当前位置:文档之家› 电阻电路分析方法

电阻电路分析方法

电阻电路分析方法
电阻电路分析方法

教学基本要求:

电路的一般分析是指方程分析法,是以电路元件的约束特性(VCR)和电路的拓补约束特性(KCL、KVL)为依据,建立以支路电流或回路电流或结点电压为变量的电路方程组,解出所求的电压、电流和功率。方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。

本章学习的内容有:电路的图,KCL和KVL的独立方程数。以基尔霍夫定律为基础,介绍的支路电流法、回路电流法和节点电压法适用于所有线性电路问题的分析,在后面章节中都要用到。

本章的重点:会用观察电路的方法,熟练应用支路电流法,回路电流法,结点电压法的“方程通式”写出支路电流方程、回路电流方程、结点电压方程,并求解。

难点:

1. 独立回路的确定

2. 正确理解每一种方法的依据

3. 含独立电流源和受控电流源的电路的回路电流方程的列写

4. 含独立电压源和受控电压源的电路的结点电压方程的列写

§3-1 电路的图

一、网络图论

图论是拓扑学的一个分支,是富有趣味和应用极为广泛的一门学科。图论的概念由瑞士数学家欧拉最早提出,欧拉在1736年发表的论文《依据几何位置的解题方法》中应用图的方法讨论了各尼斯堡七桥难题,见图a和b所示。

图a 哥尼斯堡七桥 b 对应的图

1847年,基尔霍夫首先用图论来分析电网络,如今在电工领域,图论被用于网络分析和综合、通讯网络与开关网络的设计、集成电路布局及故障诊断、计算机结构设计及编译技术等等。

二、电路的图

电路的图是用以表示电路几何结构的图形,图中的支路和结点与电路的支路和结点一一对应,如下图所示,所以电路的图是点线的集合。通常将电压源与无源元件的串联、电流源与无源元件的并联作为复合支路用一条支路表示。如下图c所示。

a 电路图

b 电路的图

(一个元件作为一条支路)

c 电路的图

(采用复合支路) 有向图―标定了支路方向(电流的方向)的图为有向图。

连通图―图G的任意两节点间至少有一条路经时称为连通图,非连通图至少存在两个分离部分。

有向图非连通图连通图子图―若图G1中所有支路和结点都是图G中的支路和结点,则称G1是图G的子图。

电路的图(G) b G图的子图 c G图的子图树(T)—树(T)是连通图G的一个子图,且满足下列条件:

(1) 连通;(2)包含图G中所有结点;(3)不含闭合路径。

构成树的支路称树枝;属于图G而不属于树(T)的支路称连支:

电路的图与树的定义

需要指出的是

1)对应一个图有很多的树;

2)树支的数目是一定的为结点数减一:b t=(n-1)

3)连枝数为b l=b-b t=b-(n-1)

回路―回路L是连通图G的一个子图,构成一条闭合路径,并满足条件:

(1)连通;(2)每个节点关联2条支路。

需要指出的是:

1)对应一个图有很多的回路;

2)基本回路的数目是一定的,为连支数;

3)对于平面电路,网孔数为基本回路数l=b l=b-(n-1)

电路的图与回路定义

基本回路(单连支回路)―基本回路具有独占的一条连枝色,即基本回路具有别的回路所没有的一条支路。

电路的图及其基本回路

结论:电路中结点、支路和基本回路关系为:支路数=树枝数+连支数=结点数-1+基本回路数b=n+l-1

§3-2 KCL和KVL的独立方程数

一、KCL的独立方程数

对图中所示电路的图列出4个结点上的KCL方

程(设流出结点的电流为正,流入为负):

结点①

结点②

结点③

结点④

把以上4个方程相加,满足:①+②+③+④=0

结论:n个结点的电路, 独立的KCL方程为n-1个,即求解电路问题时,只需选取n-1个结点来列出KCL方程。

二、KVL的独立方程数

根据基本回路的概念,可以证明KVL的独立方程数=基本回路数=b-(n-1)。

结论:n个结点、b条支路的电路, 独立的KCL和KVL方程数为:(n-1)+ b -(n-1)=b

§3-3 支路电流法

一、支路电流法

以各支路电流为未知量列写独立电路方程分析电路的方法称为支路电流法。

对于有n个节点、b条支路的电路,要求解支路电流,未知量共有b个。只要列出b个独立的电路方程,便可以求解这b个变量。

二、支路电流方程的列写步骤

1. 标定各支路电流(电压)的参考方向;

2. 从电路的n个结点中任意选择n-1个结点列写KCL方程;

3. 选择基本回路,结合元件的特性方程列写b-(n-1)个KVL方程;

4. 求解上述方程,得到b个支路电流;

5. 进一步计算支路电压和进行其它分析。

需要注意的是

支路电流法列写的是KCL和KVL方程,所以方程列写方便、直观,但方程数较多,宜于利用计算机求解。人工计算时,适用于支路数不多的电路。

三、支路电流方程的应用

例:求图示电路的各支路电流及电压源各自发出的功率。

解:(1)对结点a列KCL 方程:-I1-I2+I3=0

(2)对两个网孔列KVL 方程:

(3)求解上述方程:

I3=I1+I2=6-2=4

(4)电压源发出的功率:

P70=6×70=420W P6=-2×6=-12W

例:列写图示电路的支路电流方程(电路含有理想电流源)

解法1:(1)对结点 a 列KCL 方程:-I1-I2+I3=0

(2)选两个网孔为独立回路,设电流源两端电压为U ,列KVL方程:

7I1-11I2=70-U

11I2+7I3=U

(3)由于多出一个未知量U,需增补一个方程:I2=6A

求解以上方程可得各支路电流。

解2:由于支路电流I2已知,故只需列写两个方程:

(1)对结点a列KCL方程:

-I1-6+I3=0

(2)避开电流源支路取回路,如图b选大回路列KVL方程:

7I1-7I3=

70

解法 2 示意图注:本例说明:

含有理想电流源的电路,列写支路电流方程有两种方法:

一是设电流源两端电压,把电流源看作电压源来列写方程,然后增补一个方程,即令电流源所在支路电流等于电流源的电流即可。

另一方法是避开电流源所在支路例方程,把电流源所在支路的电流作为已知。

例3-4 列写图示电路的支路电流方程( 电路中含有受控源)

解:(1)对结点 a 列KCL 方程:-I1-I2+I3=0

(2)选两个网孔为独立回路,列KVL 方程:7I1-11I2=70-5U

11I2+7I3=5U

(3)由于受控源的控制量U是未知量,需增补一个方程:U=7I3

(4)整理以上方程,消去控制量U

-I1-I2+I3=0

7I1-11I2+35I3=70

11I2-28I3=0

注:本例求解过程说明

对含有受控源的电路,方程列写需分两步:

(1)先将受控源看作独立源列方程;

(2)将控制量用支路电流表示,并代入所列的方程,消去控制变量。

§3-4(5)网孔(回路)电流法

回路电流法的基本思想:

为减少未知量(方程)的个数,假想每个基本回路中有一个回路电流沿着构成该回路的各支路流动;各支路电流用回路电流的线性组合表示来求得电路的解。

一、回路电流法

以基本回路中的回路电流为未知量列写电路方程分析电路的方法。当取网孔电流为未知量时,称网孔法。

1. 支路电流与回路电流的关系

上图所示电路有两个独立回路,选两个网孔为独立回路,设网孔电流沿顺时针方向流动,如图所示。可以清楚的看出,当某支路只属于某一回路(或网孔),那么该支路电流就等于该回路(网孔)电流,如果某支路属于两个回路(或网孔)所共有,则该支路电流就等于流经该支路两回路(网孔)电流的代数和。如上图电路中:

2. 回路电流法列写的方程

回路电流在独立回路中是闭合的,对每个相关节点回路电流流进一次,必流出一次,所以回路电流自动满足KCL。因此回路电流法是对基本回路列写KVL方程,方程数为:b-(n-1) 与支路电流法相比,方程数减少n-1个。

二、方程的列写

应用回路法分析电路的关键是如何简便、正确地列写出以回路电流为变量的回路电压方程。以上图电路为例列写网孔的KVL方程,并从中归纳总结出简便列写回路KV方程的方法。

按网孔列写KVL 方程如下:

网孔1:R1i l1 + R2 (i l1- i l2 )-u s1+u s2=0

网孔2:

将以上方程按未知量顺序排列整理得

(R 1 + R 2) i l1- R 2 i l2 =u s1-u s2

- R 2 i l1+(R 2 + R 3)i l2 = u s2

观察方程可以看出如下规律:

第一个等式中,i l 1前的系数(R 1 + R 2)是网孔1中所有电阻之和,称它为网孔1的自电阻,用R 11表示;i l 2前的系数-R 2是网孔1和网孔2公共支路上的电阻,称它为两个网孔的互电阻,用R 12表示,由于流过R 2的两个网孔电流方向相反,故R 2前为负号;等式右端u s1-u s2表示网孔1中电压源的代数和,用u s11表示,u s11中各电压源的取号法则是,电压源的电压降落分向与回路电流方向一致的取负号,反之取正号。用同样的方法可以得出等式2中的自电阻、互电阻和等效电压源分别为:

自阻R 22 = (R 2 + R 3);互阻R 21= - R 2;等效电压源222S S u u

由此得回路(网孔)电流方程的标准形式

R 11 i l 1+ R 12i l2= u s11

R 21 i l 1+ R 22i l2= u s22

结论:对于具有l=b -(n -1) 个基本回路的电路,回路(网孔)电流方程的标准形式:

R 11 i l 1+ R 12i l2+···R 1l i ll = u s11

R 21 i l 1+ R 22i l2+···R 2l i ll = u s22

···

R l1 i l 1+ R l2i l2+···R ll i ll = u sll

其中: 自电阻R kk 为正;互电阻 R jk =R kj 可正可负,当流过互电阻的两回路电流方向相同时为正,反之为负;等效电压源u Skk 中的电压源电压方向与该回路电流方向一致时,取负号;反之取正号。

注:当电路不含受控源时,回路电流方程的系数矩阵为对称阵。

回路法的一般步骤:

(1)选定l=b -(n -1)个基本回路,并确定其绕行方向;

(2)对l 个基本回路,以回路电流为未知量,列写KVL 方程;

(3)求解上述方程,得到l 个回路电流;

(4)求各支路电流(用回路电流表示);

(5)其它分析。

注:电路中含有理想电流源和受控源时,回路方程的列写参见例题。

三、回路法的应用

例:列写如下电路的回路电流方程,说明如何求解电流i。

解法1:独立回路有三个。选网孔为独立回路如图所示,回路方程为:(R s+R1 +R4) i1- R1i2– R4i3=U s

- R1i1–(R2+R1 +R5) i2– R5i3= 0

- R4i1–R5i2+ (R2+R1 +R5) i3–= 0

从以上方程中解出网孔电流1和网孔电流2,则电流i=i2–i3

注:本题结果说明:

(1)不含受控源的线性网络,回路方程的系数矩阵为对称阵,满足R jk = R kj。

(2)当网孔电流均取顺时针或逆时针方向时,R kj均为负。

解法2:为了减少计算量,可以只让一个回路电流经过R5支路如图所示。此时回路方程为:

(R s+R1 +R4) i1- R1i2–(R1+ R4) i3=U s

- R1i1–(R2+R1 +R5) i2–(R1+ R2) i3= 0

R4i1+ (R1+ R2) i2+ (R2+R1 +R3+ R4) i3–= 0

从以上方程中解出网孔电流2,则电流i=i2

注:解法2的特点是计算量减少了,但互有电阻的识别难度加大,易遗漏互有电阻。本题也说明独立回路的选取有多种方式,如何选取要根据所求解的问题具体分析。

例:列写图中所示电路的回路电流方程( 电路中含有无伴理想电流源)。

解1:选取网孔为独立回路如图所示,引入电流源电压U,则回路方程为:

(R s+R1 +R4) i1- R1i2– R4i3=U s

- R1i1–(R2+R1) i2 = U

- R4i1+ (R3+R4) i3=-U

由于多出一个未知量U,需增补一个方程,即增加回路电流和电流源电流的关系方程:i s=i2–i3

解2:选取独立回路,使理想电流源支路仅仅属于一个回路如图所示,该回路电流等于i S。回路电流方程为:

(R s+R1 +R4) i1- R1i2–(R1+ R4) i3=U s

i s=i2

注意:本题说明

含有无伴理想电流源的电路,回路电流方程的列写有两种方式:

引入电流源电压U,把电流源看作电压源列写方程,然后增补回路电流和电流源电流的关系方程,从而消去中间变量U。这种方法比较直观,但需增补方程,往往列写的方程数多。

使理想电流源支路仅仅属于一个回路,该回路电流等于已知的电流源电流i S。这种方法列写的方程数少。

在一些有多个无伴电流源问题中,以上两种方法往往并用。

例:列写图示电路的回路电流方程(电路中含有受控源)。

解:选网孔为独立回路如图所示,把受控电压源看作独立电压源列方程:

回路1 (R s+R1 +R4) i1- R1i2– R4i3=U s

回路2 - R1i1+ (R2+R1) i2 = 5U

回路3- R4i1+ (R3+R4) i3–=-5U

由于受控源的控制量U是未知量,需增补一个方程:U = R3i3

整理以上方程消去控制量U得

回路1 (R s+R1 +R4) i1- R1i2– R4i3=U s

回路2- R1i1+ (R2+R1) i2 -5 R3i3= 0

回路3 - R4i1+ (R3+R4+ 5R3) i3–=0

例:列写图示电路的回路电流方程。

解1:选网孔为独立回路如图所示,设电流源和受控电流源两端的电压分别为U2和U3,则回路电流方程为:

回路1 ( R1 +R3) i1– R3i3=-U2

回路2 R2 i2=U2–U3

回路3 - R3i1+ (R3+R4 +R5) i3–R5i4= 0

回路4 – R5i3+R5i4=U3–μU1

方程中多出U1、U2 和U3三个变量,

需增补三个方程:i s=i1–i2 – R1i1=U1 i4–i2=gU1

解2:独立回路的选取如图所示,回路方程为:

回路1 i s=i1

回路2 R1i1+ (R1+R4 +R2) i2+R4i3=–μU1

回路3 -R3i1+ R4i2+(R3+R4 +R5) i2–R5i4=0

回路4 i4=gU1

增补方程:– R1 (i1–i2 )=U1

§3-6 结点电压法

结点电压法的基本思想:

选结点电压为未知量,可以减少方程个数。结点电压自动满足KVL,仅列写KCL方程就可以求解电路。各支路电流、电压可视为结点电压的线性组合。求出结点电压后,便可方便地得到各支路电压、电流。

一、结点电压法

以结点电压为未知量列写电路方程分析电路的方法。适用于结点较少的电路。

1. 结点电压与支路电压的关系

在电路中,任选一结点作参考点:其余各结点与参考点之间的电压差称为相应各结点的电压(位),方向为从独立结点指向参考结点。如下图示电路,选下部结点为参考结点,设结点1,2,3的电位分别为u n1,u n2,u n3。则支路1的电压为结点1的电压u n1,支路2的电压为结点1和结点2的电压差,依此类推,任一支路电压都可以用结点电压表示。

如图所示电路中各支路电压分别为:

u1=u n1u2= u n1- u n2

u3=u n2-u n3u4 = u n2

u5 = u n3u6 = u n1- u n3

各支路电流通过支路电压可以求出。

如支路电流:

2. 结点电压法列写的方程

观察上图可见,对电路中任何一个回路利用结点电压列KVL方程,每一个结点电压一定出现一次正号和一次负号。如支路1,2,4构成的回路,KVL方程为:- u n1 +(u n1- u n2)+ u n2 = 0

以上说明结点电压自动满足KVL。因此结点电压法是对结点列写KCL方程,方程数为(n-1)。

二、方程的列写

应用结点法分析电路的关键是如何简便、正确地列写出以结点电压为变量的方程。以上页电路图为例列写结点上的KCL方程,并归纳总结出简便列写结点电压方程的方法。

对各结点列KCL 方程:

结点①i1+i2 =i s1+ i s6

结点②-i1+i3 +i4= o

结点③-i3+i5 =- i s6

把各支路电流用结点电压表示:

将以上方程按未知量顺序排列整理得:

令G k=1/R k,k =1、2、3、4、5 。上式简记为:

(G1+ G2)u n1- G2u n2=i S1+ i S2

-G2u n1+(G3+ G2+ G4)u n2-G3u n3= 0

-G3u n2+(G3+ G5)u n3 = -i S2+ u S/R5

观察方程可以看出如下规律:

等式1中:G1+ G2为接在结点1上所有支路的电导之和,称结点1的自电导,用G11表示。

-G2为结点1与结点2之间的互电导,应等于接在结点1与结点2之间的所有支路的电导之和,始终为负值,用G12表示。

i S1 +i S2为流入结点1的电流源电流的代数和,称为等效电流源,用i11表示,计算时流入结点1的电流源为正,流出结点1的电流源为负。

用同样的方法可以得出等式2和等式3中的自电导、互电导和等效电流源分别为:G22= G3+ G2+ G4G21= - G2G23=-G3i22= 0

G33= G3+ G5G32= - G3G31= 0 i33=-i S2+u s/ R5

由此得结点电压方程的标准形式:

G11u n1+G12u n2=i S11

G21u n1+G22u n2= 0

G31u n1+G33u n3=i S33

结论:对于具有n个结点的电路,结点电压方程的标准形式

G11u n1+G12u n2+···G1n-1u n-1=i S11

G11u n1+G12u n2+···G2n-1u n-1=i S22

······

G11u n1+G12u n2+···G n-1n-1u n-1=i Sn-1n-1

其中:G ii—自电导,等于接在结点i上所有支路电导之和(包括电压源与电阻串联支路)。总为正。

G ij=G ji—互电导,等于接在结点i与结点j之间的所支路的电导之和,总为负。

i Sii—流入结点i的电流源电流的代数和(包括由电压源与电阻串联支路等效的电流源)。

注:当电路不含受控源时,结点电压方程的系数矩阵为对称阵。

三、结点法的一般步骤

1. 选定参考结点,标定其余n-1个独立结点;

2. 对n-1个独立结点,以结点电压为未知量,列写其KCL方程;

3. 求解上述方程,得到n-1个结点电压;

4. 求各支路电流(用结点电压表示);

5. 其它分析。

注:电路中含有理想电压源和受控源时,结点电压方程的列写参见例题。

四、结点电压法的应用

例试列写图示电路的节点电压方程。

解:结点编号及参考结点的选取如图所示,结点电压方程为:

结点1 (G1+ G2+ G S)U n1- G1U n2- G S U n3=G S U S

结点2 -G1U n1+(G1+ G3+ G4)U n2- G4U n3= 0

结点3 - G S U n1- G4U n2+(G4+ G5+ G S)U n3= -G S U S

例:试列写图示电路的节点电压方程(图中含有无伴电压源支路)。

解1:结点编号及参考结点的选取如图所示,设流过电压源的电流为I,把电压源看作电流源列写结点电压方程:

结点1 (G1+ G2)U n1- G1U n2 =I

结点2 -G1U n1+(G1+ G3+ G4)U n2- G4U n3= 0

结点3 - G4U n2+(G4+ G5+ G S)U n3= -I

由于所设电流I是未知量,需增补一个方程,即增加结点电压和电压源电压的关系方程:U n1-U n3= U S

解2:结点编号及参考结点的选取如图所示,此时结点1的电压等于电压源的电压,结点电压方程为:

结点1 U n1 = U S

结点2 -G1U n1+(G1+ G3+ G4)U n2- G4U n3= 0

结点3 -G2U n1- G3U n2+(G2+ G5+ G3)U n3= 0

注:本题说明

含有无伴理想电压源的电路,结点电压方程的列写有两种方式:

引入电压源电流I ,把电压源看作电流源列写方程,然后增补结点电压和电压源电压的关系方程,从而消去中间变量I 。这种方法比较直观,但需增补方程,往往列写的方程数多。

选择合适的参考点,使无伴理想电压源电压等于某一结点电压。这种方法列写的方程数少。在一些有多个无伴电压源问题中,以上两种方法往往并用。

例:列写图示电路的结点电压方程(图中含有受控源)。

解:结点编号及参考结点的选取如图所示,先把受控源当作独立源列方程:

结点1

结点2

由于受控源的控制量U R2是未知量,需增补一个方程:u R2= u n1

整理以上方程消去控制量U R2得

结点1

结点2

注:本题说明对含有受控电源的电路,可先把受控源看作独立电源列方程,再增补将控制量与结点电压的关系方程。

例:列写图示电路的结点电压方程。

解:(1)结点编号及参考结点的选取如图所示,先把受控源当作独立源列方程:结点1 u n1=ri

结点2

结点3

(2) 增补用结点电压与控制量的关系方程:u3 = -u n3 i = -u n2/R2

例:列写图示电路的结点电压方程。

解:结点编号及参考结点的选取如图所示,结点电压方程为:

结点1u1 = 4V

结点2

结点3-0.5 u n2+(0.5+0.2) u n3 = 3A

增补方程:U = u n3

注:本题说明:

(1)与电流源串接的电阻或其它元件不参与列方程;

(2)支路中有多个电阻串联时,要先求出总电阻再列写方程。

串并联电路基本规律集锦

1、在串联电路中,各用电器工作与否互相影响。 2、电流:在串联电路中,各处电流都相等,即n I I I I =???===21总 3、电压:在串联电路中,总电压等于各串联用电器电压之和,即n 21U U U U +???++=总 4、电阻:在串联电路中,总电阻等于各串联用电器电阻之和,即n 21R R R R +???++=总,总电阻比任何一个电阻都大,电阻的串联相当于增加了导体的 长度 ,导体的电阻取决于导体的 长度 、 横截面积、 材料 有时还与 温度 有关。 5、电压与电阻的关系:在串联电路中,各串联用电器电压与电阻成正比,即2 121R R U U = 6、电功率与电阻的关系:在串联电路中, 各串联用电器电功率与电阻成正比,即2 121R R P P = 7、电能与电阻的关系:在串联电路中各串联用电器消耗的电能与电阻成正比,即2 121R R W W = 8、电热与电阻的关系:在串联电路中各串联用电器产生的热量与电阻成正比,即2 121R R Q Q =

1、在并联电路中,各支路用电器工作与否互不影响 2、电流:在并联电路中,干路电流等于各支路电流之和,即n I I I I +???++=21总 3、电压:在并联电路中,总电压与各支路电压相等,都等于电源电压,即n 21U U U U =???===总 4、电阻:在并联电路中,总电阻的倒数等于各支路电阻倒数之和,即n 211111R R R R +???++=总,总电阻比任何一个支路电阻都小,电阻的并联相当于增大了导体的 横截面积 。 5、电流与电阻的关系:在并联电路中,各支路用电器电流与电阻成反比,即1 221R R I I = 6、电功率与电阻的关系:在并联电路中, 各支路电器电功率与电阻成反比,即1 221R R P P = 7、电能与电阻的关系:在并联电路中,各支路用电器消耗的电能与电阻成反比,即1 221R R W W = 8、电热与电阻的关系:在并联电路中,各支路用电器产生的热量与电阻成反比,即 1221R R Q Q =

第三章电阻电路的一般分析方法

第三章电阻电路的一般分析 例 3-1 对如图所示的图,如果选1、2、4之路为树,则其基本回路组是什么? 解:基本回路组为{1,4,3}、{1,2,7}、{2,4,5},{2,4,6}。 例3-2用网孔电流法求图所示电路中各电源提供的电功率。 i,2m i,3m i如图示。列写如下网孔电流方程 解:设三个网孔电流1 m 例3-3如图(a)所示电路,试用回路电流法计算2Ω电阻电流a I及两个电源提供的电功率。

解:电路中含有一条有伴电流源支路,可以先将其等效变换为10V 电压源和1Ω电阻串联的有伴电压源,然后选三个独立回路电流1i 、2i 、3i ,如图 (b)所示。利用KVL 列写三个回路电流方程为 整理 例3-4 电路如图(a)所示,已知V 121==s s U U ,A 1=s i ,Ω====143121R R R R ,用回路电流法求各支路的电流。 解一 电路中含有一个无伴电流源,先假设其两端的电压为1u 如图(a)所示。选取三个网孔为回路,回路电流方程为:

这里有三个回路电流和一个电流源电压u 1,共四个变量,需增加一个无伴电流源与相关回路关 联的电流方程式 s l l i i i =-21 联立求解这四个方程,就可以解出三个回路电流和电流源两端的电压,将参数代入上述方程便得 另外,还有一种处理无伴电流源支路电路的方法,就是选取电流源支路为连支,该单连支所在的回路电流便为已知电流源的电流,这样,该回路的电流方程可以省略不列写。以下采用这种方法重新求解例题3-4。 解二 如图(c)所示选取电流源支路6为连支(选取2、3、4为树)作为一个回路电流i l1,其它两个回路为i l2、i l3,则三个回路电流方程为

09非线性电阻电路分析

非线性电阻电路分析 一、是非题 1.非线性电阻的电流增加k倍,则电压也增加k倍。 2.单调型非线性电阻,随着电压升高,动态电阻也增加。 3.非线性电阻电路小信号分析法的实质是将工作点附近的非线性伏安特性线性化。 4.半导体二极管电路模型是单调型非线性电阻,不属电压控制型、电流控制型。 5.不论非线性电阻或线性电阻串联,总功率等于各元件功率之和,总电压等于各元件电压之和。 答案部分 1.答案(-) 2.答案(-) 3.答案(+) 4.答案(-) 5.答案(+)

二、单项选择题 1.影响非线性电阻阻值变化的因素主要是 (A)时间 (B)温度 (C)电压或电流 2.双向性非线性电阻的伏安特性曲线为 3.有关非线性电阻电路的正确概念应是 (A)不同类型的非线性电阻其动态电阻定义不同 (B)单向型非线性电阻不具有单调型电阻性质 (C)非线性电阻可能在有关电压下具有多个电流值 (D)非线性电阻电路功率不守恒 4.图示非线性电阻伏安特性曲线中的BC段对应于下列哪个等效电路?

5.与图示非线性电阻伏安特性曲线AB段对应的等效电路是 答案部分 1.答案(C) 2.答案(B) 3.答案(C) 4.答案(B) 5.答案(B)

三、填空题 1.非线性电阻元件的性质一般用__________来表示。 2.图示电路中的理想二极管,流过的电流I为_______A。 3.右上图示曲线①和②为非线性电阻R1和R2的伏安特性曲线。试画出R1、R2并联后的等效伏安特性。 4.图示隧道二极管伏安特性曲线,试分析i S=4mA、i S=1mA、i S=-2mA三种情况下,隧道二极管的工作点。i S=4mA时____,i S=1mA时_____,i S=-2mA时____。 6.理想二极管伏安特性曲线如图(b)折线所示,试绘出图(a)所示网络的伏安特性曲线。

串、并联电路的规律及解题技巧

图1 串、并联电路的规律及解题技巧 串、并联电路的规律是电学电路部分计算的一个重点,是非常重要的内容,其电路问题可与带电粒子的运动综合在一起,也可与电磁感应结合在一起,电学实验部分更是串、并联电路的规律应用的具体体现。下面结合考点、重点题型进行扫描,力求使大家领会解题的技巧。 题型扫描 串、并联电路主要考查串联电路和并联电路的特点,电流关系,电压关系,功率分配关系等,其中等效电阻的分析也是一个重点. 题型一、串并联电路的特点与等效电阻 典题1.★将一只阻值为几千欧的电阻R 1和一只阻值为千分之几欧的电阻R 2串联起来,则总电阻( ) A .很接近R 1而略大于R 1 B .很接近R 1而略小于R 1 C .很接近R 2而略大于R 2 D .很接近R 2而略小于R 2 典题2.★★将一只阻值为几千欧的电阻R 1和一只阻值为千分之几欧的电阻R 2并联起来,则总电阻( ) A .很接近R 1而略大于R 1 B .很接近R 1而略小于R 1 C .很接近R 2而略大于R 2 D .很接近R 2而略小于R 2 典题3.★★★如图1中同种金属制成粗细不同、长度相同的导体连接在电路中,加总电压U ,对于粗细导体而言: A.电流强度相同 B.两者电压不同 C.电子移动的速率不同 D.电场不相同 典题4.★★★R 1、 R 2串联后接在稳定的12V 电源上,有人用一非理想电压表测得R 1电压是8V 、 若改测R 2电压,则测R 2电压时,电压表的示数为 A.U > 4V B.U < 4V C.4V <U < 8V D.U ≥ 8V 解题技巧: 典题1.思路导航:对于电阻的串联存在总电阻等于所有的电阻之和 解答:根据电阻串联的规律知:12R R R =+,结合它们的阻值知,正确答案是A. 典题2.思路导航:对于电阻的并联存在总电阻的倒数等于所有的电阻的倒数之和,即:12 111...R R R =++

3-2电阻电路的基本分析方法(学生用)全解

§3.3 网孔分析(网孔法) 支路电流法是直接应用KCL、KVL解题的方法,因而这个方法最为直观。但对支路数多的电路,求解方程的工作量很大。 一、什么是网孔分析(mesh current) 图中指定了三个顺时针方向的网孔电流,下标m表示网孔的意思。 网孔电流是一组独立变量。网孔电流一旦确定,则各支

路电流可用网孔电流唯一表示。如图示: ? ?? =-=+-=-=-==3632 53142 131221,,,,m m m m m m m m m I I I I I I I I I I I I I I I (1) 二、建立网孔电压方程(∑RI = ∑U S )之规则 在三个网孔中,沿着网孔电流方向观看各元件上的电压 支路电流。显然,就求解方程来说,网孔分析比支路电流法简便。 一些记号及其含义: 以(2)式为例:

43211R R R R ++= 网孔1的自电阻,它等于网孔1中 各个电阻之和。 312R R -= 网孔1与网孔2之间的互电阻。 当两个网孔电流在互电阻上同向时,互电 阻等于公共电阻之和;反向时,等于公共电阻之和的负值。 413R R -= 网孔1、3之间的互电阻。 注意:在计算网孔自电阻与互电阻时,独立源都处于置零状态。 42) 1(S S S U U U -=∑ 网孔1中独立电压源电压之代数和。(各电压源电压的方向与网孔电流一致时,前面取负号;反之取正号)。引进自电阻、互电阻后,(2)式可简写成: S m m m U I R I R I R (1) 313212111∑=++ 分析上式,可得编写网孔方程的规则为: 自电阻×自网孔电流+∑互电阻×相邻网孔电流(当相邻网孔电流在互电阻上同向时,互电阻为正;反向时为负;没有公共电阻时,互电阻为零) = 自网孔中各个独立电压源电压之代数和。 如果电路中有受控源存在,则在建立网孔方程时,先将受控源看作独立电源,然后将控制量转换成用网孔电流表示,并将方程整理成一般形状。必须注意,在整理后的方程中,上述关于确定自电阻、互电阻与网孔中独立电压源电压

第一章 直流电路及其分析方法

《电工与电子技术基础》自测题 第1章直流电路及其分析方法 判断题 1.1 电路的基本概念 1.电路中各物理量的正方向不能任意选取。 [ ] 答案:X 2.电路中各物理量的正方向不能任意选取。 [ ] 答案:X 3.某电路图中,已知电流I=-3A,则说明图中电流实际方向与所标电流方向相同。 答案:X 4.某电路图中,已知电流I=-3A,则说明图中电流实际方向与所标电流方向相反。 答案:V 5.电路中各物理量的正方向都可以任意选取。 [ ] 答案:V 6.某电路图中,已知电压U=-30V,则说明图中电压实际方向与所标电压方向相反。 答案:V 7.组成电路的最基本部件是:电源、负载和中间环节 [ ] 答案:V 8.电源就是将其它形式的能量转换成电能的装置。 [ ] 答案:V 9.如果电流的大小和方向均不随时间变化,就称为直流。 [ ] 答案:V 10.电场力是使正电荷从高电位移向低电位。 [ ] 答案:V 11.电场力是使正电荷从低电位移向高电位。 [ ] 答案:X 1.2 电路基础知识 1.所求电路中的电流(或电压)为+。说明元件的电流(或电压)的实际方向与参考方向一致;若为-,则实际方向与参考方向相反。[ ] 答案:V 2.阻值不同的几个电阻相并联,阻值小的电阻消耗功率小。[ ] 答案:X

答案:X 4.电路就是电流通过的路径。 [ ] 答案:V 5.电路中选取各物理量的正方向,应尽量选择它的实际方向。 [ ] 答案:V 6.电路中电流的实际方向总是和任意选取的正方向相同。 [ ] 答案:X 7.电阻是用来表示电流通过导体时所受到阻碍作用大小的物理量。[ ] 答案:V 8.导体的电阻不仅与其材料有关,还与其尺寸有关。 [ ] 答案:V 9.导体的电阻只与其材料有关,而与其尺寸无关。 [ ] 答案:X 10.导体的电阻与其材料无关,而只与其尺寸有关。 [ ] 答案:X 11.电阻中电流I的大小与加在电阻两端的电压U成正比,与其电阻值成反比。[ ] 答案:V 12.电阻中电流I的大小与加在电阻两端的电压U成反比,与其电阻值成正比。[ ] 答案:X 13.如果电源的端电压随着电流的增大而下降很少,则说明电源具有较差的外特性。 [ ]答案:X 14.如果电源的端电压随着电流的增大而下降很少,则说明电源具有较好的外特性。 [ ]答案:V 15.欧姆定律是分析计算简单电路的基本定律。 [ ] 答案:V 16.平时我们常说负载增大,其含义是指电路取用的功率增大。 [ ] 答案:V 17.平时我们常说负载减小,其含义是指电路取用的功率减小。 [ ] 答案:V 18.平时我们常说负载增大,其含义是指电路取用的功率减小。 [ ] 答案:X 19.平时我们常说负载减小,其含义是指电路取用的功率增大。 [ ] 答案:X 20.在串联电路中,电阻越大,分得的电压越大。 [ ] 答案:V 21.在串联电路中,电阻越小,分得的电压越大。 [ ] 答案:X 22.在串联电路中,电阻越大,分得的电压越小。 [ ] 答案:X 23.在串联电路中,电阻越小,分得的电压越小。 [ ] 答案:V 24.在并联电路中,电阻越小,通过的电流越大。 [ ] 答案:V 25.在并联电路中,电阻越大,通过的电流越大。 [ ]

串并联电路的规律总结

电路图 电流表达式I=I1=I2I= I1+I2 文字串联电路中电流处处相等并联电路中干路中的电流等于各支路中 的电流之和 电压表达式 文字串联电路两端的总电压等于各部分 电路两段的电压之和 并联电路中各支路两端的电压相等 电阻表达式 文字串联电路的总电阻等于各串联电阻 之和并联电路总电阻的倒数等于各并联电阻的倒数之和 n个阻值均为r的电阻串联,则其总电阻为:R=nr n个阻值均为r的电阻并联,则其总电阻为:R= 电压 与 电流 分配关系表达式 文字串联电路中,各个电阻分得的电压 与各电阻的阻值成正比,电阻大其 两端的电压也高。 并联电路中,各支路中的电流与它们的 电阻的阻值成反比,哪条支路上的电阻 大,通过它的电流就小。 其它比例 电功率关系表达式 文字串联电路中,各个用电器的电功率 与其电阻的阻值成正比,电阻大其 电功率也大 并联电路中,各个用电器的电功率与其 电阻的阻值成反比,电阻大其电功率小 P总表达式 P总=P1+P2 P总文字不论串联电路还是并联电路,总功率都等于各用电器功率之和。 电功关系表达式 文字串联电路中,电流通过各电阻所做 的功与其电阻成正比。 并联电路中,电流通过各电阻所做的功 与其电阻成反比。 W总表达式 W总文字不论是串联电路还是并联电路,电流所做的总功都等于各部分用电器电流所做功之和。 电热关系表达式 文字串联电路中,电流通过各部分导体 产生的热量与其电阻成正比。 并联电路中,各支路电流产生的热量与 其电阻成反比。 Q总表达式 Q总文字串联电路和并联电路中,产生的总热量都等于各导体产生的热量之和。

电路图 电流表达式I 文字并 等 电压表达式 文字并 电 电阻表达式 文字并 于 n个阻值均为r的电阻串联,则其总电阻为:n个阻值均为r的电阻并联,则其总电 阻为:R= n 联 电压 与 电流 分配关系表达式 文字并 流 反 大其它比例 电功率关系表达式 文字并 电 反P总表达式 P总文字 电功关系表达式 文字并 阻 比W总表达式 W总文字 电热关系表达式 文字并 生W总表达式

电阻电路的分析方法

电阻电路的分析方法 一、KCL的独立方程数? n个结点,b条支路,则有n-1个KCL 二、KVL的独立方程数? b-n+1个 三、支路电流法? 以支路电流作为未知量 1)标出各支路电流及参考方向 2)根据KCL列出n-1个独立电流方程 3)设出回路绕行方向,由KVL列出b-n+1个独立电压方程(独立电 压方程个数=网孔数) 4)确定正负,沿绕行方向,电位降之和=电位升之和 5)解方程,若有理想电流源,可少写一个独立电压方程 四、网孔电流法? 以网孔电流作为未知量 1)标出网孔电流及参考方向 2)按照网孔电流的参考方向,列出KVL 3)两网孔电流流过公共回路的电流方向相同时,互阻取正号,否则 取负号 五、回路电流法? 同网孔电流法

六、结点电压法? 1)参考点要设置在电路的外围底部的一个结点上或电压源的负极所 接的结点上为好 2)列方程时自导总为正,互导总为负 3)与电流源串联的电阻在列方程式不考虑,将其短路 4)结点电压法实际上是在列KCL 七、叠加定理? 即分别作用然后叠加;电压源短路处理;电流源开路处理; 八、替代定理? 用某些元件替代电路中的某个元件的方法 1)与电压源并联的元件可以忽略,只写一个电压源; 2)与电流源串联的元件可以忽略,只写一个电流源; 3)忽略电阻较常见; 九、戴维宁定理? 电压源与电阻串联代替 十、诺顿定理? 电流源与电阻并联代替 十一、最大功率传输定理? 当R L=R eq时,P MAX=U OC2/4R eq

十二、求等效电阻?(非纯电阻) 核心:求出端口电压与端口电流 1)外加电压源 2)外加电流源 3)短路电流法(前提是另一部分存在电源) 十三、弥尔曼定理? 条件:电路中只有两个结点; 核心:KCL 1)运用结点电压法推到而得(算出各支路电流,再利用KCL); 2)等式左边为所要求的电压; 3)分母为各支路电导之和(直接与电流源串联的电阻除外); 4)分子为各支路电流之和(若某支路为一个电压源与一个电阻串联, 则直接用电压源比上电阻);电流出为负,进为正;

电阻电路的一般分析方法

电路常用分析方法 第一:支路电流法:以各支路电流为未知量列写电路方程分析电路的方法。 独立方程的列写:(1)从电路的n 个结点中任意选择n-1个结点列写KCL 方程; (2)选择基本回路列写b-(n-1)个KVL 方程。 支路电流法的一般步骤: 第二:回路电流法:以基本回路中沿回路连续流动的假想电流为未知量列写电路方程分析电路的方法。它适用于平面和非平面电路。 1.列写的方程:回路电流法是对独立回路列写KVL 方程,方程数为:)1(--n b ,与支路电流法相比,方程减少1-n 个。 2.回路电流法适用于复杂电路,不仅适用于平面电路,还适用于非平面电路回路电流法的一般步骤: (1)选定)1(--=n b l 个独立回路,并确定其绕行方向; (2)对l 个独立回路,以回路电流为未知量,列写其KVL 方程; (3)求解上述方程,得到l 个回路电流; (4)求各支路电流。 回路电流法的特点: (1)通过灵活的选取回路可以减少计算量; (2)互有电阻的识别难度加大,易遗漏互有电阻。 理想电流源支路的处理: 网孔电流法是回路电流法的一种特例。引入电流源电压,增加回路电流和电流源

电流的关系方程。 i来表示。 第三:网孔电流法:是一种沿着网孔边界流动的假想的环流,用 m 1.网孔电流法:是以网孔电流作为电路的独立变量的求解方法,仅适用于平面电路。 2.基本思想:利用假想的网孔电流等效代替支路电流来列方程。 3.列写的方程:KCL自动满足。只需对网孔回路,列写KVL方程,方程数为网孔数。 网孔电流法的一般步骤: (1)选定各网孔电流的参考方向,它们也是列方程时的绕行方向。(通常各网孔电流都取顺时针方向或都取逆时针方向) (2)根据电路,写出自阻、互阻及电源电压。 (3)根据推广公式,列网孔方程。 (4)求解网孔方程,解得网孔电流。 (5)根据题目要求,进行求解。 第四:结点电压法:以结点电压为未知量列写电路方程分析电路的方法。适用于结点较少的电路。 结点电压法的一般步骤为: (1)选定参考结点,标定1 n个独立结点; - (2)对1 - n个独立结点,以结点电压为未知量,列写其KCL方程; (3)求解上述方程,得到1 n个结点电压; - (4)通过结点电压求各支路电流; (5)其他分析。

线性电路分析中受控电源的等效方法

线性电路分析中受控电源的等效方法 摘要:利用等效变换把受控源支路等效为电阻或电阻与独立电压源串联组合求解含有受控源的现行电路。 关键词:受控电源;等效变换;独立电源 前言: 在求解含有受控源的线性电路中,存在着很大的局限性.下面就此问题作进一步的探讨. 受控源支路的电压或电流受其他支路电压、电流的控制.受控源又间接地影响着电路中的响应.因此,不同支路的网络变量间除了拓扑关系外,又增加了新的约束关系,从而使分析计算复杂化.如何揭示受控源隐藏的电路性质,这对简化受控源的计算是非常重要的.本文在对受控源的电路性质进行系统分析的基础上,给出了含受控源的线性电路的等效计算方法. 正文:根据受控源的控制量所在支路的位置不同,分别采取如下3种等效变换法. 1. 1.当电流控制型的受控电压源的控制电流就是该受控电压源支路的电流、 或当电压控制型的受控电流源的控制电压就是该受控电流源支路两端的电压时,该受控源的端电压与电流之间就成线性比例关系,其比值就是该受控源的控制系数.因此,可采用置换定理,将受控源置换为一电阻,再进一步等效化简. 例1-1:如图求解图a中所示电路的入端电阻R AB. 解:首先,将电压控制型的受控电流源gu 1与R 1 并联的诺顿支路等效变化成电压 控制型的受控电压源gu 1R 1 与电阻R 1 串联的等效戴维南支路,如图b所示.在电 阻R 1与电阻R 2 串联化简之前,应将受控电压源的控制电压转换为端口电流i,即 u 1=-R 2 i.然后,将由电压u 1 控制的电压控制型受控电压源gu 1 R 1 转化为电流控 制型的受控电压源-gR 1R 2 i,如图c所示.由图c可知,由于该电流控制型的受 控电压源的控制电流i就是该受控电压源支路的电流,因此,可最终将该电流控 制型的受控电压源简化成一个电阻,其阻值为-gR 1R 2 .这样,该一端口网络的入 端电阻R AB=R 1+R 2 -gR 1 R 2 . 例1—2 例1—2求解图a中所示电路的入端电阻R AB. 解:可对该一端口网络连续运用戴维南-诺顿等效变换,最后可得到图 b所示的电路.由于电压控制型的受控电流源 u1 8Ω的控制量u1就是它的端电压,且二者的假定正方向相反,因此,可将其简化为一阻值为-8Ω的电阻.这样,该一端口网络的入端电阻 R AB=1/(1 2+1 2-1 8)=8 7 2. 2.受控源的控制量为网络的端口电压或电流时,可将各支路进行等效变 换,可将受控源作为独立源处理.当电路等效到端口时,若控制量是端口电流,则可将电路等效成受控电压源、独立电压源和电阻的串联组合;若控制量是端口电压,则可将电路等效成受控电流源、独立电流源和电阻的并联组合.再进一步将受控源置换为一电阻,最后可求出最简单的等效电路. 例2—1 例2—1简化图a所示电路.

第三章 电阻电路的一般分析方法

16 第三章 电阻电路的一般分析方法 1. 内容提要: 电路的一般分析是指方程分析法,它是以电路元件的约束特性(VCR )和电路的拓扑特性(KCL ,KVL )为依据,建立以支路电流或回路电流,或结点电压为变量的电路方程组,从中解出所要求的电流、电压、功率等。方程分析法的特点是:⑴具有普遍适用性,即无论线性和非线性电路都适用;⑵具有系统性,表现在不改变电路结构,应用KCL 、KVL ,元件的VCR 建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。 本章的重点是会用观察电路的方法,熟练应用支路法、回路法和结点电压法的“方程通式”写出支路电流方程、回路方程和结点电压方程,并加以解释。 2. 重点和难点: (1) 各种分析方法其首要求解变量的确定; (2) 各种分析方法方程建立的依据,方程的列写; (3) 依据电路的特征选择适合的求解方法; (4) 电阻电路的一般分析方法分为两大类:以电流为变量、以电压为变量。 以电流为变量:支路电流法;回路(网孔)电流法;割集电流法; 以电压为变量:支路电压法;节点电压法。 2、典型例题分析 【例题1】:支路电流法中,无伴理想电流源的处理。本例说明对含有理想电流源的电路,列写支路电流方程有两种方法,一是设电流源两端电压,把电流源看作电压源来列写方程,然后增补一个方程,即令电流源所在支路电流等于电流源的电流即可;另一方法是避开电流源所在支路列方程,把电流源所在支路的电流作为已知。 列写图3.1所示电路的支路电流方程(电路中含有理想电流源)。 图3.1 图3.1.1解法 2 示意图 解法1: (1)对结点a 列KCL 方程:–I 1–I 2+I 3=0; (2)选两个网孔为独立回路,设电流源两端电压为U ,列KVL 方程: 网孔1:7I 1–11I 2=70-U ; 网孔2:11I 2+7I 3=U ; (3)由于多出一个未知量U ,需增补一个方程:I 2=6A 。 求解以上方程即可得各支路电流。

习题六 简单非线性电阻电路分析.

习题六 简单非线性电阻电路分析 6-1 如题图6-1所示电路中,其中二极管和稳压二极管均采用理想特性,试分别画出其端口的DP 图。 题图6-1 6-2 设一混频器所用的非线性电阻特性为 2 210u a u a a i ++= 当其两端电压)()(t w A t w A u 2211cos cos +=时,求)。(t i 6-3 试画出下列电阻元件的u -i 特性,并指出3的单调性、压控的还是流控的? (1)u e i -=; (2)2 i u =; (3)3 01.01.0u u i +-=。 6-4 试写出题图6-4所示分段线性非线性电阻的u -i 特性表达式。 题图6-4 6-5 如题图6-5(a )所示电路为一逻辑电路,其中二极管的特性如题图6-5(b )所示。当U 1 = 2 V ,U 2 = 3 V ,U 3 = 5 V 时,试求工作点u 。

题图6-5 6-6 如题图6-6所示电路含有理想二极管,试判断二极管是否导通? 6-7 设有一非线性电阻的特性为u u i 343 -=,它是压控的还是流控的?若) (wt u cos =,求该电阻上的电流i 。 6-8 如题图6-8所示为自动控制系统常用的开关电路,K 1和K 2 为继电器,导通工作电 流为0.5 mA 。D 1和D 2为理想二极管。试问在图示状态下,继电器是否导通工作? 题图6-6 题图6-8 6-9 如题图6-9所示为非线性网络,试求工作点u 和i 。 题图6-9 6-10 如题图6-10所示网络,其中N 的A 矩阵为 A =? ? ? ? ??Ω5.1s 05.055.2

电路的分析方法电子教案

第2章 电路的分析方法 本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、动态电阻的概念,以及简单非线性电阻电路的图解分析法。 重点: 1. 支路电流法; 2. 叠加原理; 3.戴维宁定理。 难点: 1. 电流源模型; 2. 结点电压公式; 3. 戴维宁定理。 2.1 电阻串并联联接的等效变换 1.电阻的串联 特点: 1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流; 3)等效电阻等于各电阻之和; 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: 2.电阻的并联 特点: 1)各电阻联接在两个公共的结点之间; 2)各电阻两端的电压相同; 3)等效电阻的倒数等于各电阻倒数之和; 4)并联电阻上电流的分配与电阻成反比。 U R R R U 2111+=U R R R U 2 122+=

两电阻并联时的分流公式: 2.3 电源的两种模型及其等效变换 1.电压源 电压源是由电动势 E 和内阻 R 0 串联的电源的电路模型。若 R 0 = 0,称为理想电压源。 特点: (1) 内阻R 0 = 0; (2) 输出电压是一定值,恒等于电动势(对直流电压,有 U ≡ E ),与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 2.电流源 电流源是由电流 I S 和内阻 R 0 并联的电源的电路模型。若 R 0 = ∞,称为理想电流源。 特点: (1) 内阻R 0 = ∞ ; (2) 输出电流是一定值,恒等于电流 I S ,与恒流源串联的电路电流恒定; (3) 恒流源两端的电压 U 由外电路决定。 3.电压源与电流源的等效变换 等效变换条件: E = I S R 0 0 R E I = S 注意: ① 电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。 ② 等效变换时,两电源的参考方向要一一对应。 ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路,都可化为一个电流为 I S 和这个电阻并联的电路。 4.电源等效变换法 (1) 分析电路结构,搞清联接关系; (2) 根据需要进行电源等效变换; (3) 元件合并化简:电压源串联合并,电流源并联合并,电阻串并联合并; I R R R I 2121+=I R R R I 2 112+=

电路的几种分析方法

几种常见电路分析方法浅析 摘要:对电路进行分析的方法很多,如叠加定理、支路分析法、网孔分析法、结点分析法、戴维南和诺顿定理等。根据具体电路及相关条件灵活运用这些方法,对基本电路的分析有重要的意义。现就具体电路采用不同方法进行如下比较。 关键词:电路分析电流源支路电流法网孔电流法结点分析法叠加定理戴维宁定理与诺顿定理 Several Commonly Used Analytical Methods in Circuit Abstract: on the circuit analysis methods, such as superposition theorem, branch analysis method, mesh analysis method, nodal analysis method, Thevenin and Norton's theorem. According to the specific circuit and related conditions of flexibility in the use of these methods, the basic circuit analysis has important significance. The specific circuit using different methods are compared. Key words :Circuit Analysis of voltage source current source branch current method mesh current method nodal analysis method of superposition theorem and David theorem and Norton theorem in Nanjing. 引言:每种电路的分析方法,一般都有其适用范围。应用霍夫定律求解适用于求多支路的电流,但电路不能太复杂;电源法等效变换法适用于电源较多的电路;节点电位法适用于支路多、节点少的电路;网孔分析法使适用于支路多、节点多、但网孔少的电路;戴维宁定理和叠加定理适用于求某一支路的电流或某段电路两端电压。上面例题的电路比较简单,可选择任意一种方法求解,对于一些比较复杂但有一

第三章电阻电路的分析方法

第三章 电阻电路的分析方法 一、选择题 1、对于具有n 个结点、b 条支路的电路,可列出( )个独立的KCL 方程,可列出( )个独立的KVL 方程。下列叙述正确的是( ) A.b-n+1,n-1 B. n-1, b-n-1 C. b-n-1, n-1 D. n-1, b-n+1 2、如图1所示电路中电流1I 为:( ) A.3A B.0.6A C.-0.2A D.0.2A 1 3Ω40Ω40 图1 图2 3、自动满足基尔霍夫电压定律的电路求解法是( ) A.支路电流法 B.回路电流法 C.结点电压法 D.网孔电流法 4、图2所示电路中2U 为:( ) A. 44V B. 42V C. 38V D. 36V 二、填空题 1、图3所示电路中,1I =( ),2I =( )。 3V 图3 图4 2、回路电流法的实质是以( )为变量,直接列写( )方程。结点电压法的实质是以( )为变量,直接列写( )方程。 3、在列写结点电压方程时,自导为( ),互导为( )。 三、计算题 1、试用回路电流法和结点电压法求解图4示电路中的电流I 。

2、用网孔电流法和结点电压法求解图5示电路中的电压U 和电流I 。 图5 3、列写图6所示电路的结点电压方程,并计算结点①、②的电压及4A 电流源两端的电压U 。 4S 6 图6 4、某电路不含受控源,其结点电压方程如下,试画出该电路图。 1441124314321111111s s s n n i R u R u u R R u R R R R --=??? ? ??+-???? ??+++ 31442543 14311111s s s n n i i R u u R R R u R R ++=???? ??+++???? ??+-

02分电阻电路的分析方法

电阻电路的分析方法 一、是非题 1.图示三个网络a、b端的等效电阻相等。 2.当星形联接的三个电阻等效变换为三角形联接时,其三个引出端的电流和两两引出端的电压是不改变的。 3.对外电路来说,与理想电压源并联的任何二端元件都可代之以开路。 4.如二端网络的伏安特性为U=205I,则图示支路与之等效。 5.两个电压值都为U的直流电压源,同极性端并联时,可等效为一个电压源,其电压值仍为U S。 6.左下图示电路中,如100V电压源供出100W功率,则元件A吸收功率20W。 】

7.对右上图示电路,如果改变电阻R1,使电流I1变小,则I2必增大。 8.图示电路中,节点1的节点方程为 9.实际电源的两种模型,当其相互等效时,意味着两种模型中的电压源和电流源对外提供的功率相同。 10.两个二端网络分别与20电阻连接时,若电流均为5A,电压均为100V,则这两个网络相互等效。 答案部分 1.答案(+) 2.答案(+) 3.答案(+) 4.答案(+) 5.答案(+) 6.答案() ; 7.答案()8.答案()9.答案()10.答案()

二、单项选择题 2.在左下图示电路中,当开关S由闭合变为断开时,灯泡将 / (A)变亮(B)变暗(C)熄灭 3.右上图示电路中电流I为 (A)趋于无限(B)12A(C)6A(D)9A 4.当标明“100,4W”和“100,25W”的两个电阻串联时,允许所加的最大电压是(A)40V (B)70V (C)140V 5.电路如左下图所示,已知电压源电压U=230V,内阻R=1。为使输出电压为220V、功率为100W的灯泡正常发光,则应并联 (A)22盏灯 (B)11盏灯 (C)33盏灯

电路及其分析方法教学教案

第1章电路及其分析方法 电路的基本概念与基本定律 一、学时:10 学时 二、目的和要求: 1.掌握电路的基本概念与基本定律; 2.理解电压、电流参考方向的意义; 3.了解电路的有载工作、开路与短路状态并能理解电功率和额定值的意义; 三、重点: 1.电压、电流的参考方向; 2.基尔霍夫定律; 四、难点: 基本概念的理解。 五、教学方式:多媒体或胶片投影或传统方法 六、习题安排: 七、教学内容: 1.1 电路模型 1、电路的作用与组成部分(举例:如日光灯电路) (1)电路的作用 ①电能的传输与转换,如电力系统。 ②传递和处理信号,如扩音机。 (2)电路的组成部分 ①电源:是供应电能的设备。如发电厂、电池等。 ②负载:是取用电能的设备。如电灯、电机等 ③中间环节:是连接电源和负载的部分,起传输和分配电能的作用。如变压器、输电线等。 2、电路的模型 由理想化电路元件组成的电路即是实际电路的电路模型,如下图所示,3、电路的基本元件

(1)元件分类 按不同原则可将元件分成以下几类: A、线性元件与非线性元件 B、有源元件与无源元件 C、二端元件与多端元件 D、静态元件与动态元件 E、集中参数元件与分布参数元件 (2)元件符号 表1-1常用理想元件及符号 (3)电阻元件 电阻元件按其电压电流的关系曲线(又称伏安特性曲线)是否是过原点的直线而分为线性电阻元件(如上图a)和非线性电阻元件(如上图b)。按其特性是否随时间变化又可分为时变电阻元件和非时变电阻元件。本节重点介绍线性非时变电阻元件。 线性电阻元件是一个二端元件,其端电压u(t)和端电流i(t)取关联参考方向时,满足欧姆定律: u(t)=R i(t) i(t)=G u(t) 式中:R为线性电阻元件的电阻,G为线性电阻元件的电导,二者均为常量,其数值由元件本身决定,与其端电压和端电流无关。且 电阻的单位:欧姆(Ω);电导的单位:西门子(S)。 线性电阻的电阻值R就是线性电阻伏安特性中那条过原点的直线的斜率。当电阻值R=0时,伏安特性曲线与i轴重合,如下图所示。 此时不论电流i为何值,端电压u总为零,称其为“短路”。 当电阻值R=∞时,其伏安特性曲线与u轴重合如下图所示。 R=0时,不论端电压u为何值,电流i总为零,称其为“开路”或“断路”。电阻功率 在电阻元件取关联参考方向的情况下,电阻吸收的功率为 如电阻元件取非关联参考方向,电阻吸收的功率为 由以上两式知,无论电阻元件采用何种参考方向,任何时刻电阻吸收的功率都不可能为负值,也就是说电阻元件为耗能元件。

串并联电路中电阻的规律精编版

串并联电路中电阻的规律 1、电阻大小的影响因素:电阻率,长度,面积 电阻率的影响因素:材料,温度 2、串联电路中总电阻等于各部分电路电阻之和 并联电路中总电阻的倒数等于各并联电阻的倒数之和 3、串联电路中越串总电阻越大 并联电路中越并总电阻越小 串并联电路任意一个电阻增大总电阻增大 4、串联电路中电压之比等于他们所对应的电阻之比 并联电路中电流之比等于他们所对应的电阻之比 练习题 1、如图所示,电源电压不变,当开关S闭合时,电表示数的变化情况是( ) A.电流表、电压表示数均变大 B.电流表、电压表示数均变小 C.电压表示数变大,电流表示数变小 D.电压表示数变小,电流表示数变大 2、A、B是同种材料制成的电阻,它们的长度相等,A的横截面积是B的两倍,将它们串联在电路中,则加在A、B上的电压UA、UB和通过A、B上的电流IA、IB的关系正确的是( ) A.IA=IB B.IA>IB C.UA=UB D.UA>UB

3、如图所示,电源电压恒定,当S接a时,电流表A1与A2的示数之比为3:5;当S接b时,电流表A1与A2的示数之比为2:3,则R2 与R3的电阻之比为( ) A.9:10 B.4:3 C.3:4 D.2:5 4、如图甲所示电路,电源电压保持不变,当闭合开关S,调节滑动 变阻器阻值从最大变化到最小,两个电阻的“U-I”关系图像如图乙所示。则下列判断正确的是( ) A.电源电压为10V B.定值电阻R1的阻值为20Ω C.滑动变阻器R2的阻值变化到范围为0~10Ω D.变阻器滑片在中点时,电流表示数为0.3A 5、两完全相同的电阻,它们串联的总电阻是并联的总电阻的( ) A.1/2 B.2倍 C.1/4 D.4倍 6、如图所示,电源电压为6V,并保持不变,当S1、S2闭合,S3断 开时,电流表示数为0.5A,则R1的电阻值为___Ω;当S1、S3断开,S2闭合时,电压表示数为4V。则R2的电阻值为___Ω;如果电路中只闭合S3,电压表示数是___V。

串并联电路的特点及规律

串、并联电路的特点及规律 一、串联电路的特点: 1、电流:串联电路中各处电流都相等。 I=I 1=I 2=I 3=……In 2、电压:串联电路中总电压等于各部分电路电压之和。 U=U 1+U 2+U 3+……Un 3、电阻:串联电路中总电阻等于各部分电路电阻之和。 R=R 1+R 2+R 3+……Rn 理解:把n 段导体串联起来,总电阻比任何一段导体的电阻都大,这相当于增加了导体的长度。 n 个相同的电阻R 0串联,则总电阻R=nR 0 . 4、分压定律:串联电路中各部分电路两端电压与其电阻成正比。 U 1/U 2=R 1/R 2 U 1:U 2:U 3:…= R 1:R 2:R 3:… 二、并联电路的特点: 1、电流:并联电路中总电流等于各支路中电流之和。 I=I 1+I 2+I 3+……In 2、电压:文字:并联电路中各支路两端的电压都相等。 U=U 1=U 2=U 3=……Un 3、电阻:并联电路总电阻的倒数等于各支路电阻倒数之和。 1/R=1/R 1+1/R 2+1/R 3+……1/Rn 理解:把n 段导体并联起来,总电阻比任何一段导体的电阻都小,这相当于导体的横截面积增大。 特例: n 个相同的电阻R 0并联,则总电阻R=R 0/n . 求两个并联电阻R 1、R 2的总电阻R= 4、分流定律:并联电路中,流过各支路的电流与其电阻成反比。 I 1/I 2= R 2/R 1 (口诀:串联分压,并联分流) 总结: 串联: 并联: 1.两个小电泡L 1和L 2,L 1的阻值为 R ,L 2的阻值为2R ,它们串联起来接 入电路中。如果L 1两端的电压为4V , 那么L 2两端的电压为 ( ) A .8V B .6V C .4V D .2V 2.两个小电泡L 1和L 2,L 1的阻值为R ,L 2的阻值为2R ,它们串联起来接入电路中。如果L 1两端的电压为4V ,那么L 2两端的电压为 ( ) A .8V B .6V C .4V D .2V R 1R 2 R 1+R 2

最新串并联电路讲义

一.学习目标: 了解串并联电路中电流,电压,电阻,电功,电功率的规律 二.知识网络图: 三.各知识点详解: 1.电流: ◆串联电路中电流处处相等。 ◆并联电路中总电流等于各支路电流之和。 并联电路分流,该支路电流的分配与各支路电阻成反比。即: 2.电压: ◆串联电路中总电压(电源电压)等于各部分电路两端电压之和。 串联电路分压,各用电器分得的电压与自身电阻成正比。即: ◆并联电路中各支路电压和电源电压相等。 3.电阻: ◆串联电路中总电阻等于各串联电阻之和。总电阻要比任何一个串联分电阻阻值都要大。 (总电阻越串越大) 总电阻等于各电阻之和。即: ◆并联电路中总电阻的倒数等于各并联分电阻的倒数和。总电阻要比任何一个并联分电阻 阻值都要小。(总电阻越并越小) 总电阻的倒数等于各支路的电阻倒数之和。即: ◆因此几个电阻连接起来使用:要使总电阻变小就并联;要使总电阻变大就串联。

◆如果n 个阻值都为的电阻串联则 ◆如果n个阻值都为的电阻并联则 4.电功: ◆串联电路:总电功等于各个用电器的电功之和。即: 电流通过各个用电器所做的电功跟各用电器的电阻成正比,即: ◆并联电路:总电功等于各个用电器的电功之和。即: 电流通过各支路在相同时间内所做的电功跟该支路的电阻成反比。即: 4.电功率: ◆串联电路:总电功率等于各个用电器实际电功率之和。即: 各个用电器的实际电功率与各用电器的电阻成正比,即: ◆并联电路:总电功率等于各个用电器实际电功率之和。即: 各支路用电器的实际电功率与各个支路的电阻成反比。即: 5.主要公式 ◆电流(A):(电流随着电压,电阻变) ◆电压(V):(电压不随电流变。电压是产生电流的原因) ◆电阻(Ω):(对于此公式不能说电阻与电压成正比,与电流成反比。电阻与电流、电压没有关系。只与本身材料,横截面积,长度,温度有关) ◆电能(J):, (此二式是普适公式), (适用于纯电阻电路中) 也是电能的单位俗称度。 ◆电热(J):(普适公式) 在纯电阻电路中(消耗电能全部用来产生热量的电路)Q=W所以在纯电阻电路中算电热可通过算电能来实现。注意:接有电动机的电路不是纯电阻电路,在这样的电路中计算只能用普适公式 ◆电功率(W):,(普适公式), (适用于纯电阻电路)

相关主题
文本预览
相关文档 最新文档