当前位置:文档之家› 西华大学化工原理下册期末考试复习资料

西华大学化工原理下册期末考试复习资料

西华大学化工原理下册期末考试复习资料
西华大学化工原理下册期末考试复习资料

化工原理2学习要求

第7章传质与分离过程概论

1、掌握平衡分离与速率分离的概念(基本原理)及各自有哪些主要类型。

平衡分离:借助分离媒介(热能、溶解、吸附剂)使均相混合物变为两相,两相中,各组分达到某种平衡,以各组分在处于平衡的两相中分配关系的差异为依据实现分离。

主要类型:(1)气液传质过程(2)汽液传质过程(3)液液传质过程(4)液固传质过程(5)气固传质过程

速率分离:借助推动力(压力、温度、点位差)的作用,利用各组扩散速度的差异,实现分离。

主要类型:(1)膜分离:超滤、反渗透、渗析、电渗析(2)场分离:电泳、热扩散、高梯度磁场分离

2、掌握质量传递的两者方式(分子扩散和对流扩散)。

分子扩散:由于分子的无规则热运动而形成的物质传递现象——分子传质。

对流扩散:运动流体与固体表面之间,或两个有限互溶的运动流体之间的质量传递过程—对流传质

3、理解双膜理论(双膜模型)的论点(原理)。

(1) 相互接触的两流体间存在着稳定的相界面,界面两侧各存在着一个很薄(等效厚度分别为z G和z L)的流体膜层(气膜和液膜)。溶质以分子扩散方式通过此两膜层。

(2) 溶质在相界面处的浓度处于相平衡状态。无传质阻力。

(3) 在膜层以外的两相主流区由于流体湍动剧烈,传质速率高,传质阻力可以忽略不计,相际的传质阻力集中在两个膜层内。

4、理解对传质设备的性能要求、主要种类。

性能要求:

单位体积中,两相的接触面积应尽可能大

两相分布均匀,避免或抑制沟流、短路及返混等现象发生

流体的通量大,单位设备体积的处理量大

流动阻力小,运转时动力消耗低

操作弹性大,对物料的适应性强

结构简单,造价低廉,操作调节方便,运行安全可靠

主要种类:

板式塔为逐级接触式的气液传质设备,它主要由圆柱形壳体、塔板、溢流堰、降液管及受液盘等部件构成。

塔板的性能评价指标:生产能力大塔板效率高塔板压降低

操作弹性大结构简单,制造维修方便,造价低

填料塔为连续接触式的气液传质设备,它主要由圆柱形壳体、液体分布器、填料支承板、塔填料、填料压板及液体再分布装置等部件构成。

填料的性能评价:生产能力大、传质效率高、填料层压降低、操作弹性大、造价低

填料的选用:传质效率要高,填料的通量要大,填料的压降要低,填料抗污堵性能强,填料便于拆装、检修

第8章吸收

1、掌握吸收的概念、基本原理、推动力,了解吸收的用途。

吸收概念:使混合气体与适当的液体接触,气体中的一个或几个组分便溶解于液体内而形成溶液,于是原混合气体的组分得以分离。这种利用各组组分溶解度不同而分离气体混合物的操作称为吸收。

吸收的基本原理:当气相中溶质的实际分压高于与液相成平衡的溶质分压时,溶质便由气相向液相转移,即吸收。利用混合气体中各组分在液体中溶解度差异,使某些易溶组分进入液相形成溶液,不溶或难溶组分仍留在气相,从而实现混合气体的分离。

吸收的推动力:气体吸收是混合气体中某些组分在气液相界面上溶解、在气相和液相内由浓度差推动的传质过程。

2、掌握吸收剂、吸收液、解吸(脱吸)、物理吸收、化学吸收的概念。

吸收剂:吸收操作中所用的溶剂,以S表示。

吸收液(溶液):吸收操作后得到的溶液,主要成分为溶剂S和溶质A。

解吸或脱吸:与吸收相反的过程,即溶质从液相中分离而转移到气相的过程。

物理吸收:吸收过程溶质与溶剂不发生显著的化学反应,可视为单纯的气体溶解于液相的过程。如用水吸收二氧化碳、用水吸收乙醇或丙醇蒸汽、用洗油吸收芳烃等。

化学吸收:溶质与溶剂有显著的化学反应发生。如用氢氧化钠或碳酸钠溶液吸收二氧化碳、用稀硫酸吸收氨等过程。化学反应能大大提高单位体积液体所能吸收的气体量并加快吸收速率。但溶液解吸再生较难。

3、理解相平衡关系在吸收中的应用,理解温度和压力对吸收及解吸的影响。

1)判断传质的方向2)确定传质的推动力3)指明传质进行的极限

2、了解亨利定律的表达式及物理意义。

1)p-x关系:若溶质在气、液相中的组成分别以分压p、摩尔分数x表示,亨利定律为:p*=Ex (E—亨利系数,kPa)

2)p-c关系:若溶质在气、液相中的组成分别以分压p、摩尔浓度c(kmol/m3)表示,亨利定律为:p*=c/H (H--溶解度系数,kmol/(m3·kPa) )

3)y-x关系:若溶质在气、液相中的组成分别以摩尔分数y、x表示,亨利定律为: y*=m x (m—相平衡常数)

4)Y -X关系(摩尔比)Y*=mX

物理意义:用来描述稀溶液(或难溶气体)在一定温度下,当总压不高(通常不超过500kP)时,互成平衡的气液两相组成间的关系。

4、了解亨利定律的表达式及物理意义。

1)p-x关系:若溶质在气、液相中的组成分别以分压p、摩尔分数x表示,亨利定律为:p*=Ex (E—亨利系数,kPa)

2)p-c关系:若溶质在气、液相中的组成分别以分压p、摩尔浓度c(kmol/m3)表示,亨利定律为:p*=c/H (H--溶解度系数,kmol/(m3·kPa) )

3)y-x关系:若溶质在气、液相中的组成分别以摩尔分数y、x表示,亨利定律为: y*=m x (m—相平衡常数)

4)Y -X关系(摩尔比)Y*=mX

物理意义:用来描述稀溶液(或难溶气体)在一定温度下,当总压不高(通常不超过500kP)时,互成平衡的气液两相组成间的关系。

5、掌握液气比的概念,其大小对吸收操作有何影响,若何确定(吸收剂用量)?

液气比:塔内任一横截面上的气相组成Y与液相组成X成线性关系,直线的斜率q n,L/q n, V,称为液气比。

在吸收塔的计算中,通常气体处理量是已知的,而吸收剂的用量需通过工艺计算来确定。在气量一定的情况下,确定吸收剂的用量也即确定液气比q n,L/q n, V,液气比q n,L/q n, V的确定方法是,先求出吸收过程的最小液气比(q n,L/q n, V)min,然后再根据工程经验,确定适宜(操作)液气比。

6、理解填料塔的基本结构、工作原理及特点。

特点:

1.填料塔的流体力学性能

1)填料层的持液量(m3液体/m3填料):填料层的持液量是指在一定操作的条件下,在单位体积填料层内所积存的液体体积。

2)填料层的压降:填料层的压降形成--液膜与填料表面的摩擦、液膜与上升气体的摩擦

2.填料塔的操作特性

1)填料塔内的气液分布

2)液体喷淋密度与填料表面的润湿

3)液泛:在泛点气速下,持液量的增多使液相由分散相变为连续相,而气相则由连续相变为分散相,此时气体呈气泡形式通过液层,气流出现脉动,液体被带出塔顶,塔的操作极不稳定,甚至被破坏,此种情况称为液泛。

4)填料塔的返混

基本原理(无)

基本结构:

7、掌握填料特性参数(比表面、空隙率、填料因子)的定义,了解常见填料形状类型。

(1)比表面积:单位体积填料层的表面积称为比表面积,以a t表示,其单位为m2/m3。

(2)空隙率:单位体积填料层的空隙体积称为空隙率,以ε表示,其单位为m3/m3,或以%表示。

(3)填料因子:填料的比表面积与空隙率三次方的比值称为填料因子,以Φ表示,其单位为

1/m。Φ = a t / ε3

1.散装填料

(1) 环形填料:拉西环、鲍尔环、阶梯环、扁环

(2)鞍形填料与环鞍形填料:弧鞍填料、矩鞍填料、金属环矩鞍填料

(3)球形填料与花环填料:多面球填料、TRI球形填料、花环填料、共轭环填料、海尔环填料、纳特环填料、塑料异型环矩鞍填料

2.规整填料

(1)格栅填料:木格栅填料、格里奇格栅填料

(2)波纹填料:金属孔板波纹填料、金属丝网波纹填料、陶瓷板波纹填料、塑料板波纹填料

第9章蒸馏学习要求

1、掌握蒸馏的特点、分类及原理。

蒸馏:利用液体混合物中各组分挥发性的差异,以热能为媒介使其部分气化,从而在气相富集轻组分(易挥发组分),液相富集重组分(难挥发组分),使液体混合物得以分离的方法。(1)按蒸馏方式分

简单蒸馏或平衡蒸馏:一般用在混合物各组分挥发性相差大,对组分分离程度要求又不高的情况下。

精馏:在混合物组分分离纯度要求很高时采用。

特殊精馏:混合物中各组分挥发性相差很小,或形成恒沸液(azeotrope),难以或不能用普通精馏加以分离时,借助某些特殊手段进行的精馏。

(2)按操作流程分

间歇精馏:多用于小批量生产或某些有特殊要求的场合。

连续精馏:多用于大批量工业生产中。

2、理解简单的蒸馏操作流程,原理及产品浓度特点。

简单蒸馏也称微分蒸馏,为持续加热,逐渐蒸馏的过程,是间歇非稳态操作。加入蒸馏釜的原料液持续吸热沸腾气化,产生的蒸气由釜顶连续引入冷凝器得馏出液产品。

釜内任一时刻的气、液两相组成互成平衡。蒸馏过程中系统的温度和气、液相组成均随时间改变。任一时刻,易挥发组分在蒸气中的含量y 始终大于剩余在釜内的液相中的含量x,釜内组分含量x 由原料的初始组成xF-沿泡点线不断下降直至终止蒸馏时组成xE,釜内溶液的沸点温度不断升高,蒸气相组成y 也随之沿露点线不断降低。

3、掌握恒沸混合液,理解相平衡常数、挥发度,相对挥发度的概念。

恒沸液:平衡时气相和液相组成相同,相图中气相线和液相线重合。

相平衡常数:精馏计算中,通常用Ki表示i组分的相平衡常数,其定义为:

式中yi 和xi 分别表示i 组分在互为平衡的气、液两相中的摩尔分数。对于易挥发组分,Ki >1,即yi > xi。Ki 并非常数,当p一定时,Ki 随温度而变化。Ki 值越大,组分在气、

液两相中的摩尔分数相差越大,分离也越容易。

挥发度:(ppt)溶液中各组份的挥发性由挥发度来衡量,其定义为组分在气相中的平衡蒸气压(分压)与在液相中的摩尔分数的比值。对双组分物系

相对挥发度:(书)习惯上,用易挥发组分的挥发度与难挥发组分的挥发度之比来表示相对挥发度。以α表示,即

4、掌握精馏分离原理(用T—x—y

在一定压力下,将混合蒸气进行连续部分冷凝,蒸气相的组成沿t-x(y) 相图的露点线变化,结果可得到难挥发组分(重组分)含量很低而易挥发组分(轻组分)摩尔分数y 很高的蒸气。精馏过程正是这二者的有机结合。

设有1、2、3三釜,每釜部分气化,则有:

x1<x2<x3 y1<y2<y3 t1>t2>t3

即釜数越多则顶上产品越纯。

缺点:收率低,能耗大。

为此:(1)去掉冷凝器(2)从上到下引入回流

利用下一釜的高温蒸气与上一釜的低温液体混合,发生质热交换,在每一釜中都实现部分气化和部分冷凝。——精馏塔原理

5、理解精馏操作流程,精馏段,提馏段的概念及作用。

原料液经预热器加热到指定温度后,送入精馏塔的进料板,在进料板上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气浸入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。塔顶回流和塔底再沸器产生上升蒸汽是精馏得以连续稳定操作的两个必要条件。精馏段—加料板以上的塔段

气相中的重组分向液相(回流液)传递,而液相中的轻组分向气相传递,从而完成上升蒸气的精制。

提馏段—加料板以下的塔段

下降液体(包括回流液和料液中的液体部分)中的轻组分向气相(回流)传递,而气相中的重组分向液相传递,从而完成下降液体重组分的提浓。

6、理解精馏物料衡算原理和方法,掌握进料的五种热状态类型,理解其对精馏操作的影响。见教材

7、掌握回流比的概念、对精馏塔理论板数的影响及适宜回流比的选择方法。

回流比:用R表示,R=回流量/塔顶产品量=L/D,回流比是精馏过程计算不可缺的重要参数,塔所需的理论板数,塔顶冷凝器和塔釜再沸器的热负荷均与回流比有关。精馏过程的投资费用和操作费用都取决于回流比的值。

回流比对理论板数的影响:全回流时操作线和平衡线的距离为最远,传质推动力最大,达到分离程度所需的理论板数层数为最少。对于一定的分离任务,若减小操作回流比,则精馏段操作线的斜率变小,截距变大,两段操作线向平衡线靠近,气液两相间的传质推动力减小,达到指定分离程度所需理论板数将增多。

回流比的选择:选择适宜的回流比需进行经济权衡,根据生产实践经验,取

统计表明,实际生产中的操作回流比以下列范围使用较多:

8、理解理论塔板的概念、塔板效率的概念。

塔板效率(板效率)表征的是实际塔板的分离效果接近理论板的程度。单板效率与全塔板效率是常用的两种表示方法。

所谓理论板应满足如下条件:离开这种板的气液相互成平衡,温度相等;塔板上各处的液相组成均匀一致。

9、理解用作图法求精馏塔理论塔板数的原理及作图的方法步骤。

图解法又称麦克布—蒂利法,简称M—T法。图解法以逐板计算法的基本原理为基础,在x-y图上,利用平衡曲线和操作线代替平衡方程和操作线方程,用简便的画阶梯方法求解理论板层数。图解法简明清晰,便于分析影响因素,因而在两组分精馏计算中得到广泛应用,但该法准确性较差。

图解法的具体步骤如下:

(1)在x-y坐标上作出平衡曲线与对角线

(2)在x-y相图上作出操作线

(3)进料热状况对q线及操作线的影响

(4)梯级图解法确定理论板层数

10、了解板式塔的基本结构、工作原理及主要类型名称,理解泡罩塔、筛板塔、浮阀塔的基

本结构、工作原理及特点。

泡罩塔:结构:泡罩塔板是工业上应用最早(1813年)的塔板,它由升气管及泡罩构成。泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。泡罩有φ80、φ100和φ150mm

()

min

0.2

~

1.1R

R=

()

min

9.1

~

6.1R

R=

三种尺寸,可根据塔径大小选择。泡罩下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。泡罩在塔板上为正三角形排列。

工作原理:操作时,上升气体通过齿缝进入液层时,被分散成许多细小的气泡或流股,在板上形成了鼓泡层和泡沫层,为气、液两相提供了大量的传质界面。

特点:

优点:操作弹性适中,塔板不易堵塞缺点:生产能力及板效率较低,结构复杂、造价高筛板塔:

结构:筛孔塔板简称筛板,其结构特点是在塔板上开有许多均匀小孔,孔径一般为3~8mm。筛孔在塔板上为正三角形排列。塔板上设置溢流堰,使板上能保持一定厚度的液层。

原理:在正常的操作流速下,通过筛孔上升的气流,应能阻止液体经筛孔向下泄露。

特点:

优点:结构简单、造价低,生产能力大,板上液面落差小,气体压降低,塔板效率较高

缺点:操作弹性小,筛孔易堵塞,不宜处理易结焦、黏度大的物料

浮阀塔:

结构:浮阀塔板的结构特点是在塔板上开有若干个阀孔,每个阀孔装有一个可上下浮动的阀片,阀片本身连有几个阀腿,插入阀孔后将阀腿底脚拨转90°,以限制阀片升起的最大高度,并防止阀片被气体吹走。阀片周边冲出几个略向下弯的定距片,当气速很低时,由于定距片的作用,阀片与塔板呈点接触而坐落在阀孔上,可防止阀片与板面的粘结。

原理:操作时,由阀孔上升的气流,经过阀片与塔板间的间隙而与板上横流的液体接触。浮阀开度随气体负荷而变。当气量很小时,气体仍能通过静止开度的缝隙而鼓泡。

特点:

优点:结构简单、造价低,操作弹性大,生产能力大,塔板效率较高

缺点:处理易结焦、高黏度物料阀片易与塔板粘结,操作时阀片易脱落或卡死

11、理解板式蒸馏塔塔板负荷性能图的组成曲线,负荷性能图的作用。

负荷性能图由以下五条线组成:

(1)漏液线图中线1为漏液线,又称气相负荷下限线。当操作的气相负荷低于此线时,将发生严重的漏液现象,气液不能充分接触,使塔板效率下降。

(2)雾沫夹带线图中线2为雾沫夹带线,又称气相负荷上限线。如操作的气相负荷超过此线时,表明雾沫夹带现象严重,使塔板效率急剧下降。

(3)液相负荷下限线图中线3为液相负荷下限线,若操作的液相负荷低于此线时,表明液体流量过低,板上液流不能均匀分布,气液接触不良,易产生干吹、偏流等现象,导致塔板效率的下降。

(4)液相负荷上限线图中线4为液相负荷上限线,若操作的液相负荷高于此线时,表明液体流量过大,此时液体在降液管内停留时间过短,进入降液管内的气泡来不及与液相分离而被带入下层塔板,造成气相返混,使塔板效率下降。

(5)液泛线图中线5为液泛线,若操作的气流负荷超过此线时,塔内将发生液泛现象,使塔不能正常操作。

负荷性能图的作用:

塔板负荷性能图在板式塔的设计及操作中具有重要意义。通常,当塔板设计后均要作出塔板负荷性能图,以检验设计的合理性。对于操作中的板式塔,也需作出负荷性能图,以分析操作状况是否合理。当板式塔操作出现问题时,通过塔板负荷性能图分析问题所在,为问题的解决提供依据。

12、掌握板式塔的液泛、漏液的概念,理解产生原因及后果。

漏液:当上升气体流速减小,气体通过升气孔道的动压不足以阻止板上液体经孔道流下时,便会出现漏液现象。

液泛:塔内若气、液两相之一的流量增大,使降液管内液体不能顺利流下,管内液体必然积累,当管内液体提高到越过溢流堰顶部时,两板间液体相连,并依次上升,这种现象称为液泛,也称淹塔。

(漏液)原因:气速较小时,气体通过阀孔的速度压头小,不足以抵消塔板上液层的重力;气体在塔板上的不均匀分布也是造成漏液的重要原因。

(漏液)后果:严重的漏液使塔板上不能形成液层,气液无法进行传热、传质,塔板将失去其基本功能。

液泛原因:夹带液泛:板间距过小,操作液量过大,上升气速过高时,过量液沫夹带量使板间充满气、液混合物而引发的液泛。

溢流液泛:液体在降液管内受阻不能及时往下流动而在板上积累所致。

液泛后果:液泛使整个塔不能正常操作,甚至发生严重的设备事故,要特别注意防范。

13、了解影响塔板操作状况和分离效果的主要因素及塔的适宜操作范围。

1)、塔板上气、液两相的接触状态

从减小雾沫夹带考虑,大多数塔都控制在泡沫接触状态下操作。

2)、塔板压力降

进行塔板设计时,应全面考虑各种影响塔板效率的因素,在保证较高板效率的前提下,力求减小塔板压力降,以降低能耗及改善塔的操作性能。

3)、液面落差

在塔板设计中,应尽量减小液面落差。

第10章液——液萃取学习要求

1、掌握液——液萃取的操作原理、特点(用三角形坐标图及溶解度曲线进行分析说明),

理解对萃取剂的要求。

原理:在液体混合物中加入与其互不相溶的液体溶剂(萃取剂)形成液液两相,利用混合物中各组分在两相中溶解度的差异而达到分离的目的。

萃取剂应满足以下要求:原溶液的溶质在萃取剂中的溶解度远大于在原溶液中的溶解度;萃取剂应与原溶液中溶剂不互溶。

萃取剂:萃取过程中加入的溶剂,以S表示。萃取剂对溶质有较大的溶解能力,对于稀释剂则不互溶或部分互溶。

操作特点:

(1)萃取过程本身并未完全完成分离任务,而只是将难于分离的混合物转变成易于分离的混合物,要得到纯产品并回收溶剂,必须辅以精馏(或蒸发)等操作。

(2)常温操作,适合于热敏物料分离

用三角形坐标图及溶解度曲线进行分析说明(教材)

2、理解萃取相、萃余相、萃取剂、萃取液、萃余液、分配系数、选择性系数概念。

萃取相E:萃取分离后,含萃取剂多的一相,主要由A+S构成。

萃余相R:萃取分离后,含稀释剂多的一相,主要由B+A构成。

萃取液E,:从萃取相中回收S后得到的液体,主要由A组成。

萃余液R,:从萃余相R中回收S后得到的液体,主要由B组成。

3、掌握单级液——液萃取的操作流程,试在三角形坐标图中表示单级萃取的过程及各相的

位置。

操作流程:混合;沉降分离;脱除溶剂

a)三角形的三个顶点分别表示A、B、S三个纯组分。

b) 三条边上的任一点代表某二元混合物的组成,不含第三组分。

E 点:x A =0.4,x B =0.6

c) 三角形内任一点代表某三元混合物的组成。该点至某一顶点对边的距离,代表该顶点物

质组分的多少。

M 点:x A =0.4,x B =0.3,x S =0.3

4、理解三级错流式和逆流式萃取的操作流程图,各自的特点。

三级错流式:原料依次通过各级,新鲜溶剂则分别加入各级的混合槽中,萃取相和最后一级的萃余相分别进入溶剂回收设备,回收溶剂后的萃取相称为萃取液(用E,表示),回收溶剂后的萃余相称为萃余液(用R,表示)。

特点:萃取率比较高,但萃取剂用量比较大,溶剂回收处理量大,能耗大。

2多级逆流式:原料液和萃取剂依次按反方向通过各级,最终萃取相从加料一端排出,并引入溶剂回收设备中,最终萃余相从加入萃取剂的一端排出,引入溶剂回收设备中。

特点:各级萃取推动力比较均匀,可用较少的萃取剂获得比较高的萃取率,工业上广泛采用。

5、理解单级萃取的计算,了解多级错流式和逆流式萃取的图解作图法。

、单级萃取:(1)根据平衡数据作出溶解度曲线及辅助线。

(2)已知x F , 在 AB 边上定出 F 点,由萃取剂组成确定 S0 点。联结 FS0,代表原料液与萃取剂的混合液 M 点必在 FS0 线上。

(3)由x R(或x R’)定出 R 点(若知 R’点,连 SR’线与溶解度曲线的交点即为 R 点)。

再由 R 点利用辅助曲线求出 E 点,则 RE 与 F S0 线的交点即为混合液的组成点 M。

根据杠杆原则----溶剂比

y E、x M、x R 、x’R、y’E可由相图读出。

6、理解溶剂比的概念,其大小对萃取有何影响,若何确定?

----溶剂比。如图所示,在萃取过程中,当溶剂比减少时,操作线逐渐向分配曲线靠拢,达到同样分离要求所需的理论级数逐渐增加,当溶剂比减少减少至一定值时,操作线和分配曲线相切,此时类似于精馏中的夹紧区,所需的理论级数无限多,此时的溶剂比称为最小溶剂比(S/F)min,相应的萃取剂用量的最低限度以S min表示,显然S为萃取操作中溶剂用量的最低极限值,实际操作时的萃取及必须大于此极限值。适宜的溶剂用量应根据设备费与操作费之和最小的原则确定,一般取为最小溶剂用量的1.1-2.0倍。即

S=(1.1-2.0)S min.

7、掌握超临界流体的概念、定义;理解超临界流体的有关性质。了解超临界萃取的特点。书:)超临界流体性质:密度,黏度和自扩散系数是超临界流体的三个基本性质。超临界流体的密度接近于液体,黏度接近于气体,而自扩散系数介于气体和液体之间,比液体答100

倍左右,这意味着超临界流体具有与液体相近的溶解能力,同时,超临界流体萃取时的传质速率将远大于其处于液态下的溶剂萃取速率且能够很快地达到萃取平衡。

Ppt:)超临界流体有关性质:(1)超临界流体的P-V-T 性质:在稍高于临界温度的区域内,压强稍有变化,就会引起流体密度很大变化。(2)超临界流体的传递性质:超临界流体密度接近液体,黏度接近气体,具有与液体相近的溶解能力,同时其传质速率远大于液体溶剂并能很快达到萃取平衡。(3)超临界流体的溶解能力:超临界流体的溶解能力c与密度有关,一般密度越大、溶解能力越大。综上所述,超临界流体密度接近液体,黏度接近气体,具有与液体相近的溶解能力,同时其传质速率远大于液体溶剂,其密度对压力和温度的变化非常敏感,从而其溶解能力也随压力和温度的变化发生敏感的变化。

8、掌握超临界流体萃取的基本原理、特点,掌握常见的3种典型流程。

原理:超临界萃取以高压、高密度的超临界流体为萃取剂,从液体或固体中提取高沸点或热敏性的有用成分,以达到分离或纯化的目的。(超临界流体萃取包括萃取和分离两个阶段,在萃取阶段,超临界流体从原料中萃取出所需组分,在分离阶段,通过改变某个参数或其他方法,使被萃取的组分从超临界流体中分离出来,萃取剂则循环使用。)

常见的3个流程:

(1)等温变压流程:利用不同压力下超临界流体萃取能力(溶解度)的差异,通过改变压力使溶质与超临界流体分离。

(2)等压变温流程:利用不同温度下超临界流体萃取能力(溶解度)的差异,通过改变温度,使溶质与超临界流体分离。

(3)等温等压吸附流程:在分离器内放置仅吸附溶质而不吸附超临界流体的吸附剂,通过吸附剂过程来达到溶质与超临界流体分离的目的。

超临界流体密度接近液体,黏度接近气体,具有与液体相近的溶解能力,同时其传质速率远大于液体溶剂,其密度对压力和温度的变化非常敏感,从而其溶解能力也随压力和温度的变化发生敏感的变化。

超临界流体萃取定义:

流体(溶剂)在临界点附近某一区域(超过临界区)内,它与待分离混合物中的溶质具有异常相平衡行为和传递性能、且它对溶质溶解能力随压力和温度改变而在相当宽的范围内变动这一特性而达到溶质分离的技术。

超临界萃取萃取剂的选择

(1)超临界流体的溶解能力对不同的溶质是不同的,具有选择性,遵从相似相溶原则。——萃取选择性

(2)物理性质:性质稳定;适当的临界压力,以减少压缩费用;具有低的沸点,以利于从溶质分离;

(3)经济;

(4)无毒、无害。

特点:

超临界流体的密度与溶解能力接近于液体,而又保持了气体的传递特性,故传质速率高,可更快达到萃取平衡;

操作条件接近临界点,压力、温度的微小变化都可改变超临界流体的密度与溶解能力,故溶质与溶剂的分离容易,费用低;

超临界萃取具有萃取和精馏的双重特性,可分离难分离物质;

超临界流体一般具有化学性质稳定、无毒无腐蚀性、萃取操作温度不高等特点,故特别适用于医药、食品等工业;

超临界萃取一般在高压下进行,设备投资较大。

9、了解萃取设备的分类及各种设备的基本结构,特点。

见教材

第11章 物料干燥学习要求

1、 理解干燥原理,为什么说干燥是传质、传热同时进行的过程?

干燥基本原理:温度为 t 、湿份分压为 p 的湿气体与湿物料的表面接触,当物料表面湿份分压大于主湿气体湿份分压时,则存在传质推动力。在推动力(分压差)的作用下,湿份由物料表面向气流主体扩散而干燥,气化需要能量,为此,需加热。

干燥介质:用来传递热量(载热体)和湿份(载湿体)的介质。

注意:

(1)只要物料表面的湿份分压高于气体中湿份分压,干燥即可进行,与气体的温度无关。

(2)被气化的湿分气体若不带走,传质推动力逐渐减少,最终干燥无法进行,因此,干燥得以连续进行的必要条件是气化的湿分气体被不断带走。

(3) 加热并不是干燥的充要条件,其目的在于加快湿份汽化和物料干燥的速度,达到一定的生产能力。

干燥是传质、传热同时进行的过程:在对流干燥过程中,热空气将热量传给热物料,使物料表面水分汽化,汽化的空气又要被空气带走。所以,干燥介质过程既是载热体又是载湿体。是传质传热同时进行的过程。

2、 掌握湿空气的湿度,相对湿度,湿比热,水蒸气分压,干球温度,湿球温度,露点的概

念及其相互关系,掌握公式:

(1) 湿度又称湿含量,为空气中水汽的质量与绝干空气体的质量之比。湿度只表示湿

空气中所含湿份的绝对数,不能反映气体偏离饱和状态的程度(气体的吸湿潜力)。

(2) 相对湿度:一定的系统总压和温度下,气体中湿份蒸汽的分压 pV 与系统温度下湿份的

饱和蒸汽压 ps 之比。?

值在0~1之间:? 值越低,气体偏离饱和的程度越远,吸湿潜力越大;? =100% 时,p=ps ,气体被湿份蒸汽所饱和,不能再吸湿。

(3) 湿比热:1kg 绝干气体及所含湿份蒸汽温度升高1℃所需要的热量

s

s

p P p H ??-=622.0

kJ/(kg 绝干气体·℃)

式中:c g — 绝干气体的比热,J/(kg 绝干气体·℃);

c v — 湿份蒸汽的比热,J/(kg 湿份蒸汽·℃) 。

(4)水蒸气分压:干空气和湿空气占有一定的体积并具有一定压强时,当水蒸气占有与干空气体积相同时所受压力。

(5)干球温度:空气的真实温度为干球温度,简称温度,以t 表示。

(6)湿球温度:空气传给水分的显热等于水分汽化所需的汽化热时,湿球温度计上的温度维持稳定,这种稳定温度称为该湿空气的湿球温度,以t w 表示。

(7) 露点:将不饱和空气等湿冷却到饱和状态时的温度称露点,用 t d 表示。

(8) 绝热饱和温度:若两相有足够长的接触时间,最终空气为水汽所饱和,而温度降到与循环水温相同,这种过程称为湿空气的绝热饱和冷却过程或等焓过程,达到稳定状态下的温度称为初始湿空气的绝热饱和冷却温度,简称绝热饱和温度,以t as 表示。

(9)相互关系:干球温度t 、湿球温度tw (或tas )、露点温度 td 间的关系: 不饱和湿空气 : t > tw (或 tas )> td

饱和湿空气 : t = tw (或 tas )= td

绝热饱和温度 t as 和湿球温度t w 是两完全不同的概念,但两者均为空气初始温度和湿度H 的函数,特别对水蒸气—空气系统,两者在数值上近似相等,这样就可用湿球温度t w 代替绝热饱和温度 t as ,简化许多计算。

3、 理解湿空气的H —I 图的制成原理,包括了哪些参数,熟练应用H —I 图查找状态点(由

已知两个状态参数查状态点的作图法,如已知干湿球温度查状态点等),查露点,分析状态变化过程及相关的计算(熟练间壁式加热和冷却以及冷却减湿过程,不同状态的混合过程,绝热过程)。

H —I 图是在一定的总压下制得,一般常压P=101330Pa ,纵坐标为湿度H ,横坐标为焓I ,为表达清楚,横坐标和纵坐标夹角为135o,横坐标为斜轴。

(1)等湿度线(等H 线)群:为平行于纵坐标的线群

(2)等焓线(等I 线)群:为平行于横坐标(斜轴)的线群

(3)等干球温度线(等t 线) 当t 为一定值时,I 和 H 为直线关系,不同的t 直线斜率不同。

(4)等相对湿度线(等φ线):当φ值为某一定值φ1时,H 与ps 成曲线, ps 而又是温度t 的函数,算出若干组H 和t 的对应关系,描绘在H —I 坐标中,即为等φ1线,同理得其他等φ线。 (5)蒸气分压线

H —I 图的说明与应用

根据空气任意两个独立参数,先在H —I 图上确定空气状态点,然后查取其他状态参数。如图,只要知道任意两参数,既可确定A 位置,从而,得到其他参数。 H

c c c v g H ?+?=1t

H t I 01.1)249188.1(++=

若已知湿空气的一对参数t —t w 、 t —t d 、 t — φ ,求湿空气的状态点,作图方法如下:

4、 掌握物料湿基水分,干基水分,平衡水分(平衡湿度)的定义。理解物料的平衡水分与

介质的H 、t 、相对湿度等有何关系?

湿基含水量w :单位质量的湿物料中所含液态湿分的质量。

平衡水分:当物料与一定状态的空气接触后,物料将释出或吸入水分,最终达到恒定的含水量,若空气状态恒定,则物料将永远维持这么多的含水量,不会因接触时间延长而改变,这种恒定的含水量称为该物料在固定空气状态下的平衡水分.

关系(1):

空气的相对湿度较小,平衡水分越低,能够被干燥除去的水分越多,当?,=0时,各种物料的平衡水分都为零,即湿物料只有与绝干空气相接触才能被干燥成绝干物料.

(2):物料的平衡含水量随空气温度升高而略有减少.

5、 理解影响干燥速度的因素,掌握理论干燥过程概念。

干燥阶段的理论解释

恒速干燥段:物料表面湿润,X > Xc ,汽化的是非结合水分。

由物料内部向表面输送的湿份足以保持物料表面的充分湿润,干燥速率由湿份汽化速率控制(取决于物料外部的干燥条件),故恒速干燥段又称为表面汽化控制阶段。

此时,物料表面温度接近湿球温度,热量全部用于汽化。

对于空气-水系统, tw<100℃。当气体的湿度一定时,气体的温度越高,干、湿球温度的差值越大。

结论:当物料充分湿润时,可以使用高温气体做干燥介质而不至于烧毁物料。例如,可以使用500℃的气体烘干淀粉。

降速干燥段:X < Xc

物料实际汽化表面变小 (出现干区),第一降速段;

汽化表面内移,第二降速段;

平衡蒸汽压下降(各种形式的结合水);

固体内部水分扩散速度极慢(非多孔介质)。

降速段干燥速率取决于湿份与物料的结合方式,以及物料的

结构,物料外部的干燥条件对其影响不大。

降速干燥段物料的温度随湿含量X 的降低而升高。

降速干燥段汽化的水份包括结合水分,其性质与物料本性的关系十分复杂,~ X 的变化规律通常需通过实验测定。

临界含水量Xc

前述以临界湿含量Xc 为界,干燥过程将由恒速干燥转入降速干燥阶段,从而使干燥速度降低,于生产率不利,为此Xc越小应好。

通常Xc 与物料的厚度、大小以及干燥速率有关,所以不是物料本身的性质。一般需由实验测定。

一般物料的厚度小,Xc越小;增加搅拌如流化床等也可降低Xc。

Xc 决定两干燥段的相对长短,是确定干燥时间和干燥器尺寸的基础数据,对制定干燥方案和优化干燥过程十分重要。

影响干燥过程的主要因素

1)物料尺寸和气固接触方式

物料尺寸:

减小物料尺寸,干燥面积增大,干燥速率加快。

气固接触方式:

(a) 干燥介质平行掠过物料层表面(差);

(b) 干燥介质自上而下穿过物料层,不能形成流化床(中);

(c) 干燥介质自下而上穿过物料层,可形成流化床(好)。

2)干燥介质条件

通过强化外部干燥条件(增大t减小H,增大u) 来增加传热传质推动力,减小气膜阻力,可提高恒速段(表面汽化控制) 的干燥速率,但对降速段(内部扩散控制) 的改善不大。

强化干燥条件将使Xc 增加,更多水分将在降速段汽化。

气体温度的提高受热源条件和物料耐热性的限制。

增大u,减小H ,需使用更大量的气体,干燥过程能耗增加。

3)物料本性

物料本性不影响恒速段的干燥速率;

物料结构不同,与水分的结合方式、结合力的强弱不同,降速段干燥速率差异很大。

强化干燥速率时,须考虑物料本性。若恒速段速率太快,有些物料会变形、开裂或表面结硬壳;而在降速段则应考虑物料的耐热性,如热敏性物料不能采用过高温度的气体作为干燥介质。

6、理解干燥速度、干燥曲线、干燥速度曲线、恒速干燥、降速干燥的概念。

干燥速率U:干燥器单位时间内在物料单位表面积上汽化的湿分量(kg湿分/(m2·s))。

微分形式为

式中:N ——干燥器的干燥速率,kg/(m2·s);

——物料表面积,即干燥面积,m2。

干燥曲线:物料湿含量X 及物料表面温度与干燥时间τ的关系曲线。

干燥速率曲线:干燥速率U 或干燥通量N 与湿含量X 的关系曲线。干燥过程的特征在干

燥速率曲线上更为直观。

恒速干燥段 :物料温度恒定在 t w ,X~τ 变化呈直线关系,气体传给物料的热量全部用于湿份汽化,干燥速度为常数。

降速干燥段 :物料开始升温,X 变化减慢,气体传给物料的热量仅部分用于湿份汽化,其

余用于物料升温,当 X = X * ,θ = t 。干燥速度逐级降低。

7、 掌握热风干燥的各种操作流程及在H —I 图上的表示。

参见教材

8、 掌握热风干燥的有关计算(物料衡算、热量衡算,并结合H —I 图及湿空气的有关状态

参数及状态变化过程)。

物料衡算:(1)

(Kg 水/s )

(2 (3)干燥产品流量G 2:Kg/s )

热量衡算:

1)

空气预热器传给气体的热量为

,如果空气在间壁换热器中进行加热,则其湿度不变,H 0=H 1,即

通过预热器的热量衡算,结合传热基本方程式,可以求得间壁换热空气预热器的传热面积。

2)向干燥器补充的热量Q d :在连续稳定操作条件下,系统无热量积累,单位时间内(以1

秒钟为基准):

3)干燥系统消耗的总热量

汽化湿分所需要的热量: 加热固体产品所需要的热量 : 放空热损失 : 总热量衡算 : 即干燥系统的总热量消耗于:1)加热空气;2)蒸发水分;3)加热湿物料;4)损失于周围环境中。

注意:参见教材

9、 理解干燥热效率及影响干燥效率的因素。理解干燥器热效率的计算。

(1)物料尺寸和气固接触方式 :

1)物料尺寸:减小物料尺寸,干燥面积增大,干燥速率加快。

2)气固接触方式:(a) 干燥介质平行掠过物料层表面 (差);(b) 干燥介质自上而下穿过物料层,不能形成流化床 (中);(c) 干燥介质自下而上穿过物料层,可形成流化床 (好)。

(2)干燥介质条件:

1)通过强化外部干燥条件 (↑t ,↓H ,↑u ) 来增加传热传质推动力,减小气膜阻力,可提高恒速段 (表面汽化控制) 的干燥速率,但对降速段 (内部扩散控制) 的改善不大。

2)强化干燥条件将使 Xc 增加,更多水分将在降速段汽化。3)气体温度的提高受热源条件和物料耐热性的限制。4)↑u ,↓H ,需使用更大量的气体,干燥过程能耗增加。

(3)物料本性:

1)物料本性不影响恒速段的干燥速率;

2)物料结构不同,与水分的结合方式、结合力的强弱不同,降速段干燥速率差异很大。

3)强化干燥速率时,须考虑物料本性。若恒速段速率太快,有些物料会变形、开裂或表面结硬壳;而在降速段则应考虑物料的耐热性,如热敏性物料不能采用过高温度的气体作为干燥介质。

干燥热效率的计算:

)(01I I L Q p -=l d Q I G LI Q I G LI +'+=+'+2211l c d Q I I G I I L Q +'-'+-=)()(1212)

(120θw v w c t c r W Q -+=)(122θθ-=m c m c G Q )

(020t t Lc Q H l -='l l m w d p Q Q Q Q Q Q Q '+++=+=)(010t t Lc Q H p -=

10、了解常见干燥器类型,基本结构和特点。

干燥器:实现物料干燥过程的机械设备。

被干燥物料的特点:

形状:有板状、块状、片状、针状、纤维状、粒状、粉状,膏糊状甚至液状等;

结构:多孔疏松型,紧密型;

耐热性:一般物料,热敏性;

结块:易粘结成块的湿物料在干燥过程中能逐步分散,散粒性很好的湿物料在干燥过程中可能会严重结块。

对干燥器的要求:

(1)保证产品质量要求:含水量、强度、形状等;

(2)干燥速度快、干燥时间短;

(3)操作方便,劳动条件好

干燥器分类:

按加热方式可将干燥器分为:

(1) 对流干燥器,如:洞道式干燥器、转筒干燥器、气流干燥器、流化床干燥器、喷雾干燥器等;

(2) 传导干燥器,如:滚筒式干燥器、耙式干燥器、间接加热干燥器等;

(3) 辐射干燥器,如:红外线干燥器;

(4) 介电加热干燥器,如:微波干燥器。

按气流与物料的流动方式可将干燥器分为:(1) 并流干燥(2) 逆流干燥(3) 错流干燥

干燥器的选型应考虑以下因素:

(1) 保证物料的干燥质量,干燥均匀,不发生变质,保持晶形完整,不发生龟裂变形;

(2) 干燥速率快,干燥时间短,单位体积干燥器汽化水分量大,能做到小设备大生产;

(3) 能量消耗低,热效率高,动力消耗低;

(4) 干燥工艺简单,设备投资小,操作稳定,控制灵活,劳动条件好,污染环境小。

常见干燥器:厢式(室式) 干燥器、洞道式干燥器、带式干燥器、气流干燥器、流化床干燥器、沸腾制粒干燥器、振动流化床干燥器、喷雾干燥器、转筒干燥器、双锥回转真空干燥机、旋转闪蒸干燥机。

1、厢式(室式) 干燥器

厢式干燥器的特点:对各种物料的适应性强,但物料得不到分散,气固两相接触不好,干燥时间长。可用多孔底板浅盘,使气体自上而下穿流通过物料层(穿流型厢式干燥器),以提高干燥速率。

优点:对物料适应性强,可以用于各种物料的干燥,适用于小规模多品种、干燥条件变动大的场合。

缺点:热效率较低,产品质量不易均匀。

2、带式干燥器

结构及原理:将物料通过布料机构(如星型布料器、摆动带、粉碎机或造粒机) 分布在输送带(多为网状) 上,输送带通过一个或几个加热单元组成的通道,每个加热单元均配有空气加热和循环系统,每一个通道有一个或几个排湿系统,在输送带通过时,热空气从上往下或从下往上通过输送带上的物料,从而使物料能均匀干燥。传送带可以做成多层,带宽1-3m,长为4-50m,干燥时间为11-120分钟.

优点:干燥过程中物料翻动少,对晶体形状保持完好,适用于处理粒状、块状和纤维状物料;缺点:热效率较低,生产能力较小。

3、气流干燥器

(1) 干燥速度快,固体物料分散悬浮在气流中,气固两相间具有很大的传热传质面积。热气体进口速度高(20-40m/s),气固两相间(尤其是加速段)相对速度很大,平均体积传热系数ha 为3000-7000 W/(m3·K),比其它类型干燥器高几倍至几十倍,同等生产能力条件下,气流干燥器的体积小得多。

(2) 气固并流操作,符合干燥基本规律,即在恒速段干燥条件十分强烈,而在降速段内扩散控制时,温和的干燥条件正好与之相适应,可以使用高温气体作为干燥介质而不会烧坏物料。

(3) 干燥时间短,物料从进入干燥器开始,到气固两相脱离接触,整个干燥过程不超过1秒钟,因而气流干燥又称为快速干燥或闪蒸干燥,特别适合于热敏性物料的干燥。

(4) 气流干燥器中,固体物料呈活塞流流动,每一颗粒子经历的干燥时间大致相同,因而干燥产品的湿含量均匀一致。

(5) 结构简单,设备投资少,占地面积小,操作方便,性能稳定,维修量小。

气流干燥器的缺点:

(1) 物料停留时间短,只适合于干燥非结合水分的干燥,故常被用作物料的预干燥;

(2) 颗粒破碎现象比较严重,颗粒之间以及颗粒与器壁之间的碰撞与摩擦。故不适合于干燥晶形不允许破坏的物料;

(3) 气固两相分离任务很重,固体产品的放空损失较大,粉料排空对环境造成一定污染;

(4) 气固两相接触时间短,传热不充分,气体放空损失大,热效率较低;

(5) 气体通过干燥系统的流动阻力较大,因而风机的动力消耗较高,故总能耗较高。

4、流化床干燥器

特点:

(1) 气流干燥与流态化干燥的区别在于操作气速不同。气流管中颗粒浓度较低,流化层中颗粒浓度较大;

(2) 操作气速低,但颗粒浓度高,气固接触面积很大,颗粒剧烈运动使气膜受到强烈冲刷,表面更新速率很快,传热传质速率很高,体积传热系数ha 可达2300~7000 W/(m3·K);(3) 物料颗粒的剧烈运动和相互混合使床内各处的温度均匀一致,避免了物料的局部过热,为物料的优质干燥提供了条件;

(4) 物料停留时间任意可调,特别适合于干燥结合水分;

(5) 连续操作时物料的停留时间分布很不均匀,部分物料因停留时间过短而干燥不充分,部分颗粒因停留时间过长而过分干燥。单层流化床仅用于对产品湿含量的均匀性要求不高的场合,如硫铵、磷铵和氯化铵等的干燥。

5、沸腾制粒干燥器

特点:

(1) 粉末制粒后,改善了流动性,减少了粉尘的飞扬,同时获得了溶解性良好的产品;

(2) 由于混合、制粒、干燥过程一次完成,热效率高;

(4) 产品的粒度能自由调节;

(5) 设备无死角,卸料快速、安全、清洗方便。

6、振动流化床干燥器

特点:

(1) 物料受热均匀,热交换充分,干燥强度高,比普通干燥器节能30%左右;

(2) 流态化稳定,无死角和吹穿现象;

(3) 可调性好,适应面宽,料层厚度和在机内移动速度以及振幅变更均可实现无级调节;

(4) 对物料表面损伤小,可用于易碎、颗粒不规则物料的干燥;

(5) 全封闭结构可有效防止物料与空气间的交叉污染。

7、喷雾干燥器

优点:

(1)干燥速度快,干燥时间短,特别适合于热敏性物料;由液体直接得到干燥产品,无需蒸发、结晶、固液机械分离等操作,故又称为一步干燥法。

(2)改变操作条件可控制或调节产品质量指标;

(3)可将产品制成颗粒状或空心状,产品溶解性好;

缺点:

(1)体积传热系数很低,ha约为30~90W/m2·K,水分汽化强度仅为10~20kg/m3·h,故干燥器体积庞大,热效率较低,动力消耗较大。

(2)常发生粘壁现象,影响产品质量。

8、转筒干燥器

特点:

(1) 机械化程度较高,生产能力较大;

(2) 干燥介质通过转筒的阻力较小;

(3) 对物料的适应性较强,操作稳定方便,运行费用较低;

(4) 装置比较笨重,金属耗材多,传动机构复杂,维修量较大;

(5) 设备投资高,占地面积大。

第12章其他分离方法

12.1结晶学习要求

1、掌握结晶的基本概念,理解在液——固相平衡图上分析结晶操作原理。

结晶:结晶是固体物质以晶体状态从蒸汽、溶液或熔融物中析出的过程,是获得高纯度固体物质的单元操作。

原理:熔融结晶是根据带分离物质之间的凝固点不同而实现物质介质分离的过程,主要应用于有机物的分离提纯。

图6-8双组分低共熔系固液相图,E点—低共熔点,

EB线上方熔融液X点冷却至Y点,开始析出B的晶体;

X点在AE线上方熔融液冷却则析出A的晶体;

结晶过程分类:溶液结晶、熔融结晶、升华结晶、沉淀结晶。

结晶过程

第一步:成核过程:产生微小的但能够成长的小晶体。

第二步:晶核成长:以形成的微小晶体为核心,成长为宏观晶体。

结晶推动力:溶液的过饱和度。

晶浆(晶糊):结晶出的晶体和余下的溶液的混合物。

母液:从晶浆中去掉晶体后剩下的液体。

结晶的质量指标——晶体大小和晶粒分布。

化工原理下册答案

第五章 蒸馏 一、选择与填空 1、精馏操作的依据是 混合液中各组分挥发度的差异 。实现精馏操作的必要条件是 塔顶液相回流 和 塔底上升蒸汽 。 2、汽液两相呈平衡状态时,汽液两相温度_相同_,但液相组成_小于_汽相组成。 3、用相对挥发度α表达的汽液平衡方程可写为1(1)x y x αα= +-。根据α的大小,可用 来 判定用蒸馏方法分离的难易程度 ,若α=1则表示 不能用普通的蒸馏方法分离该混合液 。 4、在精馏操作中,若降低操作压强,则溶液的相对挥发度 增加 ,塔顶温度 降低 ,塔釜温度 降低 ,从平衡角度分析对该分离过程 有利 。 5、某二元物系,相对挥发度α=3,在全回流条件下进行精馏操作,对第n 、n+1两层理论板,已知 y n =0.4,则 y n+1=_0.182_。全回流通常适用于 开工阶段 或 实验研究 。 6、精馏和蒸馏的区别在于 精馏必须引入回流;平衡蒸馏和简单蒸馏的主要区别在于前者为连续的稳态过程而后者是间歇的非稳态过程 。 7、精馏塔的塔顶温度总是低于塔底温度,其原因是 塔底压强高 和 塔底难挥发组分含量高 。

8、在总压为101.33kPa 、温度为85℃下,苯和甲苯的饱和蒸汽压分别为p A 0 =116.9kPa,p B 0 =46 kPa ,则相对挥发度α= 2.54,平衡时液相组成x A = 0.78 ,气相组成y A = 0.90 。 9、某精馏塔的精馏段操作线方程为y=0.72x+0.275,则该精馏塔的操作回流比为_2.371_,馏出液组成为_0.982_。 10、最小回流比的定义是 在特定分离任务下理论板数为无限多时的回流比 ,适宜回流比通常取 1.1~2.0 R min 11、精馏塔进料可能有 5 种不同的热状况,当进料为气液混合物且气液摩尔比为2:3时,则进料热状况q 值为 0.6 。 注:23() 550.6V V L V F V L V L I I I I I q I I I I -+-===-- 12、在塔的精馏段测得 x D =0.96、x 2=0.45、x 3=0.40(均为摩尔分率),已知R=3 ,α=2.5,则第三层塔板的气相默弗里效率 E MV _44.1%_。 注:1 * 1 n n MV n n y y E y y ++-= - 13、在精馏塔设计中,若F 、x F 、q 、D 保持不变,若增加回流比R ,则x D 增加, x W 减小 ,V 增加,L/V 增加 。 14、在精馏塔设计中,若F 、x F 、x D 、x W 及R 一定,进料由原来的饱和蒸气改为饱和液体,则所需理论板数N T 减小 。精馏段上升蒸气量V 不变 、下降液体量L 不变 ;

化工原理(下)期末考试试卷

化工原理(下)期末考试试卷 一、 选择题: (每题2分,共20分) 1.低浓度难溶气体吸收,其他操作条件不变,入塔气量增加,气相总传质单元高度 H OG 、出塔气体浓度2y 、出塔液体浓度1x 将会有__A______变化。 A OG H ↑, 2y ↑, 1x ↑ B OG H ↑, 2y ↑, 1x ↓ C OG H ↑, 2y ↓, 1x ↓ D OG H ↓, 2y ↑, 1x ↓ 2.在吸收塔某处,气相主体浓度y=0.025,液相主体浓度x=0.01,气相传质分系 数k y =2kmol/m2h , 气相总传质系数Ky=1.5kmol/ m2h ,则该处气液界面上气相 浓度y i 应为__B______。平衡关系y=0.5X 。 A .0.02 B.0.01 C.0.015 D.0.005 3.下述说法中正确的是_B____。 A.气膜控制时有:*p p i ≈,L G Hk k 11<< B 气膜控制时有:*p p i ≈,L G Hk k 11>> C 液膜控制时有:i c c ≈*,G L k H k <<1 D 液膜控制时有:i c c ≈,G L k H k >>1 4.进行萃取操作时,应使溶质的分配系数___D_____1。 A 等于 B 大于 C 小于 D 都可以。 5.按饱和液体设计的精馏塔,操作时D/F 、R 等其它参数不变,仅将料液改为冷 液进料,则馏出液中易挥发组分浓度____A____,残液中易挥发组分浓度______。 A 提高,降低; B 降低,提高; C 提高,提高; D 降低,降低 6.某精馏塔的理论板数为17块(包括塔釜),全塔效率为0.5,则实际塔板数为 ____C__块。 A. 30 B.31 C. 32 D. 34 7.在馏出率相同条件下,简单蒸馏所得馏出液浓度____A____平衡蒸馏。 A 高于; B 低于; C 等于; D 或高于或低于 8.指出“相对湿度,绝热饱和温度、露点温度、湿球温度”中,哪一个参量与空 气的温度无关_____B___

化工原理测试试题库下册(适合青海大学版)

化工原理试题库下册(适合青海大学版)

————————————————————————————————作者:————————————————————————————————日期: 2

第3章非均相物系分离 一、选择题 1.恒压过滤且介质阻力忽略不计时,如粘度降低20%,则在同一时刻滤液增加()。 A、11.8%; B、9.54%; C、20%; D、44% 2.板框式压滤机由板与滤框构成,板又分为过滤板和洗涤板,为了便于区别,在板与框的边上设有小钮标志,过滤板以一钮为记号,洗涤板以三 钮为记号,而滤框以二钮为记号,组装板框压滤机时,正确的钮数排列是(). A、1—2—3—2—1 B、1—3—2—2—1 C、1—2—2—3—1 D、1—3—2—1—2 3.与沉降相比,过滤操作使悬浮液的分离更加()。 A、迅速、彻底 B、缓慢、彻底 C、迅速、不彻底 D、缓慢、不彻底 4.多层隔板降尘室的生产能力跟下列哪个因素无关()。 A、高度 B、宽度 C、长度 D、沉降速度 5.降尘室的生产能力()。 A、与沉降面积A和沉降速度ut有关 B、与沉降面积A、沉降速度ut和沉降室高度H有关 C、只与沉降面积A有关 D、只与沉降速度ut有关 6.现采用一降尘室处理含尘气体,颗粒沉降处于滞流区,当其它条件都相同时,比较降尘室处理200℃与20℃的含尘气体的生产能力V的大小()。 A、V200℃>V20℃ B、V200℃=V20℃ C、V200℃t0 10.颗粒作自由沉降时,Ret在()区时,颗粒的形状系数对沉降速度的影响最大。 A、斯托科斯定律区 B、艾伦定律区 C、牛顿定律区 D、不确定(天大99) 11.恒压过滤,单位面积累积滤液量q与时间τ的关系为( B )。 12.旋风分离器的分割粒径d50是() A、临界粒径dc的2倍 B、临界粒径dc的2倍 C、粒级效率ηpi=0.5的颗粒直径 13.对不可压缩滤饼,当过滤两侧的压强差增大时,单位厚度床层的流到阻力将()。

化工原理答案下册

化工原理第二版夏清,贾绍义课后习题解答(夏清、贾绍义主编.化工原理第二版(下册).天津 大学出版)社,2011.8.) 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B *,P A *,由 于总压 P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一 组绘平衡t-x图数据。 以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa下该溶液的平衡数据。 温度C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9

饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C 5H 12 (A)和C 6 H 14 (B)的饱和蒸汽压 以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A *= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A *(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B *(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时 x = (P-P B *)/(P A *-P B *) =(13.3-2.826)/(13.3-2.826)= 1 平衡气相组成以260.6℃为例 当t= 260.6℃时 y = P A *x/P = 13.3×1/13.3 = 1 同理得出其他温度下平衡气液相组成列表如下 t(℃) 260.6 275.1 276.9 279 289 x 1 0.3835 0.3308 0.0285 0 y 1 0.767 0.733 0.524 0 根据平衡数据绘出t-x-y曲线 3.利用习题2的数据,计算:⑴相对挥发度;⑵在平均相对挥发度下的x-y数据,并与习题2 的结果相比较。

化工原理期末试卷6

《食工原理》期末考试卷(B)2005.9 一、概念题 [共计30分]: 1. 某二元物系的相对挥发度=3,在具有理论塔板的精馏塔内于全回流条件下作精馏操作,已知y n=0.4, 则y n+1= (由塔顶往下数)。全回流操作应用场合通常是 2. 塔板中溢流堰的主要作用是为了保证塔板上有。当喷淋量一定时,填料塔单位高度填料 层的压力降与空塔气速关系线上存在着两个转折点,其中下转折点称为,上转折点称 为。 3. 判断题:在精馏塔任意一块理论板上,其液相的泡点温度小于气相的露点温度。( ) 4. 某连续精馏塔,已知其精馏段操作线方程为y=0.80x+0.172,则其馏出液组成x D= 5. 总传质系数与分传质系数之间的关系可以表示为1/K L=1/k L+H/k G, 其中1/k L表示,当 项可忽略时,表示该吸收过程为液膜控制 6. 判断题:亨利定律的表达式之一为p*=Ex,若某气体在水中的亨利系数E值很大,说明该气体为易溶气 体。( ) 7. 根据双膜理论,当被吸收组分在液体中溶解度很小时,以液相浓度表示的总传质系数 (A)大于液相传质分系数; (B)近似等于液相传质分系数; (C)小于气相传质分系数; (D)近似等于气相传质分系数。 8. 填料塔内提供气液两相接触的场所是 9. 吸收操作中,当气液两相达到平衡时,其吸收推动力,吸收速率 10. 当湿空气的总压一定时,相对湿度仅与其和有关 11. 在下列情况下可认为接近恒定的干燥条件: (1)大里的空气干燥少量的湿物料;(2)少量的空气干燥大里的湿物料;则正确的判断是( ) (A).(1)对(2)不对 (B).(2)对(1)不对;(C)(1)(2)都不对 (D). (1)(2)都可以 12. 在一定的物料和干燥介质条件下:(1)临界湿含量是区分结合水与非结合水的分界点。 (2)平衡湿含 量是区分可除水份与不可除水份的分界点。 正确的判断是:( ) (A)两种提法都对 (B)两种提法都不对 (C)(1)对(2)不对 (D)(2)对(1)不对 13. 氮气与甲醇充分且密切接触,氮气离开时与甲醇已达传热和传质的平衡,如系统与外界无热交换,甲 醇进出口温度相等,则氮气离开时的温度等于( ) (A) 氮气进口温度 (B)绝热饱和温度 (C) 湿球温度 (D) 露点温度 14. 指出“相对湿度,绝热饱和温度、露点温度、湿球温度”中,哪一个参量与空气的温度无关( ) (A)相对湿度 (B)湿球温度 (C)露点温度 (D)绝热饱和温度 15. 我校蒸发实验所用蒸发器的类型是,这种蒸发器中不存在的一种温差损失是 16 进行萃取操作时应使: ( ) (A)分配系数大于 1 (B)分配系数小于 1 (C)选择性系数大于 1 (D) 选择性系数小于 1 17 一般情况下,稀释剂B组分的分配系数k值: ( ) (A)大于 1 (B)小于 1 (C)等于 1 (D) 难以判断,都有可能 18. 萃取操作依据是____溶解度差异,___________萃取操作中选择溶剂主要原则:较强溶解能力,较高 选择性,易于回收 19. 单级萃取操作中,在维持相同萃余相浓度下,用含有少量溶质的萃取剂S' 代替溶剂S, 则萃取相量与萃余相量之比将_____(A)增加;(B)不变;(C)降低,萃取液的浓度(指溶质)将_ ___(A)增加;(B)不变;(C)降低 二、计算题 [20分]

化工原理下册期末考试试卷及答案A

新乡学院2011 — 2012学年度第一学期 《化工原理》期末试卷A 卷 课程归属部门:化学与化工学院 试卷适用范围:09化学工程与工艺(本科) 、填空(每题1分,共30 分) 1.吸收操作是依据 ,以达到分离均相 气体混合物的目的。 2.干燥速率曲线包括:恒速干燥阶段和 的表面温度等于空气的 阶段。在恒速干燥阶段,物料 温度,所干燥的水分为 3.二元理想物系精馏塔设计,若q n,F 、 饱和蒸汽进料,贝U 最小回流比 水分。 X F 、 X D 、 X w 、 定,将饱和液体进料改为 ,若在相同回流比下,所需的理论板 ,塔釜热负荷 _______ ,塔顶冷凝器热负荷 _____ 4.已知精馏段操作线方程 y=0.75x+0.2,则操作回流比 R= X D = ;提馏段操作线方程y 1.3x 0.021,则X w = 5.若x*-x 近似等于X i - X ,则该过程为 控 制。 ,馏出液组成 6.用纯溶剂逆流吸收,已知q n,l /q n,v =m,回收率为0.9,则传质单元数 N O = 7.蒸馏在化工生产中常用于分离均相 混合物,其分离的依据是根 1 1 8.吸收过程中的总阻力可表示为—— K G k G Hk L 近似为 控制。 ,当H __ 时(很大、很小), 1 -可忽略,则该过程 Hk L 9.在常压下,X A 0.2 (摩尔分数,下同)的溶液与y A m 2,此时将发生 10.在分离乙醇和水恒沸物时,通常采用 无水乙醇从塔 0.15的气体接触,已知 精馏,加入的第三组分 (顶、底)引出。 11.塔的负荷性能图中包括5条线,这5条线包围的区域表示 12.全回流操作时回流比R 等于 13.板式塔漏液的原因是 ,精馏段操作线方程为 ,溢流堰的作用 14当空气相对湿度巾=98%寸.则空气的湿球温度t w 、干球温度t 、露点温度t d 之间的关系为 15.某两组份混合物的平均相对挥发度 2.0,在全回流下,从塔顶往下数对第 n,n 1层塔板取样测得X n 0.3,则y 、选择题(每题2分,共30 分) ,y n 1 1.在恒定干燥条件下将含水 20%(干基,下同)的湿物料进行干燥,开始时 干燥速度恒定, 当干燥至含水量为 5%寸,干燥速度开始下降,再继续干 燥至物料衡重, 水量为( (A ) 5% 并设法测得此时物料含水量为 0.05%,则物料的临界含 ),平衡含水量 ( (B ) 20% (C ) 0.05% (D)4.95%

化工原理下册答案

化工原理(天津大学第二版)下册部分答案 第8章 2. 在温度为25 ℃及总压为 kPa 的条件下,使含二氧化碳为%(体积分数)的混合空气与含二氧化碳为350 g/m 3的水溶液接触。试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。已知操作条件下,亨 利系数51066.1?=E kPa ,水溶液的密度为 kg/m 3。 解:水溶液中CO 2的浓度为 对于稀水溶液,总浓度为 3t 997.8kmol/m 55.4318 c ==kmol/m 3 水溶液中CO 2的摩尔分数为 由 54* 1.6610 1.44310kPa 23.954p Ex -==???=kPa 气相中CO 2的分压为 t 101.30.03kPa 3.039p p y ==?=kPa < *p 故CO 2必由液相传递到气相,进行解吸。 以CO 2的分压表示的总传质推动力为 *(23.954 3.039)kPa 20.915p p p ?=-=-=kPa 3. 在总压为 kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。测得在塔的某一截面上,氨的气、液相组成分别为0.032y =、3 1.06koml/m c =。气膜吸收系数k G =×10-6 kmol/(m 2skPa),液膜吸收系数k L =×10-4 m/s 。假设操作条件下平衡关系服从亨利定律,溶解度系数H = kmol/(m 3kPa)。 (1)试计算以p ?、c ?表示的总推动力和相应的总吸收系数; (2)试分析该过程的控制因素。 解:(1) 以气相分压差表示的总推动力为 t 1.06*(110.50.032)kPa 2.0740.725 c p p p p y H ?=-=- =?-=kPa 其对应的总吸收系数为 6G 1097.4-?=K kmol/(m 2skPa) 以液相组成差表示的总推动力为 其对应的总吸收系数为 (2)吸收过程的控制因素 气膜阻力占总阻力的百分数为 气膜阻力占总阻力的绝大部分,故该吸收过程为气膜控制。 4. 在某填料塔中用清水逆流吸收混于空气中的甲醇蒸汽。操作压力为 kPa ,操作温度为25 ℃。在操作条件下平衡关系符合亨利定律,甲醇在水中的溶解度系数为 kmol/(m 3kPa)。测得塔内某截面处甲醇的气相分压为 kPa ,液相组成为 kmol/m 3,液膜吸收系数k L =×10-5 m/s ,气相总吸收系数K G =×10-5 kmol/(m 2skPa)。求该截面处(1)膜吸收系数k G 、k x 及k y ;(2)总吸收系数K L 、K X 及K Y ;(3)吸收速率。 解:(1) 以纯水的密度代替稀甲醇水溶液的密度,25 ℃时水的密度为 0.997=ρkg/m 3 溶液的总浓度为

《化工原理下》期中试卷答案(11化工)

word可编辑,欢迎下载使用! 1. 吸收塔的填料高度计算中,N OG反映吸收的难易程度。 2.在气体流量、气相进出口组成和液相进出口组成不变条件下,若减少吸收剂用量,则 操作线将靠近平衡线,传质推动力将减小,若吸收剂用量减至最小吸收剂用量时,意味着完成吸收任务需要的填料高度为无穷高。 3.精馏设计中,当回流比增大时所需理论板数减小增大、减小),同时蒸馏釜中所需加热 蒸汽消耗量增大(增大、减小),塔顶冷凝器中冷却介质消耗量增大(增大、减小)。 4.在精馏塔设计中,进料温度越高,进料状态参数q越小,完成相同的生产任务需 要的理论板数越多,塔底再沸器的热负荷越小。 5要分离乙醇-水共沸物,用恒沸精馏,所加入的第三组分为苯塔底的产物为无水乙醇。 6.在常压操作中,x A=0.2(摩尔分数,下同)的溶液与y A=0.15的气体接触,已知m=2.0,此时 将发生解析过程。 7.操作中的精馏塔,如果进料状态为泡点进料,进料组成为含轻组分0.4(摩尔分数)则 q线方程为:x=0.4 。 8.某二元混合物,进料量为100kmol/h,x F=0.6,要求塔顶产量为60 kmol/h,则塔顶组成 x D最大为100% 。 9.设计时,用纯水逆流吸收有害气体,平衡关系为Y=2X,入塔Y1=0.09,液气比(q n,l/q n,v) =3,则出塔气体浓度最低可降至0 ,若采用(q n,l/q n,v)=1.5,则出塔气体浓度最低可降至0.225 。 10.提馏塔的进料是在塔顶,与精馏塔相比只有提馏段。 11.吸收速率方程中,K Y是以Y- Y* 为推动力的气相总吸收系数,其单位是 kmol/m2 s 推动力。 1.在精馏操作中,进料温度不同,会影响_____B______。 A.塔顶冷凝器热负荷 B. 塔底再沸器热负荷 C. 两者都影响 2.某含乙醇12.5%(质量分数)的乙醇水溶液,其所含乙醇的摩尔比为(B )。 B .0.0559 C 0.0502 3. 填料塔的正常操作区域为 A 。 A.载液区 B .液泛区 C 恒持液量区 D 任何区域 4.某二元混合物,其中A为易挥发组分,液相组成x A=0.4,相应的泡点为t1,气相组成为y A=0.4,相应的露点组成为t2,则 D 。 A t1=t2 B t1t2 D 不能判断 5.二元理想混合液用精馏塔分离,规定产品浓度x D\x W,若进料为x F1最小回流比为Rm1;若进料为x F2时,最小回流比为Rm1现x F1小于x F2,则 B 。 A.Rm1< Rm2 B Rm1>Rm2 C Rm1= Rm2 6. 某一物系,总压一定,三个温度下的亨利系数分别用E1E2 E3 表示,如果E1> E2 >E3 ,则对应的温 度顺序为:A A. t1> t2> t3 B.t1< t2

化工原理试题库下册

第3章非均相物系分离 一、选择题 恒压过滤且介质阻力忽略不计时,如粘度降低20%,则在同一时刻滤液增加()。A、11.8%;B、9.54%; C、20%; D、44% 板框式压滤机由板与滤框构成,板又分为过滤板和洗涤板,为了便于区别,在板与框的边上设有小钮标志,过滤板以一钮为记号,洗涤板以三钮为记号,而滤框以二钮为记号,组装板框压滤机时,正确的钮数排列是(). A、1—2—3—2—1 B、1—3—2—2—1 C、1—2—2—3—1 D、1—3—2—1—2 与沉降相比,过滤操作使悬浮液的分离更加()。 A、迅速、彻底 B、缓慢、彻底 C、迅速、不彻底 D、缓慢、不彻底 多层隔板降尘室的生产能力跟下列哪个因素无关()。 A、高度 B、宽度 C、长度 D、沉降速度 降尘室的生产能力()。 A、与沉降面积A和沉降速度ut有关 B、与沉降面积A、沉降速度ut和沉降室高度H有关 C、只与沉降面积A有关 D、只与沉降速度ut有关 现采用一降尘室处理含尘气体,颗粒沉降处于滞流区,当其它条件都相同时,比较降尘室处理200℃与20℃的含尘气体的生产能力V的大小()。 A、V200℃>V20℃ B、V200℃=V20℃ C、V200℃

判断 有效的过滤操作是()。 A、刚开始过滤时 B、过滤介质上形成滤饼层后 C、过滤介质上形成比较厚的滤渣层 D、加了助滤剂后 当固体粒子沉降时,在层流情况下,Re =1,其ζ为()。 A、64/Re B、24/Re C、0.44 D、1 含尘气体通过降尘室的时间是t,最小固体颗粒的沉降时间是t 0,为使固体颗粒都能沉降下来,必须(): A、tt0 颗粒作自由沉降时,Ret在()区时,颗粒的形状系数对沉降速度的影响最大。 A、斯托科斯定律区 B、艾伦定律区 C、牛顿定律区 D、不确定(天大99) 恒压过滤,单位面积累积滤液量q与时间τ的关系为()。 旋风分离器的分割粒径d50是() A、临界粒径dc的2倍 B、临界粒径dc的2倍 C、粒级效率ηpi=0.5的颗粒直径

化工原理下册期末考试试卷和答案

新乡学院2011 —2012学年度第一学期 《化工原理》期末试卷A卷 课程归属部门:化学与化工学院试卷适用范围:09化学工程与工艺(本科) 题号-一一-二二-三总分 得分 111 1 8.吸收过程中的总阻力可表示为恳仁臥,其中-表 示,当H 时(很大、很小),1 1可忽略,则该过程 Hk L 近似为控制。 9.在常压下,X A 0.2 (摩尔分数,下同)的溶液与y A0.15的气体接触,已知 得分—.评卷人一、填空(每题1分,共30 分) 1. 吸收操作是依据_________________________________ ,以达到分离均相 气体混合物的目的。 2. 干燥速率曲线包括:恒速干燥阶段和___________ 阶段。在恒速干燥阶段,物料 的表面温度等于空气的__________ 温度,所干燥的水分为___________ 水分。 3. 二元理想物系精馏塔设计,若q n,F、X F、X D、X W、一定,将饱和液体进料改为 饱和蒸汽进料,则最小回流比___________ ,若在相同回流比下,所需的理论板 数_______ ,塔釜热负荷________ ,塔顶冷凝器热负荷_________ 。 4. 已知精馏段操作线方程 ______________ y=0.75x+0.2,则操作回流比R ,馏出液组成 X D=_____ ;提馏段操作线方程y 1.3x 0.021,则x w= . m 2,此时将发生_________ 。 10. 在分离乙醇和水恒沸物时,通常采用________ 精馏,加入的第三组分____ , 无水乙醇从塔 ____ (顶、底)引出。 11. 塔的负荷性能图中包括5条线,这5条线包围的区域表示________________ 。 12. 全回流操作时回流比R等于_________ ,精馏段操作线方程为 __________ 。 1 13.板式塔漏液的原因是______________ ,溢流堰的作用__________________ 。 14当空气相对湿度巾=98%寸.则空气的湿球温度t w、干球温度t、露点温度t d 之间的关系为 ____________________ 。 15.某两组份混合物的平均相对挥发度 2.0,在全回流下,从塔顶往下数对第 得分评卷人 选择题(每题2分,共30分) 5. 若x*-x近似等于X i - X,则该过程为_____________ 控制。 6. 用纯溶剂逆流吸收,已知q n,i /q n,v =m,回收率为0.9,则传质单元数 N D=_______ 。 7. 蒸馏在化工生产中常用于分离均相_____________ 混合物,其分离的依据是根据_____________________ 。1. 在恒定干燥条件下将含水20%(干基,下同)的湿物料进行干燥,开始时 干燥速度恒定,当干燥至含水量为5%寸,干燥速度开始下降,再继续干燥至物料衡重,并设法测得此时物料含水量为0.05%,则物料的临界含水量为(),平衡含水量()。 (A)5% (B)20% (C)0.05% (D)4.95%

化工原理课后习题答案上下册

下册第一章蒸馏 1. 苯酚(C 6H 5OH)(A )和对甲酚(C 6H 4(CH 3)OH)(B )的饱和蒸气压数据为 解: 总压 P=75mmHg=10kp 。 由拉乌尔定律得出 0 A p x A +0 B p x B =P 所以 x A = 000B A B p p p p --;y A =p p A 00B A B p p p p --。 因此所求得的t-x-y 数据如下: t, ℃ x y 1 1 0 0. 2. 承接第一题,利用各组数据计算 (1)在x=0至x=1范围内各点的相对挥发度i α,取各i α的算术平均值为α,算出α对i α的最大相对误差。 (2)以平均α作为常数代入平衡方程式算出各点的“y-x ”关系,算出由此法得出的各组y i 值的最大相对误差。 解: (1)对理想物系,有 α=00B A p p 。所以可得出

t, ℃ i α 算术平均值α= 9 ∑i α=。α对i α的最大相对误差= %6.0%100)(max =?-α ααi 。 (2)由x x x x y 318.01318.1)1(1+=-+= αα得出如下数据: t, ℃ x 1 0 y 1 0 各组y i 值的最大相对误差= =?i y y max )(%。 3.已知乙苯(A )与苯乙烯(B )的饱和蒸气压与温度的关系可按下式计算: 95.5947 .32790195.16ln 0 -- =T p A 72 .6357.33280195.16ln 0 --=T p B 式中 0 p 的单位是mmHg,T 的单位是K 。 问:总压为60mmHg(绝压)时,A 与B 的沸点各为多少在上述总压和65℃时,该物系可视为理想物系。此物系的平衡气、液相浓度各为多少摩尔分率 解: 由题意知 T A ==-- 0195.1660ln 47 .327995.59=℃ T B ==--0195 .1660ln 57 .332872.63=℃ 65℃时,算得0 A p =;0 B p = mmHg 。由0 A p x A +0 B p (1-x A )=60得 x A =, x B =; y A =0A p x A /60=; y B ==。 4 无

化工原理(下册)期末试题

一、填空选择题(25分,每空1分) 1、对一定操作条件下的填料吸收塔,如将填料层增高一些,则该塔的H OG 将 __________,N OG 将__________ 。 2、在吸收塔的设计中,当气体流量、气相进出口组成和液相进口组成不变时,若 减小吸收剂用量,则传质推动力将_____________,设备费用将___________。 3、某二元混合物,其中A 为易挥发组分。液相组成x A =0.4,相应的泡点为t 1;汽 相组成4.0=A y ,相应的露点为t 2。则t 1与t 2大小关系为????????????。 4、简单蒸馏过程中,釜内易挥发组分浓度逐渐________,其沸点则逐渐_________。 5、已知塔顶第一块理论板上升的汽相组成为y 1=0.63(摩尔分率,下同),将其全 部冷凝为泡点液体,该液体在贮罐内静止分层,上层x D =0.9作为产品,下层x 0=0.5 于泡点下回流,则回流比R=???????。 6、设计精馏塔时,已知原料为F,x F ,分离要求为x D 和x W ,加料热状态q 已选 定,今若选择较大的回流比R,则N T ____, L/V_______?(增加,不变,减少) 7、萃取操作依据是_____________ ______________________________。选择萃 取剂的主要原则___________________________、___________________________和 _________________________________ 。 8、有一实验室装置将含A 10%的A 、B 混合物料液50公斤和含A 80%的A 、B 混合物料 液20公斤混合后,用溶剂S 进行单级萃取,所得萃余相和萃取相脱溶剂后又能得到 原来的10% A 和80% A 的溶液。问此工作状态下的选择性系数β=____________ 9、在101.3kPa 下,不饱和湿空气的温度为295K 、相对湿度为69%,当加热到303K 时, 该空气下列参数将如何变化? 相对湿度______,湿球温度______,露点______。 10、已知湿空气总压为100kPa, 温度为40℃, 相对湿度为50%, 已查出40℃时 水的饱和蒸气压Ps 为7.375 kPa, 则此湿空气的湿度H 是____________kg 水/kg 绝 干气,其焓是____________kJ/kg 绝干气。 11、对某低浓度气体吸收过程,已知相平衡常数m = 2,气、液两相的体积传质系 数分别为k y a = 2?10-4 kmol/(m 3 ?s),k x a = 0.4kmol/(m 3 ?s)。则该吸收过程为________ 阻力控制。

化工原理下册计算答案

j06a10013 用不含溶质的吸收剂吸收某气体混合物中的可溶组分A,在操作条件下,相平衡关系为Y=mX。试证明:(L/V)min =mη,式中η为溶质A的吸收率。 j06a10103 一逆流操作的常压填料吸收塔,用清水吸收混合气中的溶质A,入塔气体中含A 1%(摩尔比),经吸收后溶质A 被回收了80%,此时水的用量为最小用量的1.5倍,平衡线的斜率为1,气相总传质单元高度为1m,试求填料层所需高度。 j06a10104 在常压逆流操作的填料吸收塔中用清水吸收空气中某溶质A,进塔气体中溶质A的含量为8%(体积%),吸收率为98%,操作条件下的平衡关系为y=2.5x,取吸收剂用量为最小用量的1.2倍,试求: ①水溶液的出塔浓度; ②若气相总传质单元高度为0.6 m,现有一填料层高为6m的塔,问该塔是否合用? 注:计算中可用摩尔分率代替摩尔比,用混合气体量代替惰性气体量,用溶液量代替溶剂量。 j06a10105 在20℃和760 mmHg,用清水逆流吸收空气混合气中的氨。混合气中氨的分压为10mmHg,经吸收后氨的分压下降到0.051 mmHg。混合气体的处理量为1020kg/h,其平均分子量为28.8,操作条件下的平衡关系为y=0.755x。 若吸收剂用量是最小用量的5 倍,求吸收剂的用量和气相总传质单元数。 j06a10106 在常压逆流操作的填料塔内,用纯溶剂S 吸收混合气体中的可溶组分A。入塔气体中A的摩尔分率为0.03,要求吸收率为95%。已知操作条件下的解吸因数为0.8,物系服从亨利定律,与入塔气体成平衡的液相浓度为0.03(摩尔分率)。试计算: ①操作液气比为最小液气比的倍数; ②出塔液体的浓度; ③完成上述分离任务所需的气相总传质单元数N OG。 j06a10107 某厂有一填料层高为3m 的吸收塔,用水洗去尾气中的公害组分A。测 得浓度数据如图,相平衡关系为y=1.15x。 试求:该操作条件下,气相总传质单元高度H OG为多少m ? 参见附图:j06a107.t j06a10108 总压100kN/m2,30℃时用水吸收氨,已知k G=3.84?10-6kmol/[m2·s(kN/m2)], k L=1.83?10-4kmol/[m2·s(kmol/m3)],且知x=0.05时与之平衡的p*=6.7kN/m2。 求:k y、K x、K y。(液相总浓度C 按纯水计为55.6 kmol/m3) j06a10109 有一逆流填料吸收塔,塔径为0.5m,用纯溶剂吸收混合气中的溶质。入塔(惰性/混合??)气体量为100kmol/h,,溶质浓度为0.01(摩尔分率),回收率要求达到90% ,液气比为1.5,平衡关系y=x。试求: ①液体出塔浓度; ②测得气相总体积传质系数K y a=0.10kmol/(m3·s),问该塔填料层高度为多少? (提示:N OG=1/(1-S)ln[(1-S)(y1-m x1)/(y2-m x2)+S]) j06b10011 当系统服从亨利定律时,对同一温度和液相浓度,如果总压增大一倍则与之平衡的气相浓度(或分压)(A) y 增大一倍;(B) p增大一倍;(C) y减小一倍;(D) p减小一倍。 j06b10019 按图示流程画出平衡线与操作线示意图: 1. ⑴低浓度气体吸收 2. ⑴低浓度气体吸收 ⑵部分吸收剂循环⑵气相串联

化工原理期末试题样卷及答案

一、填空选择题(25分,每空1分) 1、对一定操作条件下的填料吸收塔,如将填料层增高一些,则该塔的H OG 将 __________,N OG 将__________ 。 2、在吸收塔的设计中,当气体流量、气相进出口组成和液相进口组成不变时,若 减小吸收剂用量,则传质推动力将_____________,设备费用将___________。 3、某二元混合物,其中A 为易挥发组分。液相组成x A =,相应的泡点为t 1;汽 相组成4.0 A y ,相应的露点为t 2。则t 1与t 2大小关系为 。 4、简单蒸馏过程中,釜内易挥发组分浓度逐渐________,其沸点则逐渐_________。 5、已知塔顶第一块理论板上升的汽相组成为y 1=(摩尔分率,下同),将其全 部冷凝为泡点液体,该液体在贮罐内静止分层,上层x D =作为产品,下层x 0= 于泡点下回流,则回流比R=。 6、设计精馏塔时,已知原料为F,x F ,分离要求为x D 和x W ,加料热状态q 已选 定,今若选择较大的回流比R,则N T ____, L/V_______?(增加,不变,减少) 7、萃取操作依据是_____________ ______________________________。选择萃 取剂的主要原则___________________________、___________________________和 _________________________________ 。 8、有一实验室装置将含A 10%的A 、B 混合物料液50公斤和含A 80%的A 、B 混合物料 液20公斤混合后,用溶剂S 进行单级萃取,所得萃余相和萃取相脱溶剂后又能得到 原来的10% A 和80% A 的溶液。问此工作状态下的选择性系数β=____________ 9、在下,不饱和湿空气的温度为295K 、相对湿度为69%,当加热到303K 时, 该空气下列参数将如何变化 相对湿度______,湿球温度______,露点______。 10、已知湿空气总压为100kPa, 温度为40℃, 相对湿度为50%, 已查出40℃时 水的饱和蒸气压Ps 为 kPa, 则此湿空气的湿度H 是____________kg 水/kg 绝 干气,其焓是____________kJ/kg 绝干气。 11、对某低浓度气体吸收过程,已知相平衡常数m = 2,气、液两相的体积传质系 数分别为k y a = 210-4 kmol/(m 3 s),k x a = (m 3 s)。则该吸收过程为________ 阻力控制。 (A )气膜 (B )液膜 (C )气、液双膜 (D )无法确定

化工原理试题库(下册)

化工原理试题库 试题六 一:填充题(20分) 1、精馏分离的依据是________________________的差异,要使混合物中的 组分得到完全分离,必须进行 多次地______________._______________。 2、 相对挥发度的表示式α=______________.对于二组分溶液的蒸馏,当α=1 时,能否分离___________。 3、q 的定义式是________________________________________,饱和液体进料q=____.饱和蒸汽进料q=____.蒸汽是液体的3倍的混合进料时q=____。 4、二组分的连续精馏操作,精馏段操作线方程为245.075.0+=x y ,提馏段 操作线方程为02.025.1-=x y ,当q=1时,则=W x _____D x =______。 5、在连续精馏中,其它条件均不变时,仅加大回流,可以使塔顶产品D x _____,若此时加热蒸汽量V 不变,产品量D 将______。若在改变R 的同 时,保持塔顶采出量不变,必需增加蒸汽用量,那么冷却水用量将________。 6、压力__________.温度__________将有利于吸收的进行。 7、完成下列方程,并指出吸收糸数的单位。 ()-=i c k N k 的单位__________________. ()-=p K N G G K 的单位_______________. 8、吸收过程中的传质速率等于分子散速率的条件是___________________ 9、饱和空气在恒压下冷却,温度由1t 降至2t ,其相对湿度Φ______,绝对湿湿度H________,露点_________,湿球温度___________。 10、萃取操作的依据是_________________________________________.萃取操 作选择溶剂的主要原则是________________________________________. _______________________________-.______________________________. 二:简答题(36分) 1、叙述恒縻尔流假设的内容? 2、板式塔塔板上造成液面落差的原因有哪些?如何防止? 3、试推导并流吸收塔的操作线方程?并在y-x 的相图上表示出来? 4、叙述双膜理论的论点? 5、画出单级萃取操作相图? 6、叙述湿空气的性能参数? 三:计算题(44分) 1、双股进料的二元连续进料, 均为泡点液相进料,进料液为21,F F , 求第三段的汽相和液相流量?已知 第一段的汽液相流量分别为V 和L 。 2、某填料吸收塔用纯轻油吸收混 合气中的苯,进料量为1000标准h m 3。 图6-1 进料气体中含苯5%(体积百分数),其余为惰性气体。要求回收率95%。操作时轻油含量为最小用量的1.5倍,平衡关系为Y=1.4X 。已知体积吸收总糸 V

化工原理下册期末考试试卷C及答案

新乡学院 2011―2012学年度第一学期 《化工原理》期末试卷B 卷 课程归属部门:化学与化工学院 试卷适用范围:09化学工程与工艺 1.萃取操作是依据: ,以达到分离 混合物的目的。 2.吸收操作是依据: ,以达到分离 混合物的目的。 3.物料的干燥速率曲线包括:恒速干燥阶段和 阶段,恒速干燥阶段,物料表面温度等于 ,主要干燥的水份为 。 4.在一定条件下,当某气体与所接触液体达到相平衡状态时,若将系统温度降低,系统将进行_________过程。 5.某精馏塔,进料状态参数q 等于0.8时,则进料为 ____ _,进料为含苯0.4的苯-甲苯溶液,则进料状态方程为: 。 6.板式塔的负荷性能图中包括_____线,最左边的线为: 。 7.溶解度曲线将三角形相图分为两个区域,曲线内为 ,曲线外为 ,萃取操作只能在 进行。 8.在1atm 下,不饱和湿空气的温度为295K ,相对湿度为60%,当加热到373K 时,该空气下列状态参数将如何变化?湿度H ,相对湿度φ ,湿球温度 t w , 露点t d ,焓I 。(升高,降低,不变,不确定) 9.塔顶冷凝器的作用: ,塔底再沸器的作用: 。 10.吸收速率方程中,K Y 是以 为推动力的 吸收系数,其单位是 。 11.增加吸收剂用量,操作线的斜率 ,吸收推动力 。 12.某两组份混合物的平均相对挥发度0.2=α,在全回流下,从塔顶往下数对第1,+n n 层塔板取样测得n n y x 则,3.0= = ,1+n y = ,1+n x = 。 1. 恒摩尔流假定主要前提是分子汽化潜热相近,它只适用于理想物系。 2.离开精馏塔任意一块理论板的液相泡点温度都小于气相的露点温度。 3.若精馏段操作线方程为y=0.75x+0.3,这绝不可能。 4.若吸收塔的操作液汽比小于最小液气比,吸收塔将不能操作。 5.在稳定操作中的吸收塔内,任意截面上传质速率N A 都相等。 6.萃取操作时,如果选择性系数等于1或无穷大时,就无法用萃取分离。 1. 某吸收过程,若溶解度系数H 很大,则该过程属 。 A. 气膜控制 B. 液膜控制 C. 不确定 2. 达到指定分离程度所需理论板层数为10(包括再沸器),若全塔效率等于50%,则塔内 实际板层数为 。 A.20 B.18 C.16 3. 某气体混合物中,溶质的分压为60 mmHg, 操作压强为760 mmHg ,则溶质在气相中的摩 一、填空(每题1分,共30分) 二、判断题(每题1分,共6分) 三、选择题(每题1.5分,共24分) 院系:________ 班级:__________ 姓名:______________ 学号:_____________ …….……………………….密…………………封…………………线…………………………

相关主题
文本预览
相关文档 最新文档