上只存在两种基因型,且比例为1:1。从这点看,RI群体的遗传结构与BC1相似,也反映了F1配子的分离比例。但值得注意的是,当分析RI群体中

两个标记座位之间的连锁关系时,算得的重组率比例并不等于F1配子中的重组率,这是因为在建立RI群体的过程中,两标记座位间每一代都会发生重组,所以RI群体中得到的重组率比例是多代重组频率的积累。不过,从理论上可以推算出,RI群体中的重组比例(R)与F1配子中的重组率(r)之间的关系为:R=2r/(1+2r)。因此,用RI群体仍然可以估计重组率,亦即RI群体仍然可以用于遗传作图。

RI群体的优点是可以长期使用,可以进行重复试验。因此它除了可用于构建分子标记连锁图外,特别适合于数量性状基因座(QTL)的定位研究。但是,考虑到构建RI群体要花费很长时间,如果仅是为了构建分子标记连锁图的话,选用RI群体是不明智的。另外,异花授粉植物由于存在自交衰退和不结实现象,建立RI群体也比较困难。

(四)DH群体

高等植物的单倍体(Haploid)是含有配子染色体数的个体。单倍体经过染色体加倍形成的二倍体称为加倍单倍体或双单倍体(DH)。DH群体产生的途径很多,亦因物种不同而异,最常见的方法是通过花药培养,即取F1植株的花药进行离体培养,诱导产生单倍体植株,然后对染色体进行加倍产生DH植株。DH植株是纯合的,自交后即产生纯系,因此DH群体可以稳定繁殖,长期使用,是一种永久性群体。DH群体的遗传结构直接反映了F1配子中基因的分离和重组,因此DH群体与BC1群体一样,作图效率是最高的。另外,由于DH群体跟RI群体一样,可以反复使用,重复试验,因此也特别适合于QTL定位的研究。

DH群体直接从F1花粉经培养产生,因而建立DH群体所需时间不多。但是,产生DH 植株有赖于花培技术。有些植物的花药培养非常困难,就无法通过花培来建立DH群体。另外,植物的花培能力跟基因型关系较大,因而花培过程会对不同基因型的花粉产生选择效应,从而破坏DH群体的遗传结构,造成较严重的偏分离现象,这会影响遗传作图的准确性。因此,如果是以构建分子标记连锁图为主要目的的话,DH群体不是一种理想的作图群体。

三、群体大小的确定

遗传图谱的分辨率和精度,很大程度上取决于群体大小。群体越大,则作图精度越高。但群体太大,不仅增大实验工作量,而且增加费用。因此确定合适的群体大小是十分必要的。合适群体大小的确定与作图的内容有关。大量的作图实践表明,构建DNA标记连锁图谱所

需的群体远比构建形态性状特别是数量性状的遗传图谱要小,大部分已发表的分子标记连锁图谱所用的分离群体一般都不足100个单株或家系。而如果用这样大小的群体去定位那些控制农艺性状尤其是数量性状的基因,就会产生很大的试验误差。从作图效率考虑,作图群体所需样本容量的大小取决于以下两个方面:一是从随机分离结果可以辨别的最大图距,二是两个标记间可以检测到重组的最小图距。因此,作图群体的大小可根据研究的目标来确定。作图群体越大,则可以分辨的最小图距就越小,而可以确定的最大图距也越大。如果建图的目的是用于基因组的序列分析或基因分离等工作,则需用较大的群体,以保证所建连锁图谱的精确性。在实际工作中,构建分子标记骨架连锁图可基于大群体中的一个随机小群体(如150个单株或家系),当需要精细地研究某个连锁区域时,再有针对性地在骨架连锁图的基础上扩大群体。这种大小群体相结合的方法,既可达到研究的目的,又可减轻工作量。

作图群体大小还取决于所用群体的类型。如常用的F2和BC1两种群体,前者所需的群体就必须大些。这是因为,F2群体中存在更多种类的基因型,而为了保证每种基因型都有可能出现,就必须有较大的群体。一般而言,F2群体的大小必须比BC1群体大约大一倍,才能达到与BC1相当的作图精度。所以说,BC1的作图效率比F2高得多。在分子标记连锁图的构建中,DH群体的作图效率在统计上与BC1相当,而RI群体则稍差些。总的说来,在分子标记连锁图的构建方面,为了达到彼此相当的作图精度,所需的群体大小的顺序为F2>RI>BC1和DH。

第二节图谱构建的理论基础

一、染色体遗传理论

1903年W. S. Sutton和T. Boveri分别提出了遗传因子位于染色体上的理论,他们将染色体看作是孟德尔基因的物理载体。该理论亦称为Sutton-Boveri染色体遗传理论,其基本要点如下:(1)体细胞核内的染色体成对存在,其中一条来自雌亲,一条来自雄亲,成对染色体的两个成员是同源的。(2)每条染色体在个体的生命周期中均能保持其结构上的恒定性和遗传上的连续性,因而在个体的发育过程中起着一定的作用。(3)在减数分裂中,同源染色体的两个成员相互配对,随后又发生分离,走向细胞的两极,从而形成两个单倍体性细胞。

二、基因重组和连锁理论

连锁图谱构建的理论基础是染色体的交换与重组。在细胞减数分裂时,非同源染色体上的基因相互独立、自由组合,同源染色体上的基因产生交换与重组,交换的频率随基因间距离的增加而增大。位于同一染色体上的基因在遗传过程中一般倾向于维系在一起,而表现为基因连锁。它们之间的重组是通过一对同源染色体的两个非姊妹染色单体之间的交换来实现的。

假设某一对同源染色体上存在A-a,B-b两对连锁基因,现有两个亲本P1和P2,它们的基因型分别为AABB和aabb,两亲本杂交产生AaBb双杂合体。F1在减数分裂过程中应产生4种类型的配子,其中两种为亲型配子AB和ab,两种为重组型配子Ab和aB。由于A-a和B-b位于同一染色体上,要产生重组型配子必须在这两个基因的连锁区段上发生交换。重组型配子所占的比例取决于减数分裂细胞中发生交换的频率。交换频率越高,则重组型配子的比例越大。重组型配子最大可能的比例是50%,这时在所有减数分裂的细胞中,在两对基因的连锁区段上都发生交换,相当于这两对基因间无连锁,表现为独立遗传。

重组型配子占总配子的比例称为重组率,用r表示。重组率的高低取决于交换的频率,而两对基因之间的交换频率取决于它们之间的直线距离。重组率的值变化于完全连锁时的0%到完全独立时的50%之间。因此重组率可用来表示基因间的遗传图距,图距单位用厘摩(centi-Morgan,cM)表示,1cM的大小大致符合1%的重组率。

三、图谱制作的统计学原理

(一)两点测验

如果两个基因座位于同一染色体上且相距较近,则在分离后代中通常表现为连锁遗传。对两个基因座之间的连锁关系进行检测,称为两点测验。在进行连锁测验之前,必须了解各基因座位的等位基因分离是否符合孟德尔分离比例,这是连锁检验的前提。在共显性条件下,F2群体中一个座位上的基因型分离比例为1:2:1,而BC1和DH群体中分离比例均为1:1;在显性条件下,F2群体中分离比例为3:1,而BC1和DH群体中分离比例仍为1:1。检验DNA 标记的分离是否偏离孟德尔比例,一般采用 2检验。

只有当待检验的两个基因座各自的分离比例正常时,才可进行这两个座位的连锁分析。

在DNA标记连锁图谱的制作过程中,常常会遇到大量DNA标记偏离孟德尔分离比例的异常分离现象,这种异常分离在远缘杂交组合的分离群体及DH和RI群体中尤为明显。目前在水稻中已发现了十余个与异常分离有关的基因座位,这些基因座位可能影响配子生活力和竞争力,导致配子选择,从而产生异常分离。

异常分离会使连锁的检验受到影响,一些本来不存在连锁的标记由于各自的异常分离,可能误导得出连锁的结论,而另一些本来连锁着的标记也有可能由于异常分离而无法检测到连锁。发生严重异常分离的标记一般不应用于连锁作图。将分离比的检验与连锁检验相结合,是实际分析过程中解决异常分离的常用方法。

两个连锁座位不同基因型出现的频率是估算重组值的基础。在一般的遗传学教材中,重组值的估计是根据分离群体中重组型个体占总个体的比例来估计的。这种估计方法无法得到估计值的标准误,因而无法对估值进行显著性检验和置信区间估计。采用最大似然法进行重组率的估计可解决这一问题。最大似然法以满足其估计值在观察结果中出现的概率最大为条件。

在人类遗传学研究中,由于通常不知道父母的基因型或父母中标记基因的连锁相是相斥还是相引,因而无法简单地通过计算重组体出现的频率来进行连锁分析,而必须通过适当的统计模型来估算重组率,并采用似然比检验的方法来推断连锁是否存在,即比较假设两座位间存在连锁(r < 0.5)的概率与假设没有连锁(r = 0.5)的概率。这两种概率之比可以用似然比统计量来表示,即L(r)/L(0.5),其中L()为似然函数。为了计算方便,常将L(r)/L(0.5)取以10为底的对数,称为LOD值。为了确定两对基因之间存在连锁,一般要求似然比大于1000:1,即LOD>3;而要否定连锁的存在,则要求似然比小于100:1,即LOD<2。

在其它生物遗传图谱的构建中,似然比的概念也用来反映重组率估值的可靠性程度或作为连锁是否真实存在的一种判断尺度。

(二)多点测验

两点测验是最简单,也是最常用的连锁分析方法。然而,在构建分子标记连锁图中,每条染色体都涉及到许多标记座位。遗传作图的目的就是要确定这些标记座位在染色体上的正确排列顺序及彼此间的遗传图距。所以,这里涉及到一个同时分析多个基因座之间连锁关系的问题。这个问题看似简单,其实挺复杂,因为对于m个连锁座位,就有m!/2种可能的排列顺序。例如,若m = 10,则共有1,814,400种可能。要从这么多种可能中挑选出正确的顺

序,确实没那么容易。这项工作用两点测验方法是难以完成的,因为它每次只能分析两个座位间的连锁关系。由于两点测验估得的重组率存在误差,因此,根据比较不同座位之间重组率大小来确定座位的排列顺序是不可靠的,很可能存在错误。

为了解决这个问题,就必须同时对多个座位进行联合分析,利用多个座位间的共分离信息来确定它们的排列顺序,也就是进行多点测验。在事先未知各基因座位于哪条染色体的情况下,可先进行两点测验,根据两点测验的结果,将那些基因座分成不同的连锁群,然后再对各连锁群(染色体)上的座位进行多点连锁分析。

与两点测验一样,多点测验通常也采用似然比检验法。先对各种可能的基因排列顺序进行最大似然估计,然后通过似然比检验确定出可能性最大的顺序。在每次多点测验中,不能包含太多的座位,否则可能的排列数会非常大,即使使用高速的计算机,也要花费很长的时间。在一条染色体上,经过多次多点测验,就能确定出最佳的基因排列顺序,并估计出相邻基因间的遗传图距,从而构建出相应的连锁图。

对于在两点测验中没能归类到某个连锁群(染色体)的基因座,可在各连锁群的连锁图初步建成之后,再尝试定位到某个连锁群上。但在构建分子标记连锁图的实际研究中,往往总有一些标记无法定位到染色体上。造成这种现象的原因,主要可能是在测定标记基因型时存在错误。

(三)交换干扰与作图函数

随着间距的增加,两个基因座之间便可能在两处同时发生遗传物质的交换,即双交换。在染色体某区段上发生的双交换,其实际频率往往少于由单交换概率相乘所估得的理论值。这是因为一个位置上所发生的交换会减少其周围另一个单交换的发生,这种现象称为交叉干扰。干扰的程度可用符合系数C表示,符合系数C为实际双交换值与理论双交换值的比值。理论双交换值是指两个相邻的单交换同时独立发生的概率。

其中r1和r2分别为两个相邻染色体区段发生单交换的概率。符合系数C的值变动于0~1之间。当C=0时,表示完全干扰,没有双交换发生;当C=1时,表示没有干扰,两单交换独立发生。一般而言,两单交换的位置相距越远,则彼此干扰的程度就越低,符合系数就越大。

要计算两个相距较远的基因座之间的图距时,如果中间没有其它基因座可利用,则两个基因座之间实际发生的双交换就不能被鉴别出来,因此,采用一些数学方法进行矫正是必要的,否则,从重组率估计出的图距就会比真实图距小。这种矫正可通过作图函数来实现。

在C=1的假定下,图距x与重组率r之间的关系服从Haldane作图函数:

x=-(1/2)ln(1-2r)

其中x以M为单位。这里M读作Morgan(摩尔根),它是用著名遗传学家摩尔根的姓命名的,并取第一个字母表示。1M=100cM(厘摩),1cM为一个遗传单位,即1%的重组率。根据Haldane作图函数,20%的重组率相当于图距为-(1/2)ln(1-2×0.20)= 0.255M,即25.5cM。

Haldane作图函数的不合理之处在于假定了完全没有交叉干扰。为了将交叉干扰的因素考虑进去,一种比较合理的假设是,双交换符合系数与重组率之间存在线性关系,即C=2r。该式表示,C值随r的增加而增加,干扰相应减弱。当r=0.5(即没有连锁)时,C=1(即没有干扰)。根据这一假设推导出了如下作图函数(Kosambi作图函数):

根据上式可以算出,当r=0.2时,x=21.2cM。可见Kosambi作图函数算出的图距比Haldane 作图函数的小。由于Kosambi作图函数比Haldane作图函数更合理,因此它在遗传学研究中得到了更广泛的应用。

第三节DNA标记分离数据的数学处理

一、分离数据的收集与数字化

从分离群体中收集分子标记的分离数据,获得不同个体的DNA多态性信息,是进行遗

传连锁分析的第一步。通常各种DNA标记基因型的表现形式是电泳带型,将电泳带型数字化是DNA标记分离数据进行数学处理的关键。

下面以RFLP为例来说明将DNA标记带型数字化的方法。假设某个RFLP座位在两个亲本(P1,P2)中各显示一条带,由于RFLP是共显性的,则F1个体中将表现出两条带,而F2群体中不同个体的带型有三种,即P1型、P2型和F1(杂合体)型。可以根据习惯或研究人员的喜好,任意选择一组数字或符号,来记录F2个体的带型。例如,将P1带型记为1,P2带型记为3,F1带型记为2。如果带型模糊不清或由于其它原因使数据缺失,则可记为0。假设全部试验共有120个F2单株,检测了100个RFLP标记,这样可得到一个由100(行)×120(列)的、由简单数字组成的RFLP数据矩阵。

进行DNA标记带型数字化的基本原则是,必须区分所有可能的类型和情况,并赋与相应的数字或符号。比如在上例中,总共有4种类型,即P1型、F1型、P2型和缺失数据,故可用4个数字1、2、3和0分别表示之。如果存在显性标记,则F2中还会出现两种情况。一种是P1对P2显性,于是P1型和F1型无法区分,这时应将P1型和F1型作为一种类型,记为4。另一种情况正好相反,P2对P1显性,无法区分P2型和F1型,故应将它们合为一种类型,记为5。

对于BC1、DH和RI群体,每个分离的基因座都只有两种基因型,不论是共显性标记还是显性标记,两种基因型都可以识别,加上缺失数据的情况,总共只有3种类型。因而用3个数字就可以将标记全部带型数字化。

在分析质量性状基因与遗传标记之间的连锁关系时,也必须将有关的表型数字化,其方法与标记带型的数字化相似。例如,假设在DH群体中,有一个主基因控制株高,那么就可以将株系按植株的高度分为高秆和矮秆两大类,然后根据亲本的表现分别给高秆和矮秆株系赋值,如1和2。将质量性状经过这样的数字化处理,就可以与DNA标记数据放在一起进行连锁分析。

DNA标记数据的收集和处理应注意以下问题:(1)应避免利用没有把握的数据。由于分子多态性分析涉及许多实验步骤,很难避免出现错误,经常会遇到所得试验结果(如X-光片)不清楚等问题。如果硬性地利用这样没有把握的数据,不仅会严重影响该标记自身的定位,而且还会影响到其它标记的定位。因此,应删除没有把握的数据,宁可将其作为缺失数据处理,或重做试验。(2)应注意亲本基因型,对亲本基因型的赋值(如P1型为1,P2

型为2),在所有的标记座位上必须统一,千万别混淆。如果已知某两个座位是连锁的,而所得结果表明二者是独立分配的,这就有可能是把亲本类型弄错引起的。(3)当两亲本出现多条带的差异时,应通过共分离分析鉴别这些带是属于同一座位还是分别属于不同座位。如属于不同座位,应逐带记录分离数据。

二、遗传图距与物理距离对应关系的估计

不同生物的1cM图距所对应的实际物理距离(碱基对数量)存在很大差异。一般而言,生物越低等或越简单,1cM图距平均对应的碱基对数量就越少(表3.1)。表3.1中给出的各种生物中遗传图距与物理距离之间的对应关系只是一个大约的平均值,实际上它变化很大。在一条染色体上,由于不同区域上发生交换的频率存在差异,因而遗传图距与物理距离之间的对应关系可以有很大的变化。例如,在着丝粒附近,染色体交换受到抑制,因而所估计的遗传图距小于平均对应的物理距离。在同一种生物中,两个特定基因座之间的遗传图距会因遗传背景的不同而改变,甚至有时由同一对亲本所产生的遗传背景相同的不同群体间也存在很大差异。

表3.1 不同生物中单位图距所相当的平均物理距离

物种基因组大小(kb)遗传图距(cM)kb / cM

嗜菌体T4 1.6×102 800 0.2

大肠杆菌 4.2×103 1,750 2.4

酵母 2.0×104 4,200 4.8

真菌 2.7×104 1,000 27.0

线虫8.0×104 320 250.0

果蝇 1.4×105 280 500.0

水稻 4.5×1051,500 300.0

小鼠 3.0×106 1,700 1,800.0

人类 3.3×106 3,300 1,000.0

玉米 2.5×106 2,500 1,000.0

三、构建DNA标记图谱的计算机软件

遗传图谱的构建需要对大量标记之间的连锁关系进行统计分析。随着标记数目的增加,计算工作量常常呈指数形式增加,这是手工无法完成的。因此,必须借助计算机进行分析和处理。许多学者为构建遗传图谱设计了专用程序包,通过Internet网址https://www.doczj.com/doc/d914652979.html,/soft/list.html可以获得各种专用程序的相关信息,如软件的名称及简要介绍,源程序编码语言、支持的操作系统、执行程序的名称、参考文献以及获取软件的网址等。应用于植物遗传连锁分析和遗传图谱构建的常用软件有LINKAGE、MAPMAKER/EXP等。LINKAGE软件可通过ftp:// https://www.doczj.com/doc/d914652979.html,/software/linkage 获得,该软件是利用最大似然法估计两座位或多座位间的重组率和LOD值;MAPMAKER/EXP 可通过ftp:// https://www.doczj.com/doc/d914652979.html,/distri- bution/software/mapmaker3获得,该软件可以应用于各种类型的实验群体进行遗传作图,是目前应用最为广泛的作图软件之一。

第四节DNA标记连锁图谱的完善

一、DNA标记连锁群的染色体定位

把分子标记所建立的连锁群与经典遗传图谱联系起来,并将其归属到相应的染色体上,是构建了一个比较饱和的分子图谱之后十分重要的工作。通常根据分子标记与已知染色体位置的形态标记的连锁关系来确定分子标记连锁群属于哪条染色体。还可以利用非整倍体或染色体结构变异材料,如水稻中利用三体、玉米中利用A/B易位系、小麦中利用缺体/四体染色体代换系等,将分子标记连锁群归属到相应的染色体上。

以水稻为例,目前已获得全套12条染色体的初级三体(2n+1)。在水稻某种三体中,由于三体染色体有一式3份,其DNA含量为其它11条染色体的1.5倍。在DNA定量相当准确的条件下,用已知能检测某一连锁群的探针分别与12种三体的总DNA杂交。根据剂量效应,杂交强弱与同源序列的含量成正比,杂交后对应三体的DNA滤膜放射自显影显带强度将明显高于其它11种,由此可以判定该标记所对应的序列就在该三体染色体上。

随着技术的进步,原位分子杂交的灵敏度已可以揭示单拷贝序列的杂交位点,因此采用原位分子杂交可以容易地将连锁群的分子标记定位到染色体上。

要得到一个完整的遗传图谱,必须知道染色体上的标记与着丝粒之间的距离。一个完整的染色体具有以下几个主要部分:着丝粒、缢痕、随体及端粒,这些基本结构在生物染色体的运动与复制等方面起着重要的作用,其结构也是遗传图谱制作中不可忽视的重要部分。

由于着丝粒并不是一个基因,不能从表型测知,因此采用常规的两点、三点乃至多点分析方法是无法确定标记与着丝粒之间的关系的。在经典遗传图谱的构建中,一般采用近端着丝粒染色体来对基因与着丝之间的距离进行定位。近端着丝粒染色体是正常染色体在着丝粒附近断裂形成的异常染色体。目前已获得小麦全部42条染色体的近端着丝粒染色体。利用染色体易位材料也可以判断着丝粒在染色体上的位置。一般易位点和着丝粒所在部分的交换被抑制,因而推算位于着丝粒两旁的易位点与标记基因间的重组率时一般都偏小。利用这个现象可以推算连锁图上着丝粒的位置。在细胞学上,利用已知易位点的易位系统进行基因分析也可知道着丝粒的位置。早在1945年,在玉米中就利用易位分析的结果推测了全部染色体的着丝粒位置。

染色体上的端粒是指染色体的自然末端。在遗传图谱的构建中,端粒位置的确定就意味着为染色体的全长设定界标。传统的凝胶电泳方法由于分辨能力有限,大多数情况下无法将具有多态性的端粒片段区分开来。一般要借助具有高分辨率的脉冲场凝胶电泳(PFGE)才能将有差异的端粒片段分离开来。利用PFGE与切割位点稀少的限制性酶相结合,Wu和Tanksley(1993)研究了水稻端粒结构的特征,采用来自拟南芥的端粒探针,将三个水稻的端粒DNA电泳条带分别定位在第8、9、11染色体上,并证实了多态性的端粒片段不仅在遗传上而且在物理上与遗传图谱上最远端的RFLP标记相连锁。

目前,在日本水稻基因组研究计划所构建的包含2275个标记的水稻分子连锁图中,除第9染色体之外,其余11条染色体的着丝粒(区)都已定位(Harushima et al. 1998)。另外,该图中的第5染色体短臂、第11染色体两臂以及第12染色体短臂的端粒也已定位。

二、饱和DNA标记连锁图的制作

遗传图谱饱和度是指单位长度染色体上已定位的标记数或标记在染色体上的密度。一个

基本的染色体连锁框架图大概要求在染色体上的标记平均间隔不大于20cM。如果构建连锁图谱的目的是为了进行主基因的定位,其平均间隔要求在10~20cM或更小。用于QTL定位的连锁图,其标记的平均间隔要求在10cM以下。如果构建的连锁图谱是为了进行基因克隆,则要求目标区域标记的平均间隔在1cM以下。

不同生物基因组大小有极大差异,因此满足上述要求所需的标记数是不同的。以人类和水稻为例,它们的基因组全长分别为3.3×106kb和4.5×105kb,如果构建一个平均图距为0.5cM的分子图谱,则所要定位的标记数就要分别达到6600和3000个。几种生物不同图谱饱和度下所需定位的标记数如表3.2所示。

表3.2 遗传图谱达到特定饱和度所需的标记数

生物人类水稻玉米拟南芥番茄

基因组大小

(kb)

(cM)

kb/cM

3.3×106

3300

1000

4.5×105

1500

300

2.5×106

2500

1000

7.0×104

500

140

7.1×105

1500

473

图谱饱和度

20cM

10cM

5cM

1cM

0.5cM

165

330

660

3300

6600

75

150

300

1500

3000

125

250

500

2500

5000

25

50

100

500

1000

75

150

300

1500

3000

Tanksley等(1988)以假设拥有12条染色体,每条长100cM,全长1200cM的生物为例,

研究了所需标记数与图谱饱和度之间的关系,发现影响所需标记数的主要因素有两个。一个是标记间的平均距离,即图谱总长度除以定位的标记数,它反映了标记图谱的平均密度。对于染色体全长1200cM的生物,如果定位了120个标记,则标记间的平均距离为10cM。另一个因素是标记间的最大距离。标记在基因组上的分布是不均匀的。即使在一张平均密度很

高的图谱上,仍然可能存在较大的间隙区。例如,据理论推算,如果用于作图的标记是随机选择的,则当标记平均距离为1cM时,仍有可能存在10cM的间距。而若要将最大可能间距从10cM减小到5cM,则需要另外增加1000个标记。因此,通过提高图谱平均密度的方法来缩小最大标记间距是很困难的。在实际研究中,为了填补间隙,应有针对性地在间隙区上寻找标记,或寻找该间隙所在区域上有差异的亲本构建作图群体。

没有一种标记在基因组中分布是完全随机的。如着丝粒区通常以重复序列为主,因而以单拷贝克隆为探针的RFLP标记就不可能不覆盖这些染色体区域。从这一点考虑,利用特性上互补的不同DNA标记进行遗传作图,将有助于提高遗传图谱的饱和度。

三、DNA标记连锁图与经典遗传连锁图的整合

从1987年报道玉米和番茄的RFLP遗传图谱以来,具有重要经济价值的栽培植物几乎都已构建了以RFLP为主的DNA标记遗传图谱,其中水稻分子图谱上所定位的RFLP标记数已超过2000个(Harushima et al. 1998)。为了充分利用现有的分子和遗传的信息,必须将分子遗传图谱与经典遗传图谱结合起来,成为一张综合的遗传图谱。将两类遗传标记综合到一张遗传图谱中去,不仅是重要经济性状准确定位的需要,也是以图位克隆方法分离目的基因的需要。但是,由于两类图谱的构建是相互独立的,使用的作图群体是不同的,且它们之间缺乏共有的遗传标记,因而整合起来并不容易。另外,经典遗传图谱本身就是一张依据许多由不同研究者利用不同作图群体在不同条件下完成的实验结果而绘制成的综合图谱,其中有的标记基因间的相对位置不一定十分精确,因此,在与分子图谱整合时,不能简单地根据标记间的相对图距进行推论。

鉴于上述原因,分子图谱与经典图谱的整合只能通过将传统的遗传标记基因一个一个地定位到分子图谱中去的策略来进行。为此,可以选择各种传统的遗传标记材料来建立作图群体,并用适当的方法快速地找到与传统的遗传标记紧密连锁的分子标记(参见第四章),再根据分子标记在分子图谱上的位置来确定传统遗传标记的位置。在栽培植物中,水稻的经典连锁图谱和分子连锁图谱的整合工作进展较快,这主要受益于水稻在经典连锁图谱上的长期累积性工作,目前至少已将47个形态标记和11个同工酶标记定位到了分子连锁图上(Causse 等1994)。

第五节比较作图

比较作图(Comparative Mapping)就是利用一种物种的DNA标记对另一物种进行遗传或物理作图。比较作图的分子基础就是物种间DNA序列尤其是编码序列的保守性。通过比较作图可揭示不同物种基因组或基因组区域同线性或共线性的存在,从而了解不同物种基因组结构的相似性及基因组进化的历程。所谓同线性是指定位在一个物种的染色体上的两个或多个标记又被定位于另一物种的同源染色体区域上,但这些标记间的相对排列顺序可变化;而共线性则指定位在同源染色体区域上的标记,其标记间的相对排列顺序是保守的。

比较作图始于人-鼠间的基因组同源性比较。至今许多植物之间也进行了比较作图研究,如番茄、马铃薯和辣椒(Tanksley et al. 1988;1992);水稻、小麦和玉米(Ahn et al. 1993;1994);小麦、大麦和黑麦(Devos et al. 1993);高粱和玉米(Pereira et al. 1994);拟南芥和芸苔属(Kowalski et al. 1994)以及大麦和水稻(Maroof et al. 1996)等。Moor等(1995)对水稻、小麦、玉米、谷子、甘蔗及高粱等6种主要禾本科物种的比较作图研究表明,这些禾本科植物基因组的保守性可归结到水稻基因组的19个连锁区段上,由这19个区段可实现对所研究的全部禾谷类作物进行染色体的重建,并可构成一个禾谷类作物祖先种的染色体骨架。可见,比较作图研究已使得传统的植物遗传学突破了物种的框架限制,发展成了新的统一遗传学。

通过比较作图的研究可显著增加各种物种中可供利用的遗传标记的数量,这对遗传研究较为滞后的物种来说显得十分重要。另外,利用比较作图法还可能根据已定位在某个物种中的新基因,在其它近缘物种的染色体同源区域定位相同的基因,这将大大提高基因定位的效率。随着某些物种的基因组全序列的测序完成,比较作图研究也将随之进入一个新的时代,即可直接在核苷酸序列水平上对不同物种的基因组进行比较分析,从而对生物的遗传本质达到更深刻的了解。

分子标记

分子标记 3分(内容丰富) 编辑词条 分子标记技术在搜搜百科中为本词条的同义词,已为您做自动跳转。 摘要 Molecular Markers 【分子标记的概念】 分子标记是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA 水平遗传多态性的直接的反映。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有的优越性有:大多数分子标记为共显性,对隐性的性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速。随着分子生物学技术的发展,现在DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。 分子标记的概念有广义和狭义之分。广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质。狭义分子标记是指能反映生物个体或种群间基因组中某种差异的特异性DNA片段。 理想的分子标记必须达以下几个要求:(1) 具有高的多态性;(2) 共显性遗传,即利用分子标记可鉴别二倍体中杂合和纯合基因型;(3) 能明确辨别等位基因;(4) 遍布整个基因组;(5) 除特殊位点的标记外,要求分子标记均匀分布于整个基因组;(6) 选择中性(即无基因多效性);(7) 检测手段简单、快速(如实验程序易自动化);(8) 开发成本和使用成本尽量低廉;(9) 在实验室内和实验室间重复性好(便于数据交换)。但是,目前发现的任何一种分子标记均不能满足以所有要求。 【分子标记的种类】 一、基于分子杂交技术的分子标记技术 此类标记技术是利用限制性内切酶解及凝胶电泳分离不同的生物 DNA 分子,然后用经标记的特异 DNA 探针与之进行杂交,通过放射自显影或非同位素显色技术来揭示 DNA 的多态性。 ①限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP) 1974年Grodzicker等创立了限制性片段长度多态性(RFLP)技术,它是一种以DNA—DNA杂交为基础的第一代遗传标记。RFLP基本原理:利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况。通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行Southern

分子遗传学名词解释

2014分子遗传学复习 一、名词解释 1、结构基因(Structural gene):可被转录形成mRNA,并进而翻译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。 2、调节基因(Regulatory gene):指某些可调节控制结构基因表达的基因,合成阻遏蛋白和转录激活因子。其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质(或酶)量的改变。 3、基因组(genome):基因组(应该)是整套染色体所包含的DNA分子以及DNA 分子所携带的全部遗传指令。或单倍体细胞核、细胞器或病毒粒子所含的全部DNA或RNA。 4、C值悖理(C-v a l u e p a r a d o x):生物基因组的大小同生物在进化上所处的地位及复杂性之间无严格的对应关系,这种现象称为C值悖理(C——value paradox)。 N值悖理(N-v a l u e p a r a d o x):物种的基因数目与生物进化程度或生物复杂性的不对应性,这被称之为N(number of genes)值悖理(N value paradox)或G(number of genes)值悖理。 5、基因家族(gene family):由同一个祖先基因经过重复(duplication)与变异进化而形成结构与功能相似的一组基因,组成了一个基因家族。 6、孤独基因(orphon):成簇的多基因家族的偶尔分散的成员称为孤独基因(orphon) 。 7、假基因(pseudogene): 多基因家族经常包含结构保守的基因,它们是通过积累突变产生,来满足不同的功能需要。在一些例子中,突变使基因功能完全丧失,这样的无功能的基因拷贝称为假基因,经常用希腊字母表示 8、①卫星DNA(Satellite DNA):是高等真核生物基因组重复程度最高的成分,由非常短的串联多次重复DNA序列组成。 ②小卫星DNA(Minisatellite DNA) :一般位于端粒处,由几百个核苷酸对的单元重复组成。 ③微卫星DNA (Microsatellite DNA):由2-20个左右的核苷酸对的单元重复成百上千次组成。 ④隐蔽卫星DNA(cryptic satellite DNA):用密度梯度离心分不出一条卫星带,但仍然存在于DNA主带中的高度重复序列 9、DNA指纹(DNA fingerprints):小卫星DNA是高度多态性的,不同个体,各自不同。但其中有一段序列则在所有个体中都一样,称为“核心序列”,如果把核心序列串联起来作为探针,与不同个体的DNA进行分子杂交,就会呈现出各自特有的杂交图谱,它们和人的手纹一样,具有专一性和特征性,因个体而异,因而称为“DNA指纹”。 10、超基因(super gene) :是指真核生物基因组中紧密连锁的若干个基因座,它们作用于同一性状或一系列相关性状。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 11、单核苷酸多态性(single nucleotide polymorphism,SNP):主要是指基因组水平上由单个核苷酸的变异所引起的DNA顺序多态性。它是人类可遗传变异中最常见的一种,占所有已知多态性的90%以上。 12、遗传标记(Genetic marker):可示踪染色体、染色体片段、基因等传递轨

分子遗传全

名词解释: 1)遗传标记:是指在遗传分析上用作标记的基因,也称为标记基 因。在重组实验中多用于测定重组型和双亲型。 2)基因组学:是研究生物基因组和如何利用基因的一门学问。用 于概括涉及基因作图、测序和整个基因组功能分析的遗传学分支。 3)表观遗传学:(由于非基因序列改变所致基因表达水平变化, 如DNA甲基化和染色质结构变化)研究不涉及DNA序列改变的基因表达和调控的可遗传修饰,即探索从基因演绎为表型的过程和机制的一门新兴科学。 4)微卫星DNA:重复单位序列最短,只有2~6bp,串联成簇,长 度50~100bp,又称为短串联重复序列。 5)遗传缺陷:是由于人体染色体或染色体所携带的遗传物质发生 异常而引起的疾病。 6)体细胞转基因克隆:把体细胞核移入去核卵母细胞中,使其发 生再程序化并发育为新的胚胎,这个胚胎最终发育为动物个 体。 7)数量性状基因座:对数量性状有较大影响的基因座称为数量性 状基因座(quantitative trait locus,QTL),它是影响数量性状的一个染色体片段,而不一定是一个单基因座。 8)质量性状:是指个体间没有明显的量的区别而表现非连续性变 异的性状,各变异类型间存在明显区别,能够直接加以描述的

性状。 9)表型相关:就是同一个体的两个数量性状度量值间的相关。 10)遗传力:广义遗传力:指数量性状基因型方差占表型方差的比 例,它反映了一个性状受遗传效应影响有多大,受环境效应影响多大。狭义遗传力:指数量性状育种值方差占表型方差的比例。 11)重复力:是衡量一个数量性状在同一个体多次度量值之间的相 关程度的指标。 12)开放阅读框(open reading frame,ORF):(结构基因的起始 密码子到终止密码子)是结构基因的正常核苷酸序列,从起始密码子到终止密码子的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。 13)分子标记辅助选择:是通过与目的基因紧密连锁或共分离的分 子标记, 对DNA 目标区域进行直接筛选,进行育种。 14)主效基因:对某一性状的表现起主要作用,效应较大的基 因。 15)转录组学:是一门在整体水平上研究细胞中基因转录的情况及 转录调控规律的学科。简而言之,转录组学是从RNA水平研 究基因表达的情况。转录组即一个活细胞所能转录出来的所有RNA的总和,是研究细胞表型和功能的一个重要手段。 16)数量性状:个体间差异只能用数量来区别,变异是连续的的性 状。

分子标记遗传图谱的构建方法---完整

分子标记遗传图谱的构建 检测出的每个分子标记反映的都是相应染色体座位上的遗传多态性状态。为了有效地分析利用分子标记所提供的遗传信息,人们希望知道不同分子标记在染色体上的相对位置或排列情况,也就是要构建分子标记的遗传连锁图谱。利用DNA标记构建遗传连锁图谱在原理上与传统遗传图谱的构建是一样的。其基本步骤包括:选择适合作图的DNA标记;根据遗传材料之间的DNA多态性,选择用于建立作图群体的亲本组合;建立具有大量DNA标记处于分离状态的分离群体或衍生系;测定作图群体中不同个体或株系的标记基因型;对标记基因型数据进行连锁分析,构建标记连锁图。至今为止,已构建了许多植物的高密度分子标记连锁图。本章侧重介绍利用DNA标记构建分子遗传连锁图谱的原理与方法。 第一节作图群体的建立 要构建DNA标记连锁图谱,必须建立作图群体。建立作图群体需要考虑的重要因素包括亲本的选配、分离群体类型的选择及群体大小的确定等。 一、亲本的选配 / 亲本的选择直接影响到构建连锁图谱的难易程度及所建图谱的适用范围。一般应从四个方面对亲本进行选择,首先要考虑亲本间的DNA多态性。亲本之间的DNA多态性与其亲缘关系有着密切关系,这种亲缘关系可用地理的、形态的或同工酶多态性作为选择标准。一般而言,异交作物的多态性高,自交作物的多态性低。例如,玉米的多态性极好,一般自交系间配制的群体就可成为理想的RFLP作图群体;番茄的多态性较差,因而只能选用不同种间的后代构建作图群体;水稻的多态性居中,美国康乃尔大学实验室1988年发表的RFLP连锁图谱是以籼稻和爪哇稻之间的杂交组合为基础构建的(McCouch et al. 1988)。在作物育种实践中,育种家常将野生种的优良性状转育到栽培种中,这种亲源关系较远的杂交转育,DNA 多态性非常丰富。第二,选择亲本时应尽量选用纯度高的材料,并进一步通过自交进行纯化。第三,要考虑杂交后代的可育性。亲本间的差异过大,杂种染色体之间的配对和重组会受到抑制,导致连锁座位间的重组率偏低,并导致严重的偏分离现象,降低所建图谱的可信度和适用范围;严重的还会降低杂种后代的结实率,甚至导致不育,影响分离群体的构建。由于各种原因,仅用一对亲本的分离群体建立的遗传图谱往往不能完全满足基因组研究和各种育

分子标记与植物遗传改良

第6讲分子标记与植物遗传改良 一、分子标记在植物遗传研究中的应用p1 二、分子标记在植物育种中的应用p4 三、DNA分子标记的原理p11 四、质量性状的分子标记p25 (p1-14, p15-32) 一、分子标记在植物遗传研究中的应用 分子标记是指一类在分子水平(多为DNA)上的具有多态性的遗传标记。1980年RFLP 作为新型遗传标记首次被提出,开创了直接应用DNA变异的新阶段。分子标记技术多种多样,各具特点,在实际中应根据需要和条件来选用。从植物遗传改良的角度来看,技术难度较小、使用成本较低且准确度又较高的分子标记将更易于为人们所接受。总之,随着多种类型分子标记的发展,分子标记技术将在植物遗传研究中得到越来越广泛的应用。 (一)分子标记连锁图的构建 近年来,农作物基因组和分子生物学研究取得了巨大进展,构建了许多高密度的分子标记连锁图。 早在1988年,美国Cornell大学即用一个50株的籼粳亚种间F2群体(IR34583/Bulu Dalum)构建了第1张水稻RFLP连锁图。 1994年底,Cornell大学和日本水稻基因组研究组(RGP)同时发表了各自构建的高密度水稻分子标记连锁图。前者的作图群体为113株的野-栽回交群体(Oryza sativa/ O. longistaminata// O. sativa)。图谱全长1491cM,共含726个分子标记,其中多为基因组DNA 克隆,标记间平均距离2cM。后者是利用186株籼粳亚种间F2群体构建而成,全长1575cM,共含1383个分子标记,其中cDNA克隆883个,基因组DNA克隆265个,RAPD标记147个。(基因的遗传距离以图距为单位,1个图距单位相当于1%的重组率。cM:一种度量重组概率的单位。在生殖细胞形成的减数分裂过程中,常常会发生同源染色体之间的交叉现象,如果两个标记之间发生交叉重组的概率为1%,那么它们之间的距离就定义为1cM。对人类基因组,1cM大致相当于1Mbp。水稻基因组的大小估计为430Mb,是禾谷类作物基因组中最小的,大约为人基因组大小的1/7,)为了使两张图能相互参照,信息通用,华中农业大学从两张图中选出了400多个RFLP

遗传标记的发展及其类型

遗传标记的发展及其类型 1形态标记 19世纪60年代,Mendel以豌豆为材料,详细研究了豌豆的7对相对性状的遗传规律。由于这些性状都具有典型的外部形态,很容易识别,从而构成了最早的遗传标记,即形态学标记,由此奠定了近代遗传学的基础。形态标记是利用植物外部形态多态性进行的标记技术。自然界中的生物存在着许多非常明显的形态标记,如果形、花色、矮杆、卷叶等。形态标记简单直观且经济方便,但大多数植物中的形态标记数量有限,多态性较差,表型易受环境影响,且形态标记的获得周期长,不适于需要完整的基因组测试的数量性状位点分析,故形态标记在作物遗传育种中的作用有限。 2细胞学标记 细胞学标记是利用植物细胞染色体的变异的标记技术。植物细胞染色体的变异包括染色体核型和带型的变异。细胞学标记虽然能进行一些重要基因的染色体定位,但标记材料的培育需要大量的人力和时间,并且有些物种对染色体数目和结构变异反应敏感,难以获得标记材料,从而限制了细胞学标记在遗传育种上的应用。 3生化标记 生化标记主要指同工酶标记,是依据植物体内有效成分的化学分析进行标记的技术。同工酶是同种功能的酶的不同形式,由一个以上基因座位编码,其可通过电泳和组织化学染色法分离成肉眼可见的酶谱带型。与形态标记和细胞学标记相比,生化标记表现近中性,对植物经济性状无大的不良影响,且是基因产物差异的直接反映,受环境影响较小。但由于在植物群体研究中能表现出位点多态性的同工酶种类较少,使其应用也受到限制而不能成为较理想的遗传标记。 4分子标记 分子标记是以生物大分子的多态性为基础的标记技术,目前使用的分子标记主要是指DNA分子标记。DNA分子标记能反映植物个体或种群的基因组DNA 间的差异,如由于碱基易位、倒位、缺失、插入、重排或由于存在长短与排列不一的重复序列而产生的差异。起步于20世纪70年代的分子标记在近40年间发展迅速,目前已出现了几十种分子标记方法。与前3种标记(形态、细胞学和生化标记)技术相比,分子标记具有巨大的优越性: ①直接以DNA的形式表现,在植物体的各个组织、各发育时期均可检测到,受季节、环境限制,不存在表达

分子遗传(名词解释及简答)

名词、简答(依据ppt) 一、基因表达调控 1.基因(Gene) 遗传的基本单位,含有编码一种RNA,大多数情况是编码一种多肽的信息单位; 负载特定遗传信息的DNA片段,其结构包括由DNA编码序列、非编码调节序列和内含子组成的DNA区域。 2.基因表达(gene expression) 从DNA到蛋白质的过程。 对这个过程的调节即为基因表达调控(regulation of gene expression)。 3.基因表达的特点 时间特异性——发育阶段特异性 空间特异性——组织细胞特异性 4.基因表达调控的概念 机体各种细胞中含有的相同遗传信息(相同的结构基因),根据机体的不同发育阶段、不同的组织细胞及不同的功能状态,选择性、程序性地表达特定数量的特定基因的过程。 5.基因表达的方式 1)组成性表达(constitutive expression):基因较少受环境因素影响,而是在个体各个生长阶段的大多数或几乎全部组织中持续表达,或变化很小。如管家基因 ★管家基因(housekeeping gene):某些基因在一个个体的几乎所有细胞中持续表达。 2)诱导和阻遏表达 诱导表达(induction expression)——在特定环境信号刺激下,基因表现为开放或增强,表达产物增加。 阻遏表达(repression expression)——在特定环境信号刺激下,基因被抑制,从而使表达产物减少。 6.基因表达调控的意义 1)以适应环境、维持生长和增殖 2)以维持细胞分化与个体发育 7.原核生物基因表达的调控 8、真核生物基因表达的调控——多层次和复杂性 ★转录前水平:染色体丢失、基因扩增、基因重排、DNA的甲基化、 组蛋白修饰、染色质结构

分子标记种类及概述

分子标记概述 遗传标记主要有四种类型: 形态标记(morphological marker)、细胞标记(cytological markers)、生化标记(Biochemical marker)和分子标记(molecular marker)。分子标记是其中非常重要的一种,他是以个体间遗传物质核苷酸序列变异为基础的遗传标记,是DNA 水平遗传多态性的直接的反映。 早在1923年,Sax等就提出利用微效基因与主基因的紧密连锁,对微效基因进行选择的设想。但由于形态标记数目有限,而且许多标记对育种家来说是不利性状,因而难以广泛应用。细胞标记主要依靠染色体核型和带型,数目有限。同工酶标记在过去的二、三十年中得到了广泛的发展与应用。作为基因表达的产物,其结构上的多样性在一定的程度上能反映生物DNA组成上的差异和生物遗传多样性。但由于其为基因表达加工后的产物,仅是DNA 全部多态性的一部分,而且其特异性易受环境条件和发育时期的影响;此外同工酶标记的数量有限,不能满足育种需要。近年来,分子生物学的发展为植物遗传标记提供了一种基于DNA变异的新技术手段,即分子标记技术。 与其它标记方法相比,分子标记具有无比的优越性。它直接以DNA形式出现,在植物体的各个组织、各发育时期均可检测到,不受季节、环境的限制,不存在表达与否的问题;数量极多,基因组变异极其丰富,分子标记的数量几乎是无限的;多态性高,利用大量引物、探针可完成覆盖基因组的分析;表现为中性,即不影响目标性状的表达,与不良性状无必然的连锁;许多标记为共显性,对隐性的性状的选择十分便利,能够鉴别出纯合的基因型与杂合的基因型,提供完整的遗传信息。随着分子生物学技术的发展,现在DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。 分子标记的概念有广义和狭义之分。广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质。蛋白质标记包括种子贮藏蛋白和同工酶(指由一个以上基因位点编码的酶的不同分子形式)及等位酶(指由同一基因位点的不同等位基因编码的酶的不同分子形式)。狭义分子标记是指能反映生物个体或种群间基因组中某种差异的特异性DNA片段。 理想的分子标记必须达以下几个要求:(1) 具有高的多态性;(2) 共显性遗传,即利用分子标记可鉴别二倍体中杂合和纯合基因型;(3) 能明确辨别等位基因;(4) 遍布整个基因组;(5) 除特殊位点的标记外,要求分子标记均匀分布于整个基因组;(6) 选择中性(即无基因多效性);(7) 检测手段简单、快速(如实验程序易自动化);(8) 开发成本和使用成本尽量低廉;(9) 在实验室和实验室间重复性好(便于数据交换)。但是,目前发现的任何一种分子标记均不能满足以所有要求。 分子标记种类 利用分子标记技术分析生物个体之间DNA序列差别并用于作图的研究始于1980年。经过十几年的发展,现在的DNA标记技术已有几十种,主要有一下几大类。

分子标记在植物遗传育种中的应用

分子标记在植物遗传育种中的应用 E M摘要N: 分子标记是继形态标记O细胞标记和生化标记之后发展起来的一种新的较为理想的遗传标记F已被广泛地应用于生命科学研究的各个领域P在植物遗传育种中F分子标记主要用于基因组图谱构建O基因定位O辅助标记选择O种质资源评价O基因克隆O杂种优势预测O杂交育种及跟踪育种过程等方面P文章主要介绍了分子标记在植物遗传育种中的应用原理及分析方法F并对其应用前景进行了展望PM关键词N 分子标记K植物遗传育种K遗传标记 优良品种是当今农业经济发展的基础资源F对目标性状#如丰产O优质O抗逆等$的选择是新品种选育过程的中心环节P 传统的育种方法主要是根据植物在田间的表现进行评价和选择P 但由于表型性状不仅取决于遗传组成F也受控于环境条件F有时环境条件的影响可遮盖植株在基因型上的差异F因此仅根据表型进行选择F效果不够理想P特别是对受多基因控制的数量性状的选择F更难做到准确P虽然育种学已建立了一套完整的选择程序F并在农业生产上培育出了许多高产O优质O抗逆的新品种F然而传统的育种方法仍存在周期长O预见性差O工作量大O工作效率低等问题P随着遗传学的发展F人们注意到利用易于鉴别的遗传标记 #R6=6398SA0T607$来进行辅助选择F可提高选择效果P遗传标记已逐渐成为植物遗传育种的重要工具P尤其是分子遗传学的发展及分子标记技术的建立F使作物遗传育种进入了一个新阶段P新

技术与传统方法相结合F有可能解决目前育种中一些重要环节上的主要难题F从而大大加速育种工作进程P分子标记已在遗传图谱的构建O辅助标记选择O基因克隆等方面显示出了非常诱人的前景P - 应用分子标记构建基因组图谱 基因组图谱是遗传研究的重要内容F又是种质资源O育种及基因克隆等许多应用研究的理论依据和基础P因此F基因组图谱已成为当今生命科学的重要研究领域P基因组图谱包括以染色体重组交换为基础的遗传图谱#R6=6398SA+$和以U2? 的核苷酸序列为基础的物理图谱#V4W798A’SA+$P数十年来F许多遗传学家利用形态标记O生化标记和传统的细胞遗传学方法F为构建各种主要作物的遗传图谱进行了大量工作F并取得了一定的进展P但是由于形态标记和生化标记数目少F特殊遗传材料培育困难及细胞学工作量大F因而除极少数作物#如玉米O番茄$外F在分子标记出现之前F大多数作物还没有一个较为完整的遗传连锁图F极大地限制了遗传学理论研究和应用研究的进展P 进入.,年代以来F分子标记的迅速发展F大大促进了遗传连锁图的构建P目前主要农作物O果树O蔬菜等的XCYV7OX?VU7遗传图谱已相继建立M-ZINP利用分子标记构建遗传图谱的理论基础是染色体的交换与重组P 两点测验和三点测验是其基本程序P由于作图群体的不断增大和标记数量的日益扩增F如今的遗传图谱构建已不得不计算机化了P 遗传图谱构建过程主要包括[-$选择和建立适合的作图群体

分子标记辅助育种技术

分子标记辅助育种技术 第一节 分子标记的类型和作用原理 遗传标记是指可以明确反映遗传多态性的生物特征。 在经典遗传学中,遗传多态性是指等位基因的变异。 在现代遗传学中,遗传多态性是指基因组中任何座位上的相对差异。 在遗传学研究中,遗传标记主要应用于连锁分析、基因定位、遗传作图及基因转移等。 在作物育种中,通常将与育种目标性状紧密连锁的遗传标记用来对目标性状进行追踪选择。 在现代分子育种研究中,遗传标记主要用来进行基因定位和辅助选择。 1、形态标记 形态标记是指那些能够明确显示遗传多态性的外观性状。如、株高、穗型、粒色等的相对差异。 形态标记数量少,可鉴别标记基因有限,难以建立饱和的遗传图谱。 有些形态标记受环境的影响,使之在育种的应用中受到限制。 2、细胞学标记 细胞学标记是指能够明确显示遗传多态性的细胞学特征。如染色体的结构特征和数量特征。 核型:染色体的长度、着丝粒位置、随体有无。 可以反映染色体的缺失、重复、倒位、易位。 染色体结构特征 带型:染色体经特殊染色显带后,带的颜色深浅、宽窄 和位置顺序,可以反映染色体上常染色质和异染 色质的分布差异。 染色体数量特征—是指细胞中染色体数目的多少。染色体数量上的

遗传多态性包括整倍体和非整倍体变异。 细胞学标记 优点:克服了形态标记易受环境影响的缺点。 缺点: (1)培养这种标记材料需花费大量的人力物力; (2)有些物种对对染色体结构和数目变异的耐受性差,难以获得相应的标记材料; (3)这种标记常常伴有对生物有害的表型效应; (4)观察鉴定比较困难。 3、蛋白质标记 用作遗传标记的蛋白质分为酶蛋白质和非酶蛋白质两种。 非酶蛋白质:用种子储藏蛋白质经一维或二维聚丙烯酰胺凝胶电泳,根据显示的蛋白质谱带或点,确定其分子结构和组成的差异。 酶蛋白质:利用非变性淀粉凝胶或聚丙烯酰胺凝胶电泳及特异性染色检测,根据电泳谱带的不同来显示酶蛋白在遗传上的多态性。 蛋白质标记的不足之处: (1)每一种同工酶标记都需特殊的显色方法和技术; (2)某些酶的活性具有发育和组织特异性; (3)标记的数量有限。 4 、 DNA标记 DNA分子标记是DNA水平上遗传多态性的直接反映。 DNA水平的遗传多态性表现为核苷酸系列的任何差异,包括单个核苷酸的变异。 二、分子标记的类型及作用原理

遗传图谱

遗传专题 1、请根据人的性别与性染色体关系回答下列问题: 1).基因在亲子代间传递的桥梁是精子和_________。 2).女性的性染色体表示为________。 3).就性染色体而言男性能产生精子的种类有________种。 4).当含有X性染色体的精子与卵细胞融合时,发育而成的个体为______性(填写男性或是女性。) 5).自然情况下,生男生女的比例大致是________。 2.双眼皮和单眼皮是一对相对性状。双眼皮是显性性状,由基因(A)控制;单眼皮是隐性性状,由基因(a)控制。现有一对夫妇,父亲单眼皮,母亲双眼皮,他们有一个双眼皮的儿子。请分析回答下列问题:(1)父亲是单眼皮,儿子却是双眼皮,这种亲子间的差异现象叫做() A、遗传 B、变异 (2)父亲的基因组成应该是() A、AA B、Aa C、aa (3)人的性别由一对性染色体决定,那么决定儿子性别的性染色体组合是。 (4)如果这对夫妇再生一个孩子,是女孩的可能性是() A、100% B、75% C、50% (5)判断:如果父亲能卷舌,那么能卷舌和单眼皮也是一对相对性状。() A、对 B、不对 3.下图是一对夫妇有关舌的性状的遗传图解,请据图分析回答问题: (1)父亲的基因组成是______,性状是______。 (2)母亲的基因组成是_______,性状是_______。 (3)这对夫妇所生的小孩能卷舌的机率是_______。 A.100% B.75% C.50% D.25% 4.有的人有耳垂,有的人无耳垂。有耳垂受基因A控制,无耳垂受基因a控制。现有一对夫妇,二人都有耳垂,却生了一个无耳垂的女儿,请回答下列问题: ⑴有耳垂和无耳垂在生物学上被称为。 ⑵父亲的基因组成是。 ⑶夫妇中有一人是独生子女,根据国家新政策,可以再生一个孩子,这个母亲正在孕育一个胎儿,这个孩子是无耳垂的可能性是。 A.100% B.75% C.50% D.25% ⑷第二个孩子如果有耳垂,基因组成可能是。 (5)这个女儿的性染色体是 5. 有人有耳垂,有人无耳垂。有耳垂受基因A控制,无耳垂受基因a控制,根据下图回答问题:

分子标记技术简介

分子标记技术简介 分子标记是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接的反映。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有的优越性有:大多数分子标记为共显性,对隐性的性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速。随着分子生物学技术的发展,现在DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。 分子标记的概念有广义和狭义之分。广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质。狭义分子标记是指能反映生物个体或种群间基因组中某种差异的特异性DNA片段。 理想的分子标记必须达以下几个要求:(1) 具有高的多态性;(2) 共显性遗传,即利用分子标记可鉴别二倍体中杂合和纯合基因型;(3) 能明确辨别等位基因;(4) 遍布整个基因组;(5) 除特殊位点的标记外,要求分子标记均匀分布于整个基因组;(6) 选择中性(即无基因多效性);(7) 检测手段简单、快速(如实验程序易自动化);(8) 开发成本和使用成本尽量低廉;(9) 在实验室内和实验室间重复性好(便于数据交换)。但是,目前发现的任何一种分子标记均不能满足以所有要求。

【分子标记的种类】 一、基于分子杂交技术的分子标记技术 此类标记技术是利用限制性内切酶解及凝胶电泳分离不同的生物DNA 分子,然后用经标记的特异 DNA 探针与之进行杂交,通过放射自显影或非同位素显色技术来揭示 DNA 的多态性。 ①限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP) 1974年Grodzicker等创立了限制性片段长度多态性(RFLP)技术,它是一种以DNA—DNA杂交为基础的第一代遗传标记。RFLP基本原理:利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况。通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行Southern杂交和放射显影,即获得反映个体特异性的RFLP图谱。它所代表的是基因组DNA在限制性内切酶消化后产生片段在长度上差异。由于不同个体的等位基因之间碱基的替换、重排、缺失等变化导致限制内切酶识别和酶切发生改变从而造成基因型间限制性片段长度的差异。 RFLP的等位基因其有共显性特点。RFLP标记位点数量不受限制,通常可检测到的基因座位数为1—4个。RFLP技术也存在一些缺陷,主要是克隆可表现基因组DNA多态性的探针较为困难;另外,实验操作较繁锁,检测周期长,成本费用也很高。自RFLP问世以来,已经在基因定位及分型、遗传连锁图谱的构建、疾病的基因诊断等研究中仍得到了广泛的应用。

SSR分子标记遗传分析

SSR分子标记遗传分析 实验原理: SSR简单序列重复标记(Simple sequence repeat, 简称SSR标记),也叫微卫星序列重复,是由一类由几个核苷酸(1-5个)为重复单位组成的长达几十个核苷酸的重复序列,长度较短,广泛分布在染色体上。由于重复单位的次数的不同或重复程度的不完全相同,造成了SSR长度的高度变异性,由此而产生SSR标记。虽然SSR在基因组上的位置不尽相同,但是其两端序列多是保守的单拷贝序列,因此可以用微卫星区域特定顺序设计成对引物,通过PCR技术,经聚丙烯酰胺凝胶电泳,即可显示SSR位点在不同个体间的多态性。 优点:(1)标记数量丰富,具有较多的等位变异,广泛分布于各条染色体上; (2)是共显性标记,呈孟德尔遗传; (3)技术重复性好,易于操作,结果可靠。 缺点:开发此类标记需要预先得知标记两端的序列信息,而且引物合成费用较高 实验材料: 欧美山杨杂种幼嫩叶片 实验器具、药品: 模板DNA、dNTP、PCR提取Buffer、Mg2+、上游引物、下游引物、Taq酶、去离子水、琼脂糖、Gel-RED染色剂、1×TAE、PCR仪、琼脂糖凝胶电泳系统、紫外凝胶成像系统 SSR引物及退火温度 位点Loci 重复单元 Repeat unit 引物序列(5′-3′) Primer sequence (5′-3′) 退火温度 T(℃) PTR2 (TGG)8AAGAAGAACTCGAAGA TGAAGAACT(F) ACTGACAAAACCCCTAA TCTAACAA(R) 63℃ PTR7 (CT)5A T(CT)6A TTTGA TGCCTCTTCCTTCCAGT(F) TA TTTTCA TTTTCCCTTTGCTTT(R) 49.4℃ PTR14 (TGG)5TCCGTTTTTGCA TCTCAAGAA TCAC(F) A TACTCGCTTTA TAACACCA TTGTC(R) 55.4℃ 实验步骤: 1.总DNA的提取 采用CTAB法提取植物总DNA (1)取700ul CTAB提取液加入20ul巯基乙醇于65℃金属浴内预热; (2)称取适量植物叶片,放入消过毒的研钵中,迅速加入液氮研磨成白色粉末; (3)将粉末移入提取液,混匀,65℃水浴(或金属浴)30min,其间不时的温和摇匀; (4)加入700ul氯仿:异戊醇(24:1)轻轻摇匀,10000rpm 离心10min,取上清(重复2次);(5)加入700ul异丙醇室温沉淀10min,10000rpm 离心10min,弃上清; (6)用70%乙醇洗两次,37℃气干.去除DNA表面的盐或试剂小分子物质; (7)加入20ul灭菌的去离子水溶解DNA; (8)利用0.7%的琼脂糖凝胶电泳检测提取的总DNA的含量和纯度。 2.总DNA的检测

遗传图谱

“生物图表题”——遗传系谱图 1.某种遗传病受一对等位基因控制,下图为该遗传病的系谱图。下列叙述正确的是 A.该病为伴X染色体隐性遗传病,Ⅱ1为纯合子 B.该病为伴X染色体显性遗传病,Ⅱ4为纯合子 C.该病为常染色体隐性遗传病,Ⅲ2为杂合子 D.该病为常染色体显性遗传病,Ⅱ3为纯合子 2.以下为遗传系谱图,2号个体无甲病致病基因。对有关说法,正确的是 A.甲病不可能是X隐性遗传病 B.乙病是X显性遗传病 C.患乙病的男性多于女性 D.1号和2号所生的孩子可能患甲病 3.右图所示遗传系谱中有甲(基因为D、d)、乙(基 因为E、e)两种遗传病,其中一种为红绿色盲症。下 列有关叙述中正确的是 A.甲病为色盲症,乙病基因位于Y染色体上 B.Ⅱ7和Ⅱ8生一两病兼发的男孩的概率为1/9 C.Ⅱ6的基因型为DdX E X e D.若Ⅲ11和Ⅲ12婚配,则生出病孩的概率高达100% 4、有两种罕见的家族遗传病,它们的致病基因分别位于常染色体和性染色体上。一种先天代谢病称为黑尿病(A,a),病人的尿在空气中一段时间后,就会变黑。另一种因缺少珐琅质而牙齿为棕色(B,b)。如图为一家族遗传图谱。 (1)棕色牙齿是______染 色体、____性遗传病。 (2)写出3号个体可能的 基因型:________。7号个 体基因型可能有____种。 (3)若10号个体和14号 个体结婚,生育一个棕色

牙齿的女儿概率是___。 (4)假设某地区人群中每10000人当中有1个黑尿病患者,每1000个男性中有3个棕色牙齿。若10号个体与该地一个表现正常的男子结婚,则他们生育一个棕色牙齿有黑尿病的孩子的概率是_________。 5.下图是一色盲的遗传系谱: (1) 14号成员是色盲患者,致病基因是由第一 代中的某个体传递来的。用成员的编号和“→”写出色 盲基因的传递途径:_________。 (2)若成员7与8再生一个孩子,是色盲男孩的概率 为________,是色盲女孩的概率为________。 6.下图是一个家庭的遗传谱系(色觉正常为B ,肤色正 常为A ),请回答: (1)1号的基因型是______________。 (2)若11号和12号婚配,后代中患色盲的概率为_________。同时患两种病的概率为___________。 (3)若11号和12号婚配,生育子女中有病孩子的概率为_______;只患白化病(不含既色盲又白化的患者)的概率为___________。 7.下图是A 、B 两种不同遗传病的家系图。调查发现,患B 病的女性远远多于男性,据图回答。 (1)A 病是由 染色体上的 性基因控制的遗传病,判断的理由是 。 (2)假如⑥与⑨号结婚。生下患病孩子的几率是 。 (3)如果③号与一正常男性结婚,从优生角度分析,你认为最好生男孩还是女孩,为什么? 8.图是某家族遗传系谱图。请据图回答下列问题: (1)该病的致病基因在 染色体上,是 性遗 传病。 I II III 图注: ——仅患A 病的男性;A B 病的女 A 、 B 两种病的女性。

三代遗传标记

三代遗传标记 分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种较为理想的遗传标记形式,它以蛋白质、核酸分子的突变为基础,检测生物遗传结构与其变异。分子标记技术从本质上讲,都是以检测生物个体在基因或基因型上所产生的变异来反映生物个体之间的差异。每一种分子标记都有其自身的特点和特定的应用范围,但就一般意义而言,DNA 分子标记与形态标记和生化标记等相比,具有许多独特的优点: ①不受组织类别、发育阶段等影响。植株的任何组织在任何发育时期均可用于分析。②不受环境影响。因为环境只影响基因表达(转录与翻译) ,而不改变基因结构即DNA 的核苷酸序列。③标记数量多,遍及整个基因组。④多态性高,自然存在许多等位变异。⑤有许多标记表现为共显性,能够鉴别纯合基因型和杂合基因型, 提供完整的遗传信息。⑥DNA 分子标记技术简单、快速、易于自动化。⑦提取的DNA 样品,在适宜条件下可长期保存,这对于进行追溯性或仲裁性鉴定非常有利。因此,DNA 分子标记可以弥补和克服在形态学鉴定及同工酶、蛋白电泳鉴定中的许多缺陷和难题,因而在品种鉴定方面展示了广阔的应用前景。 1. 1 第1 代分子标记 1.1. 1 RFLP 标记技术。 1980 年Botesin提出的限制性片段长度多态性(Restriction fragment length polymorphisms ,RFLP) 可以作为遗传标记,开创了直接应用DNA 多态性的新阶段,是最早应用的分子标记技术。RFLP 是检测DNA 在限制性内切酶酶切后形成的特定DNA 片段的大小,反映DNA 分子上不同酶切位点的分布情况,因此DNA 序列上的微小变化,甚至1 个核苷酸的变化,也能引起限制性内切酶切点的丢失或产生, 导致酶切片段长度的变化。

分子标记技术

SSR标记技术和ISSR 标记技术雷世勇 2.1 SSR 标记技术。在真核生物基因组中存在许多非编码的重复序列,如重复单位长度在15~65 个核苷酸的小卫星DNA ,重复单位长度在2~6 个核苷酸的微卫星DNA。小卫星和微卫星DNA 分布于整个基因组的不同位点。由于重复单位的大小和序列不同以及拷贝数不同,从而构成丰富的长度多态性。定义:SSR (全称为简单序列长度多态性标记)也称微卫星DNA ,是一类由几个多为1~5 个碱基组成的基序串联重复而成的DNA 序列,其中最常见的是双核苷酸重复,即 CA n和 TG n ,每个微卫星DNA 的核心序列结构相同,重复单位数目10~60 个,其高度多态性主要来源于串联数目的不同。根据微卫星重复序列两端的特定短序列设计引物,通过PCR 反应扩增微卫星片段。由于核心序列重复数目不同,因而扩增出不同长度的PCR 产物,这是检测DNA 多态性的一种有效方法。微卫星序列在群体中通常具有很高的多态性,而且一般为共显性,因此是一类很好的分子标记。 SSR分子标记的应用举例 ――鹅掌楸种属及杂种的分子标记北美鹅掌楸EST序列中开发的EST-SSR引物引物筛选物种特异性扩增引物特异性验证 SSR 标记技术的特点有:(1)数量丰富,广泛分布于整个基因组;(2)具有较多的等位性变异;(3)共显性标记,可鉴别出杂合子和纯合子;(4)实验重复性好,结果可靠;(5)由于创建新的标记时需知道重复序列两端的序列信息,因此其开发有一定困难,费用也较高。SSR 标记的应用目前已利用微卫星标记构建了人类、小鼠、大鼠、

水稻、小麦、玉米等物种的染色体遗传图谱。这些微卫星标记已被广泛应用于基因定位及克隆、疾病诊断、亲缘分析或品种鉴定、农作物育种、进化研究等领域。 2.2 ISSR 标记技术 ISSR 即(内部简单重复序列),是一种新兴的分子标记技术。它是建立在1994年发展的一种微卫星基础上的分子标记。已经广泛应用于各种动植物的品种鉴定、遗传图谱建立、遗传多样性的研究等方面。几个重要的名词: ISSR:他们用加锚定的微卫星寡核苷酸作引物,即在SSR 的5′端或3′端加上2~ 4 个随机选择的核苷酸,这可引起特定位点退火,从而导致与锚定引物互补的间隔不太大的重复序列间的基因组节段进行PCR 扩增。这类标记又被称为 ASSR或AMP-PCR。RAMP: 在所用的两翼引物中,可以一个是ASSR 引物,另一个是随机引物。如果一个是5′端加锚的ASSR 引物,另一个是随机引物,则被称为RAMP 技术。 ISSR分子标记的优点 2实验成本低; 3操作简单;4实验稳定性高; 5物种间通用; 6多态性较高; 1记录方便; 7精确度高; 8检测方便; 9开发费用低。 ISSR 标记技术原理:用于ISSR-PCR 扩增的引物通常为16~18 个碱基序列,由1~4 个碱基组成的串联重复和几个非重复的锚定碱基组成,从而保证了引物与基因组DNA 中SSR 的5′或3′末端结合,通过PCR 反应扩增SSR 之间的DNA 片段。SSR 在真核生物中的分布是非常普遍的,并且进化变异速度非常快,因而锚定引物的ISSR-PCR 可以检测基因组许多位点的差异。 ISSR的应用举例 ――攀枝花苏铁遗传多样性的ISSR分析 PCR扩增及产物检测:从

最新分子遗传标记及其应用

分子遗传标记及其应 用

分子遗传标记及其应用 摘要:分子遗传标记育种是一种新兴的分子标记技术,目前已经在分子生物学特别是在分子遗传学上得到了广泛的应用。本文介绍了分子遗传标记的概念及应用。 关键字:分子遗传标记,标记辅组选择 Abstract:Served as an newly rising genetic marker technique,molecule genetic markers is being widely used on molecule biology,especially in molecule genetic researches. This article gives a brief introduction of the conception and utilization of molecule genetic markers. Keywords:marker assisted selection;molecule genetic markers 一.分子遗传标记技术 1.1分子遗传标记的定义 DNA分子遗传标记技术是一种新兴的分子标记技术,目前已经在分子生物学特别是在分子遗传学上得到了广泛的应用,由于真核生物的遗传信息都储存在染色体和细胞器基因组的DNA序列中,因此从理论上讲,DNA水平上的分子标记是所有遗传标记中最为稳定,最为可靠的。随着现代分子生物学技术的发展,使直接利用DNA序列中核甘酸的变异作为遗传标记成为了可能。 目前,对分子遗传标记较完整的描述,是指易于识别,遵循孟德尔遗传模式的,具有个体特异性或其分布规律具有种质特征的某一类表型特征或遗传物质;其范围包括: ①基因或遗传物质的产物的变异特征; ②作为基因或遗传物质载体的染色体的形态学变异;

分子遗传标记及其应用

分子遗传标记及其应用 摘要:分子遗传标记育种是一种新兴的分子标记技术,目前已经在分子生物学特别是在分子遗传学上得到了广泛的应用。本文介绍了分子遗传标记的概念及应用。 关键字:分子遗传标记,标记辅组选择 Abstract:Served as an newly rising genetic marker technique,molecule genetic markers is being widely used on molecule biology,especially in molecule genetic researches. This article gives a brief introduction of the conception and utilization of molecule genetic markers. Keywords:marker assisted selection;molecule genetic markers 一.分子遗传标记技术 1.1分子遗传标记的定义 DNA分子遗传标记技术是一种新兴的分子标记技术,目前已经在分子生物学特别是在分子遗传学上得到了广泛的应用,由于真核生物的遗传信息都储存在染色体和细胞器基因组的DNA序列中,因此从理论上讲,DNA水平上的分子标记是所有遗传标记中最为稳定,最为可靠的。随着现代分子生物学技术的发展,使直接利用DNA序列中核甘酸的变异作为遗传标记成为了可能。 目前,对分子遗传标记较完整的描述,是指易于识别,遵循孟德尔遗传模式的,具有个体特异性或其分布规律具有种质特征的某一类表型特征或遗传物质;其范围包括: ①基因或遗传物质的产物的变异特征; ②作为基因或遗传物质载体的染色体的形态学变异; ③基因或遗传物质本身的变异[1]。 1.2分子遗传标记的作用 分子遗传标记能够在DNA水平上对编码和非编码序列的遗传变异进行检测,不受内外环境的影响;大多数分子标记多态性的信息含量很高;而且检测迅速、方便,无组织差异。由此可见,分子遗传标记是最理想的遗传标记,这决定了它能够得到迅速的发展,并能够广泛的应用于遗传育种研究和农牧生产的各个领域。 遗传标记主要有如下应用 (1)定位基因序列在染色体上的位置。 (2)构建遗传连锁图谱。 (3)定位数量性状基因座。 (4)对与性状相关的候选基因和主基因进行鉴定。 (5)对动物种群遗传资源进行评估。 (6)进行系谱/血缘分析。 (7)分类学与分子系统学研究,进行系统发育分析和绘制生物进化树,研究基因结构和功能进化。 (8)胚胎的早期性别和性状诊断,为选择性坠胎术提供参照依据。

相关主题
文本预览
相关文档 最新文档