当前位置:文档之家› 论文-禁忌搜索算法

论文-禁忌搜索算法

论文-禁忌搜索算法
论文-禁忌搜索算法

基于禁忌搜索算法的车辆路径选择

摘要:本文从VRP的提出背景与求解方法出发,阐释了禁忌搜索算法的原理与影响算法性能的关键因素,进而将禁忌搜索算法的思想运用于解决车辆路径问题,在VRP问题初始解的基础上,用禁忌搜索算法优化车辆配送路线,设计出直观且策略易于理解的客户直接排列的解的表示方法,最后将该算法用C语言实现并用于求解VRP问题,测试结果表明该算法可行且解的质量较高。

关键词:车辆路径问题;禁忌搜索;邻域;禁忌表

1.引言

物流配送过程的成本构成中,运输成本占到52%之多,如何安排运输车辆的行驶路径,使得配送车辆依照最短行驶路径或最短时间费用,在满足服务时间限制、车辆容量限制、行驶里程限制等约束条件下,依次服务于每个客户后返回起点,实现总运输成本的最小化,车辆路径问题正是基于这一需求而产生的。求解车辆路径问题(Vehicle Routing Problem简记VRP)的方法分为精确算法与启发式算法,精确算法随问题规模的增大,时间复杂度与空间复杂度呈指数增长,且VRP问题属于NP-hard问题,求解比较困难,因此启发式算法成为求解VRP问题的主要方法。禁忌搜索算法是启发式算法的一种,为求解VRP提供了新的工具。本文通过一种客户直接排列的解的表示方法,设计了一种求解车辆路径问题的新的禁忌搜索算法。

因此研究车辆路径问题,就是要研究如何安排运输车辆的行驶路线,使运输车辆依照最短的行驶路径或最短的时间费用,依次服务于每个客户后返回起点,总的运输成本实现最小。

2.车辆路径问题的禁忌搜索算法

2.1 车辆路径问题的描述

车辆路径问题的研究目标是对一系列送货点或取货点,确定适当的配送车辆行驶路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用最小、时间尽量少、使用车辆尽量少等)。参见下图2.1所示:其中0表示配送中心,1~8表示客户编号。

图2.1 车辆路径问题

在本文中为使得问题易于理解,将该问题描述为:有一定数量的客户,各自有不同数量的货物需求,且每个客户的位置和需求量一定,一个物流中心提供这些货物,并有一个车队负责分送货物,每台配送车辆的载重量一定,这里假设车辆的型号一致,即最大载重量和最远行驶里程数相同,要求合理安排车辆配送路线,使配送总路程最短,同时得满足一定的约

束条件,即每条路线总需求量之和不得超过配送车辆的载重量、每条路线行驶的里程数不得超过配送车辆的最远里程数、每一客户需求必须满足且仅由一台车辆配送。

2.2禁忌搜索算法描述

禁忌搜索算法思想最早由Glover在1986年提出的,是一种全局逐步寻优算法。其求解的过程是先求得一初始解,然后在邻域中搜索较佳解或是移动到较差的区域搜索该区域最佳解,并且记录曾经搜寻的路径,作为下次搜索的依据,以避免陷入局部最优解中。它引入了一个禁忌表记录下已经搜索过的局部最优点,在下一次搜索中利用禁忌表中的信息不再或者有选择地搜索这些点,以此来跳出局部最优点,从而实现全局优化。将禁忌搜索的思想条理化,可描述如下图2.2所示:

图2.2 禁忌搜索算法框架

3车辆路径问题的禁忌搜索算法实现

3.1算法思路

本文先用插入式启发算法得到车辆路径问题的初始可行解,再利用禁忌搜索算法对初始解进行改造。具体步骤如下:

(1)构造初始解时,先用客户直接排列的解的表示方法,随机生成某一不重复的客户排列序列,然后按照车辆路径问题的约束条件,依次将解的元素(客户)划入各条配送路径中,由此产生车辆路径问题的初始解,计算出当前解的目标函数值,这里的目标函数值为各车辆配送路径的里程数总和。

(2)通过随机交换两客户位置来生成当前解的邻域解,则有C2n=n*(n-1)/2个客户直接排列序列,然后按照车辆路径问题的约束条件,依次将解的元素(客户)划入各条配送路径中,

由此计算出各邻域解的目标函数值。

(3)根据藐视准则来评价当前解的邻域解,更新当前解与禁忌表。若候选解的目标值优于当前的最优目标值,不管其禁忌属性如何,更新为当前最优解并更新禁忌表,否则判别该方案的两个客户交换是否被禁忌:若被禁忌,选取次优解后继续该步骤;若未被禁忌,更新该解为当前解并更新禁忌表。

(4)若所有的候选对象均被禁忌,则根据队列FIFO原则,对禁忌表中队头元素取消其禁忌属性;禁忌表的更新为将其中所有的禁忌对象的禁忌长度减1,禁忌长度为0的对象取消其禁忌属性。

(5)重复迭代指定步长的(2)~(4),输出车辆配送方案的最终结果。

3.2 程序设计简介

算法中,无论是初始解的构造还是邻域内寻优,都涉及到对大量配送点进行的操作,如构造初始解时,针对车辆路径问题的约束条件将客户划分到不同的路径中;更新禁忌表时的将禁忌对象放入表中以及满足藐视准则时的禁忌对象的解禁。程序中针对该问题,采用了队列的形式,通过改进的队列基本操作来实现路径的分配与禁忌表的更新问题。下面给出定义的几个结构体:

(1)客户位置的无重复随机生成以及客户需求量的随机生成

实际配送系统中的客户的地理位置相对独立,且彼此之间服从独立均匀分布,为简易起见,程序中对客户的地理位置分布与客户的需求量只简单地使用C语言中的rand()函数进行随机分配,其中物流中心的地理位置默认为(0,0),为了保证生成的客户位置没有重复,用c_location[j].x==c_location[i].x && c_location[j].y==c_location[i].y语句来判定,其中c_location数组采用CPoint结构体,用于存储客户的位置,demand数组用于存储客户需求量,这两个数组均被定义为全局变量。

(2)客户随机序列的生成

算法中采用客户直接排列的解的表示方式,随机生成初始解,即无重复的客户随机排列序列数组A。

(3)初始解的车辆路径分配

将客户随机序列数组A中的各个值赋值到i_now数组中,i_now数组用于记录当前的最优解,定义车辆的最大负载量vehicle_Max,这里假设物流中心车辆的型号一致并且不考虑车辆的最大行驶距离。

(4)当前解的邻域结构

通过依次交换两客户位置来生成当前解的邻域解,则有C2n=n*(n-1)/2个客户直接排列序列。i_now的邻域解,用数组exchange_solution记录。用与初始分配方案相似的算法,可以求出exchange_solution数组中每一个车辆分配路线的车辆数以及车辆所行驶的总里程数,分别记录到数组N_num和s中。

(5)寻找当前解邻域结构的评价值最优方案

先从数组s中寻找到车辆行驶里程数最短的方案,记其下标为ibest,判断该方案是由当前解的哪两个客户交换得到的,记作i_x和i_y。根据禁忌准则对该局部最优解进行处理,可以替换为当前最优解的条件有二:(1)这两个元素的交换是可行的、未被禁忌的;(2)其解优于当前解,不管其是否禁忌均替换当前最优解,更新禁忌表,将禁忌表中各禁忌对象的禁忌步长减1,当禁忌步长为0时,取消禁忌对象的禁忌属性,而当替换方案中的所有对象均被禁忌后,根据FIFO原则,取消队头元素的禁忌属性。

4. 算例分析

这里用Microsoft Visual C++对车辆路径问题的禁忌搜索算法进行编程,通过对相对独立的随机分布在(0,100]平方公里范围内的指定客户数、且客户的需求为的(0,指定的客户数]范围内的随机数的VRP实例进行求解,进行了实验计算。

设在某物流中心有10台配送车辆,车辆的最大载重量均为10单位,在不考虑车辆一次配送的最大行驶距离的情况下,需要向10个客户运送货物,作者利用计算机随机产生了范围在0~100内的10个客户的位置坐标(坐标无重复情况)以及客户的货物需求量,其中物流中心的坐标默认为(0,0),各个客户的坐标位置与需求量如下图2.3所示,要求合理安排配送车辆的行车路径,使配送的总里程数最短。为简便起见,本文设各客户相互之间及物流中心与客户之间的距离均采用直线距离,该距离可根据客户和物流中心的坐标计算得到,如下图2.4所示。

图2.3 禁忌搜索算法相关信息

图2.4 客户地理位置分布情况及车辆路径分配

由算法的运行结果可知:初始解方案中所调派的车辆数为7、车辆所行驶的总里程数为731.46,车辆的配送方案为0-4-0、0-7-0、0-8-0、0-6-0、0-9-10-0、0-3-2-5-0、0-1-0,而用禁忌搜索算法对初始解进行改进后所得到的最终方案为:车辆数为6、车辆所行驶的总里程数为353.96,车辆的分配方案为0-1-7-0、0-4-0、0-6-0、0-8-0、0-10-3-2-0、0-5-9-0,车辆所行驶的总里程数得到很大程度的改善,且得到全局较优解所花费的时间仅为0.05s。

5总结

本文基于车辆路径问题的简单描述,采用客户直接排列的解的表示方法,相比较现有研究成果将车辆路径问题描述为网络图问题的有向边排列方法,表示更加直观、算法策略更加简单并易于理解,而且算法在迭代过程中产生的解均为可行解,算法的收敛速度得到明显改善。实验的计算结果表明,用禁忌搜索算法求解车辆路径问题能够跳出局部最优解,实现全局最优化,所得到的最终解决方案相比较初始方案质量更优,寻优性能良好。

参考文献:

[1]李军,郭耀辉.车辆优化调度理论与方法[M].北京:中国物资出版社,2001年.

[2]郎茂祥,胡思继.车辆路径问题的禁忌搜索算法研究[J].管理工程学报,2004,18(1):

81-84.

[3]李松,李瑞彩,刘兴.基于改进禁忌搜索算法的车辆路径优化[J].铁道运输与经济,

2008,30(5):91-94.

[4]张强,荆刚,陈建岭.车辆路线问题研究现状及发展方向[J].交通科技,2004,23(1):

60-62.

[5]刘云忠,宣慧玉.车辆路径问题的模型及算法研究综述[J].管理工程学报,2005,19

(1):124-130.

禁忌搜索算法浅析

禁忌搜索算法浅析 摘要:本文介绍了禁忌搜索算法的基本思想、算法流程及其实现的伪代码。禁忌搜索算法(Tabu Search或Taboo Search,简称TS算法)是一种全局性邻域搜索算法,可以有效地解决组合优化问题,引导算法跳出局部最优解,转向全局最优解的功能。 关键词:禁忌搜索算法;组合优化;近似算法;邻域搜索 1禁忌搜索算法概述 禁忌搜索算法(Tabu Search)是由美国科罗拉多州大学的Fred Glover教授在1986年左右提出来的,是一个用来跳出局部最优的搜寻方法。在解决最优问题上,一般区分为两种方式:一种是传统的方法,另一种方法则是一些启发式搜索算法。使用传统的方法,我们必须对每一个问题都去设计一套算法,相当不方便,缺乏广泛性,优点在于我们可以证明算法的正确性,我们可以保证找到的答案是最优的;而对于启发式算法,针对不同的问题,我们可以套用同一个架构来寻找答案,在这个过程中,我们只需要设计评价函数以及如何找到下一个可能解的函数等,所以启发式算法的广泛性比较高,但相对在准确度上就不一定能够达到最优,但是在实际问题中启发式算法那有着更广泛的应用。 禁忌搜索是一种亚启发式随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向。 TS是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中涉及邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu 1ength)、候选解(candidate)、藐视准则(candidate)等影响禁忌搜索算法性能的关键因素。迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。 2禁忌搜索算法的基本思想 禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索,TS的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。 禁忌搜索是对局部邻域搜索的一种扩展,是一种全局逐步寻求最优算法。局部邻域搜索是基于贪婪思想持续地在当前解的邻域中进行搜索,虽然算法通用易实现,且容易理解,但搜索性能完全依赖于邻域结构和初解,尤其会陷入局部极小而无法保证全局优化型。 禁忌搜索算法中充分体现了集中和扩散两个策略,它的集中策略体现在局部搜索,即从一点出发,在这点的邻域内寻求更好的解,以达到局部最优解而结束,为了跳出局部最优解,扩散策略通过禁忌表的功能来实现。禁忌表中记下已经到达的某些信息,算法通过对禁

禁忌搜索算法评述(一)

禁忌搜索算法评述(一) 摘要:工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。 关键词:禁忌搜索算法;优化;禁忌表;启发式;智能算法 1引言 工程领域内存在大量的优化问题,对于优化算法的研究一直是计算机领域内的一个热点问题。优化算法主要分为启发式算法和智能随机算法。启发式算法依赖对问题性质的认识,属于局部优化算法。智能随机算法不依赖问题的性质,按一定规则搜索解空间,直到搜索到近似优解或最优解,属于全局优化算法,其代表有遗传算法、模拟退火算法、粒子群算法、禁忌搜索算法等。禁忌搜索算法(TabuSearch,TS)最早是由Glover在1986年提出,它的实质是对局部邻域搜索的一种拓展。TS算法通过模拟人类智能的记忆机制,采用禁忌策略限制搜索过程陷入局部最优来避免迂回搜索。同时引入特赦(破禁)准则来释放一些被禁忌的优良状态,以保证搜索过程的有效性和多样性。TS算法是一种具有不同于遗传和模拟退火等算法特点的智能随机算法,可以克服搜索过程易于早熟收敛的缺陷而达到全局优化1]。 迄今为止,TS算法已经广泛应用于组合优化、机器学习、生产调度、函数优化、电路设计、路由优化、投资分析和神经网络等领域,并显示出极好的研究前景2~9,11~15]。目前关于TS 的研究主要分为对TS算法过程和关键步骤的改进,用TS改进已有优化算法和应用TS相关算法求解工程优化问题三个方面。 禁忌搜索提出了一种基于智能记忆的框架,在实际实现过程中可以根据问题的性质做有针对性的设计,本文在给出禁忌搜索基本流程的基础上,对如何设计算法中的关键步骤进行了有益的总结和分析。 2禁忌搜索算法的基本流程 TS算法一般流程描述1]: (1)设定算法参数,产生初始解x,置空禁忌表。 (2)判断是否满足终止条件?若是,则结束,并输出结果;否则,继续以下步骤。 (3)利用当前解x的邻域结构产生邻域解,并从中确定若干候选解。 (4)对候选解判断是否满足藐视准则?若成立,则用满足藐视准则的最佳状态y替代x成为新的当前解,并用y对应的禁忌对象替换最早进入禁忌表的禁忌对象,同时用y替换“bestsofar”状态,然后转步骤(6);否则,继续以下步骤。 (5)判断候选解对应的各对象的禁忌情况,选择候选解集中非禁忌对象对应的最佳状态为新的当前解,同时用与之对应的禁忌对象替换最早进入禁忌表的禁忌对象。 (6)转步骤(2)。 算法可用图1所示的流程图更为直观的描述。 3禁忌搜索算法中的关键设计 3.1编码及初始解的构造 禁忌搜索算法首先要对待求解的问题进行抽象,分析问题解的形式以形成编码。禁忌搜索的过程就是在解的编码空间里找出代表最优解或近似优解的编码串。编码串的设计方式有多种策略,主要根据待解问题的特征而定。二进制编码将问题的解用一个二进制串来表示2],十进制编码将问题的解用一个十进制串来表示3],实数编码将问题的解用一个实数来表示4],在某些组合优化问题中,还经常使用混合编码5]、0-1矩阵编码等。 禁忌搜索对初始解的依赖较大,好的初始解往往会提高最终的优化效果。初始解的构造可以

论文-禁忌搜索算法

基于禁忌搜索算法的车辆路径选择 摘要:本文从VRP的提出背景与求解方法出发,阐释了禁忌搜索算法的原理与影响算法性能的关键因素,进而将禁忌搜索算法的思想运用于解决车辆路径问题,在VRP问题初始解的基础上,用禁忌搜索算法优化车辆配送路线,设计出直观且策略易于理解的客户直接排列的解的表示方法,最后将该算法用C语言实现并用于求解VRP问题,测试结果表明该算法可行且解的质量较高。 关键词:车辆路径问题;禁忌搜索;邻域;禁忌表 1.引言 物流配送过程的成本构成中,运输成本占到52%之多,如何安排运输车辆的行驶路径,使得配送车辆依照最短行驶路径或最短时间费用,在满足服务时间限制、车辆容量限制、行驶里程限制等约束条件下,依次服务于每个客户后返回起点,实现总运输成本的最小化,车辆路径问题正是基于这一需求而产生的。求解车辆路径问题(Vehicle Routing Problem简记VRP)的方法分为精确算法与启发式算法,精确算法随问题规模的增大,时间复杂度与空间复杂度呈指数增长,且VRP问题属于NP-hard问题,求解比较困难,因此启发式算法成为求解VRP问题的主要方法。禁忌搜索算法是启发式算法的一种,为求解VRP提供了新的工具。本文通过一种客户直接排列的解的表示方法,设计了一种求解车辆路径问题的新的禁忌搜索算法。 因此研究车辆路径问题,就是要研究如何安排运输车辆的行驶路线,使运输车辆依照最短的行驶路径或最短的时间费用,依次服务于每个客户后返回起点,总的运输成本实现最小。 2.车辆路径问题的禁忌搜索算法 2.1 车辆路径问题的描述 车辆路径问题的研究目标是对一系列送货点或取货点,确定适当的配送车辆行驶路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用最小、时间尽量少、使用车辆尽量少等)。参见下图2.1所示:其中0表示配送中心,1~8表示客户编号。 图2.1 车辆路径问题 在本文中为使得问题易于理解,将该问题描述为:有一定数量的客户,各自有不同数量的货物需求,且每个客户的位置和需求量一定,一个物流中心提供这些货物,并有一个车队负责分送货物,每台配送车辆的载重量一定,这里假设车辆的型号一致,即最大载重量和最

禁忌搜索和应用

目录 一、摘要 (2) 二、禁忌搜索简介 (2) 三、禁忌搜索的应用 (2) 1、现实情况 (2) 2、车辆路径问题的描述 (3) 3、算法思路 (3) 4、具体步骤 (3) 5、程序设计简介 (3) 6、算例分析 (4) 四、禁忌搜索算法的评述和展望 (4) 五、参考文献 (5)

禁忌搜索及应用 一、摘要 工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。 二、禁忌搜索简介 禁忌搜索(Tabu Search或Taboo Search,简称TS)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。相对于模拟退火和遗传算法,TS是又一种搜索特点不同的meta-heuristic算法。 迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。 禁忌搜索是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。禁忌搜索涉及到邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu length)、候选解(candidate)、藐视准则(aspiration criterion)等概念。 三、禁忌搜索的应用 禁忌搜索应用的领域多种多样,下面我们简单的介绍下基于禁忌搜索算法的车辆路径选择。 1、现实情况 物流配送过程的成本构成中,运输成本占到52%之多,如何安排运输车辆的行驶路径,使得配送车辆依照最短行驶路径或最短时间费用,在满足服务时间限制、车辆容量限制、行驶里程限制等约束条件下,依次服务于每个客户后返回起点,实现总运输成本的最小化,车辆路径问题正是基于这一需求而产生的。求解车辆路径问题(vehicle routing problem简记vrp)的方法分为精确算法与启发式算法,精确算法随问题规模的增大,时间复杂度与空间复杂度呈指数增长,且vrp问题属于np-hard问题,求解比较困难,因此启发式算法成为求解vrp问题的主要方法。禁忌搜索算法是启发式算法的一种,为求解vrp提供了新的工具。本文通过一种客户直接排列的解的表示方法,设计了一种求解车辆路径问题的新的禁忌搜索算法。 因此研究车辆路径问题,就是要研究如何安排运输车辆的行驶路线,使运输车辆依照最

禁忌搜索算法摘录

禁忌(Tabu Search)算法是一种亚启发式(meta-heuristic)随机搜索算法1,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。 为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。 当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。这就是禁忌搜索 中“禁忌表(tabu list)”的含义。那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个没有兔子留守的地方优越性太突出,超过 了“best so far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。 伪码表达 procedure tabu search; begin initialize a string vc at random,clear up the tabu list; cur:=vc; repeat select a new string vn in the neighborhood of vc; if va>best_to_far then {va is a string in the tabu list} begin

禁忌搜索算法公式

6.2基于均衡原理的LRP 算法设计 6.2.1基于均衡原理的LRP 算法整体流程 基于均衡原理的LRP 算法整体流程如下: step1:初始化,设置整体收敛性判断参数δ; step2:随机生成一组LRP 选址问题的解D ,求出相应的目标值F ; step3:根据上层解D ,利用Frank-Wolfe 算法(见6.2.3节)求出各客户的 货物总量Q j 及客户在各配送中心的货物均衡分配量x j i ,; step4:根据D 及x j i ,运用禁忌算法求解VRP 问题(见6.2.4节),得出各配送 中对各客户的单位货物配送费用C j i ,; step5:根据 x j i ,及公式(6-8)求出下层 x j i ,与 d i 的关系y d x j i i j i W ,,+ =; step6:将LRP 模型上层目标函数中用代替,并代入下层求得的Q j 和C j i ,,运用禁忌算法 求得新的LRP 选址规划的解'Z 及目标函数'F (见6.2.2节); step7:如果δ<-F F ' ,转step8,算法结束,D 、F 为LRP 的最终解和解值;否则 '':,:F F D D ==,转step3; step8:算法结束。 6.2.2 LRP 选址规划的禁忌算法 模型上层是基于0-1整数规划的选址问题。由于选址问题是NP-hard ,如果 用精确算法求解,对节点数目的限制将有严格的要求。本章根据模型的特点, 采用禁忌算法优化产业选址问题。 1.解的构造和初始解的生成 采用二进制编码,编码长度为潜在的配送中心地点数量N T ,对于编码中位置i ,1表示选中i 点作为厂址,0表示没有选中。对于解中任意点i ,产生随机数δ,如果N T N /≥δ,则置i 点为0,否则置1。重复以上步骤m 次,得到初始解。 2.邻域的搜索 根据本章选址问题的特点,设计了三种邻域操作,分别为自身取反、2-swap 交换和2-opt 交换。 1).自身取反。为单点操作,即选择解中i 点,对该点的值取反; 2).2-swap 交换。为双点操作,选择解中两点进行交换,其它位置的值不变。例如解001101中的2、6点被选中,则2-swap 交换后变为:011100; 3).2-opt 交换。为多点操作,选择解中两点进行交换,同时两点之间的值逆序改变。例如解001101中的2、6点被选中,则2-swap 交换后变为:010110;

禁忌搜索算法

无时限单向配送车辆优化调度问题的禁忌搜索算法无时限单向配送车辆优化调度问题,是指在制定配送路线时不考虑客户对货物送到(或取走)时间要求的纯送货(或纯取货)车辆调度问题。 无时限单向配送车辆优化调度问题可以描述为:从某配送中心用多台配送车辆向多个客户送货,每个客户的位置和需求量一定,每台配送车辆的载重量一定,其一次配送的最大行驶距离一定,要求合理安排车辆配送路线,使目标函数得到优化,并满足一下条件:(1)每条配送路径上各客户的需求量之和不超过配送车辆的载重量; (2)每条配送路径的长度不超过配送车辆一次配送的最大行驶距离; (3)每个客户的需求必须满足,且只能由一台配送车辆送货。 一、禁忌搜索算法的原理 禁忌搜索算法是解决组合优化问题的一种优化方法。该算法是局部搜索算法的推广,其特点是采用禁忌技术,即用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点,以此来挑出局部最优点。 在禁忌搜索算法中,首先按照随机方法产生一个初始解作为当前解,然后在当前解的领域中搜索若干个解,取其中的最优解作为新的当前解。为了避免陷入局部最优解,这种优化方法允许一定的下山操作(使解的质量变差)。另外,为了避免对已搜索过的局部最优解的重复,禁忌搜索算法使用禁忌表记录已搜索的局部最优解的历史信息,这可在一定程度上使搜索过程避开局部极值点,从而开辟新的搜索区域。 二、算法要素的设计 1.禁忌对象的确定 禁忌对象是指禁忌表中被禁的那些变化元素。由于解状态的变化可以分为解的简单变化、解向量分量的变化和目标值变化三种情况,则在确定禁忌对象时也有相对应的三种禁忌情况。 一般来说,对解的简单变化进行禁忌比另两种的受禁范围要小,因此可能早能造成计算时间的增加,但其优点是提供了较大的搜索范围。 根据配送车辆优化调度问题的特点,可采用对解的简单变化进行禁忌的方法。举例进行说明:当解从x变化到y时,y可能是局部最优解,为了避开局部最优解,禁忌y这一解再度出现,可采用如下禁忌规则:当y的领域中有比它更优的解时,选择更优的解;当y为其领域的局部最优解时,不再选y,而选比y稍差的解。 2.禁忌长度的确定 禁忌长度是指被禁对象不允许被选取的迭代步数,一般是给被禁忌对象x一个数l(称为禁忌长度),要求x在l步迭代内被禁,在禁忌表中采用Tabu(x)=l记忆,每迭代一步,该指标做运算Tabu(x)=l-1,直到Tabu(x)=0时解禁。关于禁忌长度l的选取,可归纳为以下几种情况。 (1)l为常数,可取l=10、(n为领域中邻居的总个数)。这种规则容易在算法中实现。 (2)。此时,l是可以变化的数,其变化的依据是被禁对象的目标函数值和领域的结构。、是确定的数,确定的常用方法是根据问题的规模N,限定变化区间;也可以用领域中邻居的个数n确定变化区间。 禁忌长度的选取同实际问题和算法设计者的经验有紧密联系,同时它也会影响计算的复杂性,过短会造成循环的出现,过长又会造成计算时间的增加。 3.候选集合的确定 候选集合由领域中的邻居组成,常规的方法是从领域中选择若干个目标函数值或评价值最佳的邻居。

禁忌搜索算法CC++源代码

禁忌搜索算法C/C++源代码 #define N 100 void yuesefu1(int data[],int result[],int sum,int k) { int i=0,j=0,count=0; int n; while(count=count)/*若此人还在圈内*/ j++; if(j==k) { result[count++]=data[i];/*把出圈的人的编号存入禁忌表*/ j=0; } i++; if(i==sum) i=0; } } void main() { int data[N]; int result[N]={0}; int i,j,total,k; printf("\nPlease input the number of every people.\n"); for(i=0;i=i&&input>0) { data[i]=input; i++;

} else printf("\nData error.Re-input:"); } total=i; printf("\nY ou have input:\n"); for(i=0;i

2013年数学建模第一题方法总结禁忌搜索算法

禁忌搜索算法 又名“tabu搜索算法” 为了找到“全局最优解”,就不应该执着于某一个特定的区域。局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。 当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。这就是禁忌搜索中“禁忌表(tabu list)”的含义。那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。 伪码表达: procedure tabu search; begin initialize a string vc at random,clear up the tabu list; cur:=vc; repeat select a new string vn in the neighborhood of vc; if va>best_to_far then {va is a string in the tabu list} begin cur:=va; let va take place of the oldest string in the tabu list; best_to_far:=va; end else begin cur:=vn; let vn take place of the oldest string in the tabu list; end; until (termination-condition); end; 以上程序中有关键的几点:

禁忌搜索算法

禁忌搜索算法 2009210042 李同玲运筹学与控制论 搜索是人工智能的一个基本问题,一个问题的求解过程就是搜索。人工智能在各应用领域中,被广泛的使用。现在,搜索技术渗透在各种人工智能系统中,可以说没有哪一种人工智能的应用不用搜索方法。 禁忌搜索算法(Tabu Search或Taboo Search,简称TS)的思想最早由Glover (美国工程院院士,科罗拉多大学教授)在1977年提出,它是对局部邻域搜索的一种扩展,是一种全局邻域搜索算法,是人工智能的一种体现,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。 1.1引言 1.1.1局部邻域搜索 局部邻域搜索是基于贪婪思想持续地在当前的邻域中进行搜索,虽然算法通用易实现,且容易理解,但其搜索性能完全依赖于邻域结构和初始解,尤其容易陷入局部极小而无法保证全局优化性。 局部搜索的算法可以描述为:

1、 选定一个初始可行解:0x ; 记录当前最优解0best x x =,()best T N x =; 2、 当\best T x =?时,或满足其他停止运算准则时,输出计算结果, 停止运算;否则,从T 中选一集合S ,得到S 中的最好解now x ;若()()now best f x f x <,则b e s t n o w x x =,()best T N x =;否则,\T T S =;重复2,继续搜索 这种邻域搜索方法容易实现理解,容易实现,而且具有很好的通用性,但是搜索结果完全依赖于初始解和邻域的结构,而且只能搜索到局部最优解。为了实现全局搜索,禁忌搜索采用允许接受劣解来逃离局部最优解。针对局部领域搜索,为了实现全局优化,可尝试的途径有:以可控性概率接受劣解来逃逸局部极小,如模拟退火算法;扩大领域搜索结构,如TSP 的2-opt 扩展到k-opt ;多点并行搜索,如进化计算;变结构领域搜索( Mladenovic et al,1997);另外,就是采用TS 的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。 1.1.2禁忌搜索算法的基本思想 禁忌搜索算法的基本思想就是在搜索过程中将近期的历史上的搜索过程存放在禁忌表(Tabu List )中,阻止算法重复进入,这样就有效地防止了搜索过程的循环。禁忌表模仿了人类的记忆功能,禁忌搜索因此得名,所以称它是一种智能优化算法。 具体的思路如下:禁忌搜索算法采用了邻域选优的搜索方法,为了能逃离局部最优解,算法必须能够接受劣解,也就是每一次迭代得到的解不必一定优于原来的解。但是。一旦接受了劣解,迭代就可能

相关主题
文本预览
相关文档 最新文档