当前位置:文档之家› 电力系统-特高压输电系统及其关键技术

电力系统-特高压输电系统及其关键技术

电力系统-特高压输电系统及其关键技术
电力系统-特高压输电系统及其关键技术

Beijing Jiaotong University 特高压输电系统及其关键技术

姓名:TYP

班级:电气0906

学号:09291183

指导老师:吴俊勇

完成日期:2012.5.20

一、特高压输电简介

特高压输电指的是使用1000千伏及以上的电压等级输送电能。特高压输电是在超高压输电的基础上发展的,其目的仍是继续提高输电能力,实现大功率的中、远距离输电,以及实现远距离的电力系统互联,建成联合电力系统。

特高压输电具有明显的经济效益。据估计,1条1150千伏输电线路的输电能力可代替5~6条500千伏线路,或3条750千伏线路;可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价10~15%。1150千伏特高压线路走廊约仅为同等输送能力的 500千伏线路所需走廊的四分之一,这对于人口稠密、土地宝贵或走廊困难的国家和地区会带来重大的经济和社会效益。特高压输送容量大、送电距离长、线路损耗低、占用土地少。100万伏交流特高压输电线路输送电能的能力(技术上叫输送容量)是50万伏超高压输电线路的5倍。所以有人这样比喻,超高压输电是省级公路,顶多就算是个国道,而特高压输电是“电力高速公路”。1000千伏电压等级的特高压输电线路均需采用多根分裂导线,如8、12、16分裂等,每根分裂导线的截面大都在6 00平方毫米以上,这样可以减少电晕放电所引起的损耗以及无线电干扰、电视干扰、可听噪声干扰等不良影响。杆塔高度约40~50米。双回并架线路杆塔高达90~97米。

二、特高压输电系统及关键技术简介

特高压输电分为特高压直流输电和特高压交流输电两种形式。

1、特高压直流输电

特高压直流输电(UHVDC)是指±800kV(±750kV)及以上电压等级的直流输电及相关技术。特高压直流输电的主要特点是输送容量大、电压高,可用于电力系统非同步联网。在我国特高压电网建设中,将以1000kV交流特高压输电为主形成特高压电网骨干网架,实现各大区电网的同步互联;±800kV特高压直流输电则主要用于远距离、中间无落点、无电压支撑的大功率输电工程。

1、特高压直流输电设备。主要包括:换流阀、换流变压器、

平波电抗器、交流滤波器、直流滤波器、直流避雷器、交流避雷器、无功补偿设备、控制保护装置和远动通信设备等。相对于传统的高压直流输电,特高压直流输电的直流侧电压更高。容量更大,因此对换流阀、换流变压器、平波电抗器、直流滤波器和避雷器等设备提出了更高的要求。

2、特高压直流输电的接线方式。UHVDC一般采用高可靠性

的双极两端中性点接线方式。

3、特高压直流输电的主要技术特点。与特高压交流输电技

术相比,UHVDC的主要技术特点为:

(1)UHVDC系统中间不落点,可点对点、大功率、远距离直接将电力输送至负荷中心;

(2)UHVDC控制方式灵活、快速,可以减少或避免大量过网潮流,按照送、受两端运行方式变化而改变潮流;

(3)UHVDC的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电;

(4)在交直流混合输电的情况下,利用直流有功功率调制可以有效抑制与其并列的交流线路的功率振荡,包括

区域性低频振荡,提高交流系统的动态稳定性;

(5)当发生直流系统闭锁时,UHVDC两端交流系统将承受很大的功率冲击。

2、特高压交流输电

特高压交流输电是指1000kV及以上电压等级的交流输电工程及相关技术。特高压输电技术具有远距离、大容量、低损耗、节约土地占用和经济性等特点。目前,对特高压交流输电技术的研究主要集中在线路参数特性和传输能力、稳定性、经济性以及绝缘与过电压、电晕及工频电磁场等方面。特高压交流输电有以下几个参数:

1、输电能力。输电线路的传输能力与输电电压的平方成正比,

与线路阻抗成反比。一般来说,1100kV输电线路的输电能力为500kV输电能力的4倍以上,但产生的容性无功也为500kV输电线路的4.4倍及以上。因此,特高压输电线路的输送功率较小时,

送、受端系统的电压将升高。为抑制特高压线路的工频过电压,需要在线路两端并联电抗器以补偿线路产生的容性无功。

2、线路参数特性。特高压输电线路单位长度的电抗和电阻

一般分别为500kV输电线路的85%和25%左右,但其单位长度的

电纳可为500kV线路的1.2倍。

3、稳定性。特高压输电线路的输电能力很大程度上是由电

力系统稳定性决定的。对于中、长距离输电(300km及以上),特高压输电线路的输电能力主要受功角稳定的限制(包括静态稳定、动态稳定和暂态稳定);对于中、短距离输电(80~300km),则主要受电压稳定性的限制;对于短距离输电(80km以下),

主要受热稳定极限的限制。

4、功率损耗。输电线路的功率损耗与输电电流的平方成正

比,与线路电阻成正比。在输送相同功率的情况下,1000kV输

电线路的线路电流约为500kV输电线路的1/2,其电阻约为500kV 线路的25%。因此,1000kV特高压输电线路单位长度的功率损耗约为500kV超高压输电的1/16。

5、经济性。同超高压输电相比,特高压输电方式的输电成本、

运行可靠性、功率损耗以及线路走廊宽度方面均优于超高压输电方式。

3、特高压直流和交流输电的优缺点比较

特高压直流输电方面:

经济方面优点:

(1)线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。

(2)年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。

所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。

技术方面:

(1)不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。因此,

直流输电的输送容量和距离不受同步运行稳定性的限制.还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。

(2)限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。

(3)调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。

(4)没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。

(5)节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。

然而 ,下列因素限制了直流输电的应用范围:

(1)换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电

两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。

(2)消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。

(3)产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。

(4)就技术和设备而言,直流波形无过零点,灭弧困难。目前缺乏直流开关而是通过闭锁换流器的控制脉冲信号实现开关功能。若多条直流线路汇集一个地区,一次故障也可能造成多个逆变站闭锁,而且在多端供电方式中无法单独地切断事故线路而需切断全部线路,从而会对系统造成重大冲击。

(5)从运行维护来说,直流线路积污速度快、污闪电压低,污秽问题较交流线路更为严重。与西方发达国家相比,目前我国大气环境相对较差,这使直流线路的清扫及防污闪更为困难。设备故障及污秽严重等原因使直流线路的污闪率明显高于交流线路。

(6)不能用变压器来改变电压等级。直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500kV输电(经济输送容量为1 000 kW,输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

特高压交流输电方面:

主要优点:

(1)提高传输容量和传输距离。随着电网区域的扩大,电能的传输容量和传输距离也不断增大。所需电网电压等级越高,紧凑型输电的效果越好。

(2)提高电能传输的经济性。输电电压越高输送单位容量的价格越低。

(3)节省线路走廊和变电站占地面积。一般来说,一回1150 kV 输电线路可代替6回500 kV线路。采用特高压输电提高了走廊利用率。

(4)减少线路的功率损耗, 就我国而言, 电压每提高1%,每年就相当于新增加500万kW的电力,500kV输电比1200kV的线损大5倍以上。

(5)有利于连网,简化网络结构,减少故障率。

特高压输电的主要缺点是系统的稳定性和可靠性问题不易解决。自1965-1984年世界上共发生了6次交流大电网瓦解事故,其中4次发生在美国,2次在欧洲。这些严重的大电网瓦解事故说明采用交流互联的大电网存在着安全稳定、事故连锁反应及大面积停电等难以解决的问题。特别是在特高压线路出现初期,不能形成主网架,线路负载能力较低,电源的集中送出带来了较大的稳定性问题。下级电网不能解环运行,导致不能有效降低受端电网短路电流,这些都威胁着电网的安全运行。另外,特高压交流输电对环境影响较大。

由于交流特高压和高压直流各有优缺点,都能用于长距离大容量输电线路和大区电网间的互联线路,两者各有优缺点。输电线路的建设主要考虑的是经济性,而互联线路则要将系统的稳定性放在第一位。随着技术的发展,双方的优缺点还可能互相转化。两种输电技术将在很长一段时间里并存且有激烈的竞争。

下面用一个特高压交流输电系统典例来说明特高压输电的相关

技术。

A、背景介绍。东京电力公司是日本最大电力公司,供电区域

达3.9 万平方公里,包括东京都及其周边区域(大东京市)。2008 财年净供电量为289TWh,占日本全国供电总量的33%东京电力公司的电力系统有下述几个特点:第一,电力需求集中在大东京市。

第二,由于近几十年大型发电站的选址越来越困难,新的发电站选址必需远离拥挤的城市,建设在偏远地区。基于上述情况,为保证稳定的电力供应,围绕东京周边地区已经建设了2000 多公里550KV 双回路输电线路,如图1 所示。

从19世纪70年代中期,东京电力公司开始不断扩建550KV 电网;复杂交错的输电线路的安全难以保证。除此之外,为了增加550KV 输电线路的数量,还要求解决系统短路容量问题。因此,东京电力公司决定建设输电容量比550KV 输电线路大3-4 倍的1100kV 输电线路,如图2 所示为同输电容量不同电压等级输电通道数量比较。

图2

在升级完成以后,550kV 电网的几个断路器将在通常运行情况下停运,以减少短路电流,如图3所示。

B、系统设计。在1100kV 系统中,输电线路和变电站的经济性、高可靠性及进行环保考量是非常必要的。为实现1100kV 的传输系统,复

杂精密的系统设计技术是必须的,以应对由高电压引起的一系列现象。对特高压交流输电来讲,意味着更大的充电功率(MVA)和更小的线

路阻抗。图 4 给出了1100kV 系统设计的一种基本概念。

图4

技术及解决方案如下:

?网络问题的解决方案:技术措施如二次电弧的熄灭

?高性能避雷器的绝缘配合问题,如变电站设备的雷电冲击电压的耐忍值(LIWV)和限制操作过电压

?输电线路设计,如减小输电杆塔的尺寸、其磁场效应,电晕噪音和风噪音。

?变电站设计,紧凑型变电设备和高可靠性设备

在 1100kV 系统中,二次电弧的熄灭小于一秒,但不采用特殊的

测量手段是难以估量的,因为由健全相的静电导致产生更高的电压。用高速接地开关( HSGS )可以达到这一目的。在相对较短的无换位的输电线路中不装设电抗器。故障线路的高速接地开关(HSGS)在故障消除后闭合以强行熄灭二次灭弧,然后快速打开使系统恢复。高速接地开关(HSGS)在机械与电气上的高可靠性设计,使其发生故障时候不会给整个网络系统造成致命的后果。图5为高速接地开关(HSGS)运行的时间序位图。

图5

精密的绝缘配合是特高压系统必须的,而且应在整个特高压输电线路和变电站中进行技术经济优化。图6显示了在1100kV系统中的一个新实现的绝缘配合。对于变电站,通过装设高性能避雷器,设定合理的雷电冲击电压的耐忍值(LIWV)可有效减少雷电过电压。对于输电线路,通过装设合闸/分闸电阻及采用高性能避雷器有效地降低了操作过电压水平,合理的过电压设计水平正被确定。这种金属氧化物避雷器(MOSA)是 1100kV 系统绝缘配合中的一项关键技术。如图7所示,它具有良好的保护特性当残余电压为1620kV(1.80pu)在电流为20kA

(V20kA )时,较常规避雷器有更平滑的伏安(V-I)特性,高电压下更长的工作寿命,及更高的放电能力。

图6

图7

因此可以将相地间的绝缘水平成功控制在了1.6-1.7pu 的水平,如图8所示,小于常规应用于550kV 输电线路的2.0pu 水平。这些在缩小线路相间电气间隙的设计使杆塔高度可以降低,采用常规550kV 绝缘技术,杆塔高度为一百四十三米,采用新的方法杆塔高度可将降

低到110 米。图9 显示了按设计进行的实际建造中的特高压输电线路。

图8

图9

特高压变电站。由于变电站往往建在偏远的山地丘陵地区,在变电站设计中,设备尺寸和重量的减少可以降低变电站建设,设备运输

和环境的成本。因此可以采用六氟化硫气体绝缘断路器等器件。

三、中外特高压输电发展情况简介

截至2004年底,我国发电总装机容量已达到440 GW,预计到2005年底总容量将超过500GW,到2020年约为1 000GW,电网面临持续增加输送能力,将大规模电力从发电厂安全可靠地输送到终端用户的艰巨任务。其次,我国能源分布和负荷中心分布极不平衡,水能、煤炭主要分布在西部和北部,能源和电力需求主要集中在东部和中部经济发达地区,不可避免地要采用大容量、远距离方式输电。再者,由于我国长江三角洲及珠江三角洲大型负荷中心地区人口密度高,通道资源问题日益突出。目前,我国电网骨干网架主要以500 kV交流和±500 kV 直流系统为主,较大幅度增加电力输送能力和规模受到严重制约,为实现“西电东送、南北互供、全国联网”的战略目标,亟需吸收国际上特高压输电的经验,加快建设电压等级更高、网架结构更强、资源配置规模更大的特高压骨干电网,提高输电走廊利用率,促进我国电力产业技术升级和可持续发展。

20 世纪60 年代以来,前苏联、美国、日本、意大利等国家

先后制定了特高压输电计划[2,3](见表1),相继建成了特高压

输电试验室、试验场,对特高压输电可能产生的许多问题如过电

压、外绝缘、可听噪声、无线电干扰、生态影响等进行了大量研

究并取得了积极成果。CIGRE 专题工作组在综合分析各国对特高

压技术的研究工作后指出:特高压技术没有难以克服的技术问题。IEEE对±800 kV、±1 000 kV和±1 200 kV等级直流输电的研究表明,±800 kV级直流输电是可行的方案。

国家发展改革委员会于2005 年2 月16 日印发了《关于开展百万伏交流、80 万伏级直流输电技术前期研究工作的通知》,对特高压输变电技术前期研究工作进行了全面部署,这标志着我国特高压电网工程的全面启动。南方电网公司[4,5]提出近期启动“一直一交”工程建设,即云南昆西北—广东广州增东第一回±800 kV 直流输电工程,输电距离约1 500 km,输电容量5 GW,要求2005 年完成可行性研究,2010年前建成投产;云南昭通—广西桂林—广东龙门—惠东1 000 kV 交流输变电工程,线路长度约1 320 km,线路输电能力约4~5 GW,“十一五”末建成投产。南方电网公司的总体目标为:从云南

丽江经贵州、广西,建设2回1 000 kV交流输电通道通向广第6 期关志成等. 中国特高压输电工程及相关的关键技术 15东;从云南永平经广西建设3回1 000 kV交流输电通道通向广东;“十一五”末建成云南至广东第一回±800 kV 直流输电通道;“十二五”末建成糯扎渡至广东±800 kV 直流输电通道;在广东电网围绕珠三角地区惠东—龙门—佛岗—四会—新兴形成1 000 kV 双回半环网网络,并结合大型电厂的建设,向粤东、粤西延伸。到2030 年前,南方电网将形成特高压的“五交二直”网架结构。国家电网公司[6-8]提出近期启动“两交一直”工程建设,两条交流输电工程都是1 000 kV 级别的,一条是陕北—晋东南—南阳—荆门—武汉的中线工程,另一条是淮南—皖南—浙北—上海的东线工程;一条直流输电工程是±800 kV 的金沙江一期水电外送工程。

同国外相比较,我国特高压技术的研究状况仍需进一步加强。1 000 kV级交流有现成的工程经验可以参照,但考虑到我国的实际情况(高海拔、重污秽等),不宜照搬国外的建设经验,应加强自主研发能力,特别是针对我国特有的问题进行技术攻关。16 南方电网技术研究 2005 年第 1 卷目前,±800 kV 级直流国际上没有现成的工程经验可循,以往的研究工作都是基于试验室进行的,工程实施过程中必然会遇到一些技术问题,尤其是下列关键技术值得深入探讨,以期促进工程的顺利实施[9-18]。

(1) 过电压与绝缘配合。由于长间隙绝缘放电的非线性,因此限制特高压输电系统过电压对于降低工程造价和保证系统安全稳定运

行具有重要意义。

a) 限制特高压输电系统工频暂态过电压的幅值和持续时间

的措施。根据工频过电压的幅值和持续时间,研究是否要采取不同于500 kV或750 kV 输电系统的特殊措施:——利用新的继电保护方案缩短工频暂态过电压的持续时间;——利用新的继电保护方案改变断路器分闸次序,降低过电压幅值。确定最大工频暂态过电压的水平。

b) 特高压输电线路潜供电流和恢复电压限制措施的研究。研

究确定潜供电流和恢复电压的水平及单相重合闸无电流间歇时间。

采用高速接地开关来消除特高压系统的潜供电流的可行性及方案。

如果为限制工频暂态过电压和系统无功平衡的需要而必须采用可控高压电抗器,则为限制潜供电流和恢复电压而必须研究对中性点小电抗采取特殊措施。

c) 限制特高压系统各类型的操作过电压的措施。包括线路和

变电站(换流站)合闸过电压,线路单相重合闸过电压,线路接地故障发生和消除过电压及解列过电压。

d) 防雷措施的研究。雷击跳闸是前苏联特高压线路跳闸的主

要原因。若采用同塔双回线路,则要研究其雷电性能和改善措施。

要进行特高压变电所(换流站)雷电侵入波过电压的特殊性和限制措施的研究,特高压系统线路侧和母线侧避雷器参数选择。

e) 绝缘间隙距离的确定。要进行特高压线路杆塔在工频电压

(直流电压)、操作过电压和雷电过电压下的绝缘间隙距离的研究,

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

特高压输电工程简介

特高压输电工程简介 ABSTRACT: Transporting electrical power with ultra-high voltage has been very popular these days, but most people in the society do not know much about it. In this essay, we will have a short cover about ultra-high voltage technology and focus on the necessity and importance of ultra-high voltage for China to develop this technology, some difficulties in this process, and finally some sample projects in destruction. KEY WORDS:ultra-high voltage, electrical power 摘要:特高压输电,作为近年来国家重点发展的示范项目,已经引起了越来越多的关注和讨论,社会中的绝大部分群体对这一新兴概念并不十分了解,本文对我国特高压输电工程进行一个简单的介绍和讨论,重点介绍我国现阶段特高压输电的必要性和重要性、期间面临的一些反对意见和应对措施、我国现阶段对特高压工程的研究进展情况,以及目前已建成的或在建的特高压示范工程规划。 关键词:特高压,电力系统 目前我国常用的电压等级有:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV。交流220kV及以下的称为高压(HV),330kV到750kV为超高压(EHV),交流1000kV及以上为特高压(UHV),通常把1000KV到1150kV这一级电压称为百万伏级特高压。对于直流输电,±600kV及以下的为高压直流(HVDC),±600kV以上为特高压直流(UHVDC)。 对于我国发展特高压输电的必要性和重要性,主要有以下几个方面: (1)电力快速发展的需要 改革开放30 年以来,我国用电总量快速增长。1978 年,全社会用电量为2498 亿千瓦时,到2007 年达到32565 亿千瓦时,是1978 年的13 倍,年均增长9.45%。改革开放之初,我国逐步扭转了单纯发展重化工业的思路,轻工业得以快速发展,用电增速呈现先降后升的态势,“六五”、“七五”期间年均增长分别达到6.52%、8.62%,其间,在经济体制改革的带动下,我国用电增速曾连续6 年(1982~1987 年)逐年上升,是改革开放以来最长的增速上升周期。1990 年以来,在小平南巡讲话带动下,我国经济掀起了新的一轮发展高潮。“八五”期间,全社会用电增长明显加快,年均增长10.05%。“九五”期间,受经济结构调整和亚洲金融危机影响,用电增速明显放缓,年均增长6.44%,尤其是1998 年,增速仅为2.8%,为改革开放以来的最低水平。进入“十五”以来,受积极的财政货币政策和扩大内需政策拉动,我国经济驶入快速增长轨道,经济结构出现重型化,用电需求持续高速增长,年均增长12.96%,尤其是2003 年、2004 年达到了改革开放以来用电增长高峰,增速分别为15.3%和15.46%。“十一五”前两年,我国用电继续保持快速增长势头,增速均高于14%。 由此可以看出,随着工业化和城镇化的不断推动和发展,我国用电量逐年增加,在工业化和全面建设小康社会的带动下,预计我国到2020 年全社会用电量将达到6.5~7.5 万亿千瓦时,年均增速将达到5.5%~6.6%;人均用电量达到4500~5200千瓦时,相当于日本上世纪80 年代的水平。所以,要求现有的电力系统增大发电容量,满足用电需求。 (2)我国资源和电力负荷分布不均衡 受经济增长,尤其是工业生产增长的强劲拉动,我国电力需求实现高速增长,但是,我国用电增长地区分布不均。总体来看我国东部沿海经济发达地区用电强劲增长,西部地区高耗能产业分布较多的省区用电增长幅度也较大,中部地区增长较慢,我国电力系统的负荷也呈现出结构性变化。但是,我国的资源分布却呈现出相反的情况,水能、煤炭等电力资源主要分布在中西部地区,远离东部的集中用电区域,这同

浅谈高压直流输电对交流电网继电保护影响

浅谈高压直流输电对交流电网继电保护影响 摘要:目前在交流电网的继电保护工作中尚且存在许多不足之处,需要工作人 员引起注意并且加以解决,比如直流输电的交流母线通过多条线路和多落点接入 交流电网,对含有直流馈入的电网做仿真分析,在直流馈入点附近采用受影响小 的继电保护装置等等,这些都是可取的措施。 关键词:高压直流;输电;交流电网;继电保护;分析 1导言 近年来我国尤其是沿海经济发达地区用电需求增长很大,但是我国能源丰富地 区大都在西部,这种能源和负荷分布不平衡的局面促使我国实行“西电东送”工程,因此,大力开发西南水电,采用特高压直流将电能输送到沿海经济发达地区势在必行。 2直流偏磁成因 对于特高压直流输电来讲,较之于常规高压直流输电有所区别,而且运行方 式也非常的复杂,即便是一个双极特高压直流输电系统其运行方式也可能达到二 十多种。当电极不对称以大地作为回路运行过程中,直流电流就会以大地作为一 部分构成一个回路,如此强大的电流会在接地极址位置形成相对比较恒定的电流场,进而对接地极与周围交流系统产生巨大的影响。实践中可以看到,距离接地 极址越近,则直流电场就越大,反之亦然。 2高压直流输电线路继电保护的整体情况和存在问题 2.1高压直流输电线路继电保护的整体情况 从新中国成立以来,以换流技术为基础的交流电网继电保护技术就开始有了 进步,尤其是在高压直流输电上取得了更可喜的发展成果。在当前情况下,用作 长距离高能量电能传输的更多的是依靠半控型器件晶闸管的电流源换流器高压直 流输电(CSCHVDC);而由全控型器件构成的电压源换流器高压直流输电(VSC-HVDC)则偏向于受端弱系统。与此相对应的,高压直流输电线路的电网构造从之前的两端系统拓展成多段的体系;电网的线路也发生了改变,从之前单纯的海底 电缆形式转变成架空线路和电缆共存的形式;此外,高压直流输电在运输的地域 宽度、功率大小、电压高低等方面都展现了更突出的优势。目前的直流输电电网 继电保护工作在开展时,主要依靠ABB和SIEMENS公司,分为几种不同的保护方式。 2.2高压直流输电线路继电保护的现存问题 从保护效果的形成机制看,目前的直流输电继电保护工作成效不高,主要是 因为设计理念不先进、方案可实施性不强,主保护工作不力是因为系统的灵敏性弱、故障处理不到位、整体规划不强、采样率要求太高和对干扰的抵抗程度低等等。而后备保护工作不到位,则是因为保护的时效性不强、低电压保护缺少根据 等等原因。就交流电网的保护配置方面看,直流输电的保护类型太过单调,不够 可靠,一旦发生故障不能及时处理。 3交流电网的现状 自从第一个交流发电站成立以来,交流电网凭借以下的优势迅速的发展并被 广泛的使用。一是利用建立在电磁感应原理基础上的交流发电机可以很经济方便 地把机械能(水流能、风能)、化学能等其他形式的能转化为电能;交流电源和 交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉。二是交流电 可以方便地通过变压器升压和降压,这给配送电能带来极大的方便。随着技术的 不断深入,交流电网出现了一些问题,主要有以下几方面:一是交流输电不能做

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

特高压直流输电的现状与展望

特高压直流输电的现状与展望 摘要:特高压直流输电大多用于长距离输电,例如海底电缆、大型发电站输电等,在我国,其是指通过1000kV级交流电网和±600kV级以上直流电网要求构成 的电网系统。放眼现在,直流输电在电力传输中的地位与日俱增,尤其在结合计 算机等技术后,特高压直流输电系统的整体调控更加可靠。本文将通过分析我国 特高压直流输电的现状,以及探究今后发展的展望,讨论特高压直流输电如何在 个别恶劣环境中进行应用的问题。 关键词:特高压;直流输电;现状;展望 1 特高压直流输电的现状 1.1 发展速度快 从上世纪六十年代开始,由于部分发达国家需要向部分地区进行远距离、大 容量输电的需求,开始了对特高压直流输电的研究。从开始阶段的不到一千公里,五十万千伏直流输电电压,输电功率六百万千瓦,到如今的上千公里,八十万千 伏直流输电电压,其中的发展速度无疑是飞快的。除此之外,由于现代科技更为 发达,再加上可以通过计算机进行实时地检测,特高压直流输电系统在调节方面 的优化,可谓是跨越了一大步。此外,相较于以往的电线,光纤的使用也使得特 高压直流输电在传输过程中的安全性得以提高,大大提高了其输电效率。并且, 特高压直流输电的应用范围也大大扩增,不再局限于几个发达国家。 1.2 效率更高 在远距离大容量输电方面,相较于交流输电,或者是超高压输电方式,特高 压直流输电通常会是更好的选择,其在经济投资、能源损耗以及工程规模方面都 要优于交流输电和超高压输电。例如,在特高压和超高压两种方式之间,面对相 同的输电工程,姑且定为10GW的输送功率,2千米的输送距离,超高压输电需 要240亿元的投资,在输电过程中有将近1.15GW的损耗,其工程规模为135米,而特高压输电只需要200亿元的投资,在输电过程中只有1GW的损耗,工程规 模也只有120米;而相等电压等级情况下的交流输电方式,需要315亿元的投资,在输电过程中更是有1.7GW的线损,工程规模也远远大于前面两种方案。所以, 在远距离大容量电力输送过程中,特高压直流输电的输电效率更好。 1.3 我国特高压直流输电现状 我国从上世纪八十年代才开始尝试建设超高压直流输电工程,即葛洲坝直流 输电工程,虽然开始较晚,但发展十分迅速。经过这些年的技术积累,我国现已 具备建设特高压直流输电工程的技术,并于2010年,完全通过我国自主研发, 成功建造了在当时而言,技术领先全球、输电能力最大的±800kV的向家坝特高压 直流输电工程。在今后3~5年中,我国还将在其他地区建设特高压直流输电工程,预计将会达到二十个左右。 2 特高压直流输电的特点 2.1 技术性能更加稳定 直流输电技术基本不存在系统稳定的问题,可以实现电网的非同期互联。简 单来说,就是指直流输电在连接连两个交流系统时,可以在非同步时期运行,在 效果方面,通过交变直,直变交,将两个直流系统隔离,使得两边能够独立运行。除此之外,在运行期间,如果线路发生短路,直流输电能够及时地进行调节,恢 复时间也很短,例如直流输电单极故障的恢复时间一般不超过0.4秒,除此之外,还可以抑制振荡阻尼和次同步振荡的影响。

特高压直流输电技术研究

特高压直流输电技术研究 发表时间:2017-07-04T11:23:41.107Z 来源:《电力设备》2017年第7期作者:杨帅 [导读] 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 (国网河北省电力公司检修分公司河北省石家庄 050000) 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 关键词:特高压;直流输电;应用 引言 随着国民经济的持续快速发展,我国电力工业呈现加速发展态势,近几年发展更加迅猛。按照在建规模和合理开工计划,全国装机容量 2010 年达到 9.5 亿千瓦,2020 年达到 14.7 亿千瓦;用电量 2010 年达到 4.5 万亿千瓦时,2020 年达到 7.4 万亿千瓦时。电力需求和电源建设空间巨大,电网面临持续增加输送能力的艰巨任务。同时我国资源分布不均匀,全国四分之三的可开发水资源在西南地区,三分之二的煤炭资源分布在西北地区,而经济发达的东部地区集中了三分之二的用电负荷。大容量、远距离输电成为我国电网发展的必然趋势。 同时,特高压输电具有明显的经济效益。特高压输电线路可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价约 10%-15%。特高压线路输电走廊仅为同等输送能力的 500k V 线路所需走廊的四分之一,这对人口稠密、土地宝贵或走廊困难的国家和地区带来重大的经济社会效益。 1特高压直流输电原理 高压直流输电的电压等级概念与交流输电不一样。对于交流输电来说,一般将 220k V 及以下的电压等级称为高压,330 ~ 750k V 的称为超高压 ,1000k V 及以上的称为特高压。直流输电把 ±500k V 和 ±660k V 称为超高压;±800k V 及以上电压等级称为特高压。 直流输电工程是以直流电的方式实现电能传输的工程。直流电必须经过换流(整流和逆变)实现直流电变交流电,然后与交流系统连接。 两端直流输电系统可分为单极系统(正极和负极)、双极系统(正、负两极)和背靠背直流系统(无直流输电系统)三种类型。 2特高压直流输电优点 我国目前发展的特高压输电技术包括特高压交流输电技术和特高压直流输电技术。一般特高压交流输电技术用于近距离的组网和电力输送,直流输电技术用来进行远距离、大规模的电力输送,两者在以后的电网发展中都扮演重要角色。本文对其中的特高压直流输电技术进行简要分析,其优点主要包括以下几个方面。 在直流输电的每极导线的绝缘水平和截面积与交流输电线路的每相导线相同的情况下,输电容量相同时直流输电所需的线路走廊只需交流输电所需线路走廊的2/3,在土地资源越来越紧张的今天,特高压直流输电线路可以节省线路走廊的优点显得更加突出。 在输送功率相同的情况下,直流输电的线路损耗只有交流输电的2/3,长久以往可以节约大量的能源;同时直流输电可以以大地为回路,只需要一根导线,而交流输电需要3根导线,在输电线路建设方面特高压直流输电电缆的投资要低很多。 交流输电网络互联时需要考虑两个电网之间的周期和相位,而直流输电不存在系统稳定性问题,相比交流输电网络,能简单有效地解决电网之间的联结问题。 长距离输电时,采用直流输电比交流输电更容易实现,如800kv的特高压直流输电距离最远可达2500km。 3特高压直流技术存在的不足 (1)直流输电换流站比交流变电所结构复杂、造价高、运行费用高,换流站造价比同等规模交流变电所要高出数倍。(2)为降低换流器运行时在交流侧和直流侧产生的一系列谐波,需在两侧需分别装设交流滤波器和直流滤波器,使得换电站的占地面积、造价和运行费用均大幅度提高。(3)直流断路器没有电流过零点可利用,灭弧问题难以解决。(4)由于直流电的静电吸附作用,使直流输电线路和换电站设备的污秽问题比交流输电严重,给外绝缘问题带来困难。 4特高压直流输电技术的应用分析 4.1拓扑结构 在近些年来,特高压直流输电的拓扑结构主要有多端直流和公用接地极两种,其中,多端直流是通过连接多个换流站来共同组成直流系统,在电压源换流器发展背景下,出现了混合型多端直流和极联式多端直流,前者是将合理分配同一极换流器组的位置,电源端与用户端都是分散分布。公用接地极是通过几个工程公用接地极的方式,来降低工程整体造价成本,提升接地极利用水平,提高工程经济效益、社会效益;但也存在接地电流容易过大、检修较为复杂等不足。 4.2换流技术 在特高压直流输电的换流技术方面,主要有电容换相直流输电技术和柔性直流输电技术两种,其中,电容换相直流输电技术是通过将换相电容器串接到直流换流器与换流变压器中,利用串联电容来对换流器无功消耗进行补偿,减少换流站的向设备,能够有效降低换相失

高压直流输电优缺点

浅谈特高压直流输电 将电能从大型火力、水力等发电厂输送到远方负荷中心地区时会遇到远距离输电问题。要实现远距离的大功率传输,需采用超高压或特高压输电技术。在特高压输电技术中有交流和直流两种方案,可根据技术经济条件和自身特点加以选择。特高压交流输电是目前国内外最基本的远距离输电方式,而特高压直流输电不存在同步稳定性问题,是大区域电网互联的理想方式。下面我将结合自己所学知识与查阅的资料对特高压直流输电进行概括的阐述。 直流输电是指将送端系统的正弦交流电在送端换流站升压整流后通过直流线路传输到受端换流站,受端换流站将直流逆变成正弦的工频交流电后降压和受端系统相连。而对于换流站,它的核心元件是换流器,,由1 个或数个换流单元串联而成,电路均采用三相换流桥,材料多采用可控硅阀。它的基本工作原理是,控制调节装置通过控制桥阀的触发时刻,可改变触发相位,进而调节直流电压瞬时值、电阻上的直流电流、直流输送功率。同时,相同的触发脉冲控制每个桥阀的所有可控硅元件。当三相电源为对称正弦波的情况下,线电压由负到正的过零点时,脉冲触发桥阀,同时阀两端电压变正,阀立即开通。6 个脉冲发生器分别完成对单桥换流器的6 个桥阀的触发,恰好交流正弦波电源经过1 个周期,线电压又达到下一个过零点进行第二个触发周期。一般,工程上为了获得脉波更小的直流输电电压,通常采用12脉的双桥换流器。 与交流输电相比,直流输电技术具有以下特点:输电功率大小、方向可以快速控制调节;直流输电系统的接入不会增加原有系统的短路容量;利用直流调制可以提高系统的稳定水平;直流的一个极发生故障,另一个极可以继续运行,且可以利用其过负荷能力减少单极故障下的树洞功率损失;另外直流架空线路走廊宽度约为相同电压等级交流输线路走廊宽度的一半。而对于特高压直流输电,它不但具有常规直流输电的特点,而且还能够很好的解决我国一些现存的问题: 1、我国一次能源分布很不均衡, 水利资源2/ 3分布在西南地区, 煤矿资源2/ 3 分布在陕西、山西及内蒙古西部。而电力需求又相对集中在经济发展较好较快的东部、中部和南部区域。能源产地和需求地区之间的距离为1 000~ 2 500 km。因此我国要大力发展西电东送, 实现南北互供, 全国联网。特高压直流输电在远距离输电方面较为经济, 而且控制保护灵活快速, 是实现南北互供的较好途径。 2、我国东部、中部、南部地区是我国经济发达地区, 用电需求大, 用电负荷有着较高的增长率。特高压直流输电能够实现大容量输电, 规划的特高压直流输电工程的送电容量高

特高压交直流输电系统技术经济分析

特高压交直流输电系统技术经济分析 摘要:随着我国电力事业的快速发展,我国特高压输电工程建设正处于稳步上 升阶段。特高压输电技术的广泛应用,很好地解决了当前输电技术存在的经济性 较低以及无法实现或者实现难度较大的更远距离输电问题,进一步提高了输电系 统供电的稳定性、安全性以及经济性。对于当前特高压输电网而言,1000kV以及±800kV输电系统的技术经济性是重中之重。基于此,研究特高压交直流输电系统 技术经济性具有重要的现实意义。 关键词:特高压交直流水电系统;技术经济性 引言: 1000kV与±800kV输电系统的技术经济性是发展特高压输电网的重要基础。从我国特高压交直流输电示范工程成功运行经验讨论1000kV与±800kV输电的技术 经济性对推进特高压输电网的规划建设具有重要现实意义。 1 1000kV和±800kV输电系统建设成本阐述 1.1 1000kV输电系统的建设成本 一般来说,都是使用单位输电建设成本来表示1000kV与±800kV输电系统的 建设成本。同时,参照示范工程投资决算实对其施估算。以2009年投入运行的1000kV特高压交流试验示范工程为例来看,其最初建设成本为56.9亿元。根据 试验示范工程相关元器件成本以及建设成本的实际情况,使用工程成本计算方法 对其建设成本进行估算,拟使用1000kV、4410MW、1500km特高压输电系统, 其单位输电建设成本预期估算成本为1900元/km?MW。若将500kV输电系统建 设成本按照2500元/km?MW的价格来看,那么此1000kV特高压输电系统的单位 建设成本则近似为500kV输电系统的8成左右。 1.2 ±800kV输电系统的建设成本 对于±800kV直流输电系统而言,首先需要把各发电单元机组通过电站500kV 母线汇集在一起,接着借助500kV输电线路连通到直流输电的整流站中,从而把 三相交流电更换成直流电,再使用两条正负极输电线路将其配送到逆变站中,再 把直流电转变为三相交流电,最后输送到有电压作为保障的500kV枢纽变电站中。和其余输电系统相同,±800kV直流输电系统在进行长距离、大规模输电的过程中,也需要两个电厂作为支撑,拟将其发电机组定位6×600MW以及5×600MW,线路 总长度为1500km,通过±800kV特高压直流输电示范工程数据对其输电建设成本 实施估算。某±800kV特高压直流输电示范工程的直流输电线路总长度为1891km,额定直流电流为4kA,额定换流功率为6400MW,分裂导线的规格为6×720mm2,开工建设的时间为2007年,不断对系统进行调试,最终于2010年正式投入使用。根据系统调试以及投入运行的实际结果来看,自助研发的±800kV特高压直流输电 系统及其相关设备具有较高的运行性能。该±800kV直流输电示范工程建设成本为190亿元,其中换流站与相关线路的成本均占总成本的一半。根据示范工程建设 成本进行估算,±800kV、6400MW、1500km直流输电系统的单位输电建设成本应为1780元/km?MW。 1.3 1000kV和±800kV输电系统建设成本对比分析 一般来说,通过逆变站的输出功率对交流输电进行估算,而直流输电的估算 亦是如此;1000kV交流输电系统的单位建设成本与±800kV直流输电系统的单位 建设成本基本一致,都为1900元/km?MW,处于相同等级。1000kV交流输电系 统的对地电压为578kV和±800kV直流输电系统极线的对地电压相匹配。±800kV

±800KV+特高压直流输电系统全电压启动过电压研究(已看)

±800KV特高压直流输电系统全电压启动过电压研究 黄源辉,王钢,李海锋,汪隆君 (华南理工大学电力学院,广东广州510640) 摘要:全电压启动过电压是直流输电中直流侧最严重的过电压情况。本文以PSCAD/EMTDC为工具,以正在建设的云广±800kV特高压直流输电系统参数为依据,建立全电压启动过电压仿真计算模型。对各种全电压启动情况进行了仿真计算,讨论了各种因素对全电压启动的影响,并与±500KV HVDC系统的全电压启动过电压作了比较,获得了一些具有实用价值的结论。 关键词:±800KV;特高压直流输电;全电压启动;过电压 0引言 为满足未来持续增长的电力需求,实现更大范围的资源优化配置,中国南方电网公司和国家电网公司提出了加快建设特高压电网的战略方针[1]。随着输电系统电压等级的升高,绝缘费用在整个系统建设投资中所占比重越来越大。对于±800KV特高压直流输电系统,确定直流线路和换流站设备的绝缘水平成为建设时遇到的基本问题之一。在种类繁多的直流系统内部过电压中,全电压误启动多因为的过电压是其中最严重和最重要的一种。它的幅值最大,造成的危害最大,在选择直流设备绝缘水平和制订过电压保护方案时往往以此为条件[2]。因此,对特高压直流系统的全电压启动过电压进行研究和分析具有很大的实际意义。 为降低启动过程的过电压及减小启动时对两端交流系统的冲击,直流输电的正常启动应严格按照一定的顺序进行[3]。正常情况下,在回路完好、交直流开关设备全部投入且交流滤波器投入适量等条件满足后(α≥90°),先解锁逆变器,后解锁整流器,按照逆变侧定电压调节或定息弧角调节规律的要求,由调节器逐步升高直流电压至额定值,即所谓的“软启动”。然而由于某些原因(如控制系统异常),两端解锁过程紊乱,逆变侧换流器尚未解锁而整流侧却全部解锁,此时若以较小的触发角启动,全电压突然对直流线路充电,由此直流侧会产生非常严重的过电压。 1云广直流系统简介 南方电网正在建设的云南-广东特高压直流系统双极输送功率5000MW,电压等级为±800kV,直流线路长度约1438km,导线截面为6×630mm2,两极线路同杆并架。送端楚雄换流站通过2回500kV 线路与云南主网的昆西北变电站相连,西部的小湾水电站(装机容量4200MW,计划2009年9月首台机组投产,2011年全部建成)和西北部的金安桥水电站(总装机2400MW,计划2009年12月首台机组投产,2011年全部建成)均以2回500kV线路接入楚雄换流站。受端穗东换流站位于广东省增城东部,500kV交流出线6回,分别以2回500kV线路接入增城、横沥和水乡站[4]。楚雄换流站接入系统如图1所示。 图1 楚雄换流站接入系统 云南-广东特高压直流系统交流母线额定电压为525kV,整流侧无功补偿总容量为3000MV Ar,逆变侧无功补偿总容量为3040MV Ar。平波电抗器电感值为300mH,平波电抗器按极母线和中性母线平衡布置,各为150mH。直流滤波器采用12/24双调谐方式。避雷器使用金属氧化物模型。每极换流单元采用2个12脉动换流器串联组成。 2云广直流系统模型 本文以PSCAD/EMTDC为工具,以南方电网建设中的云南-广东±800kV特高压直流系统参数为依据,建立了全电压启动过电压仿真计算模型。换流站内的单极配置如图1所示。

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景 发表时间:2018-11-17T14:55:25.480Z 来源:《基层建设》2018年第28期作者:朱振伟李天轩 [导读] 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 国网江苏省电力有限公司宿迁供电分公司江苏宿迁 223800 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 关键词:特高压;直流输电;技术现状;应用前景 1 引言 特高压直流输电技术起源于20 世纪60年代,瑞典Chalmers大学1966年开始研究±750kV导线。1966年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20世纪80年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV是合适的直流输电电压等级,2002 年 Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 2 特高压直流输电现状 20 世纪 80 年代前苏联曾动工建设长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW。该工程将哈萨克斯坦的埃基巴斯图兹的煤炭资源转换成电力送往前苏联欧洲中部的塔姆包夫斯克,设计为双极大地回线方式,每极由两个 12 脉动桥并联组成,各由 3×320Mvar Y/Y 和 3×320Mvar Y/Δ单相双绕组换流变压器供电;但由于 80 年代末到90年代前苏联政局动荡,加上其晶闸管技术不够成熟,该工程最终没有投入运行。由巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常。 3 特高压直流输电技术的特点及适用范围 特高压直流输电无需复杂的系统设计,基本可以采用±500kV 和±600kV 直流输电系统类似的设计方法,需要考虑的关键问题是外部绝缘和套管的设计等问题。特高压直流输电的输送容量大,输电距离长,输电能力主要受导线最高允许温度的限制。交流线路的无功补偿对远距离大容量输电系统至关重要;而直流输电线路本身不需要无功补偿,在换流站利用站内的交流滤波器和并联电容器即可向换流器提供所需的无功功率。一般来讲,对于远距离大容量输电直流方案优于交流方案,特高压方案优于超高压方案。表 1 为输送功率为 10GW 输送距离为 2000km 时交、直流以及不同电压等级直流的投资及线路走廊占用情况比较。 表1 10GW 电力输送 2000km 的交、直流输电方案 由表 1 可见,特高压直流输电适用于远距离大容量的电力输送。 4 我国能源和负荷的分布特点 水能资源和煤炭作为我国发电能源供应的两大支柱,今后的开发多集中在西南、西北和晋陕蒙地区,并逐渐向西部和北部地区转移,而东部沿海地区和中南地区的国民经济的持续快速发展导致能源产地与能源消费地区之间的距离越来越大,使得我国能源配置的距离、特点和方式都发生了巨大变化,并决定了能源和电力跨区域大规模流动的必然性。 (1)水电东送规模 三峡水电站(包括地下电站)的总装机容量为22.4GW,“十二五”初期将全部建成投产。综合分析一次能源平衡、输电距离及资源使用效率等因素,可知金沙江下游水电站主送华中、华东电网是合理的。 (2)煤电基地的电力外送规模 各煤电基地的电力外送规模有望得到较大发展。现已建成和规划采用 500kV 交流和±500kV 直流跨区送电的坑口电站的电力外送规模总计15GW。2020 年煤电外送将新增 84GW,主要送往华中东部四省、华东地区和华北京津冀鲁四省市以及广东地区。 (3)东部电力市场空间 华中东部四省。按低负荷水平预测,2020 年需电量将为 600TWh,负荷将为 110GW,装机容量缺额将为 138GW。扣除本地水电和必要的气电以外,2020 年之前尚有 47GW 的市场空间,其中2010~2020 年约为 32GW。华北的京津冀鲁。按低负荷水平预测,2020年需电量将为 840TWh,负荷将为 140GW,装机容量缺额将为 168GW。扣除本地核电、蓄能电站以外,2020 年之前尚有 90GW 的市场空间,其中2010~2020 年约为 45GW。初步测算,到 2020 年水电跨区送电规模总计约 70GW,煤电外送约 84GW,而东部受电地区的市场空间约为 127GW;而能源与负荷的距离大多数超过了 1000km,采用特高压直流输电技术比较合适。 5 特高压直流输电的初步发展规划 2020 年前后西部水电的大部分电力通过直流特高压通道向华中和华东地区输送,其中金沙江一期溪洛渡和向家坝水电站、二期乌东德和白鹤滩水电站向华东、华中地区送电,锦屏水电站向华东地区送电,宁夏和关中煤电基地向华东地区送电、呼伦贝尔盟的煤电基地向京津地区送电大约需要 9 条输电容量为 6GW 的±800kV 级特高压直流输电线路。根据 10 年发展规划,特高压直流输电工程的建设进度如

特高压交流和高压直流输电系统运行损耗及经济性分析

特高压交流和高压直流输电系统运行损耗及经济性分析 发表时间:2018-04-12T10:36:46.213Z 来源:《电力设备》2017年第32期作者:常彦 [导读] 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 (国网山西省电力公司检修分公司山西省太原市 030031) 摘要:特高压交流和高压直流输电系统的运行损耗对于输电系统运行的经济性具有直接重要的影响,对于提高输电系统设备的运行效率和使用寿命,促进电力资源优化合理配置都有着积极的促进作用。 关键词:特高压交流;高压直流;输电系统;运行损耗分析;经济分析 在我国覆盖全国电网的整体输电系统中,输电系统运行损耗都是不可避免的重要问题,运行损耗的大小直接影响到输电系统的经济效益和经济性。其中,关于特高压交流和高压直流输电系统,这一在整个电网中占有重要比重的输电系统的运行损耗和相关经济性分析研究具有十分重要的意义。 1特高压交流和高压直流输电系统及其经济性概述 中国是世界上国土面积第四大的国家,幅员辽阔,人口众多,地形复杂多样,并且由于地形地势气候等多方面的原因,中国的人口规模、经济发展状况以及资源能源需求量呈现西低东高的阶梯式分布。与其相反的是,我国的能源资源分布却是西高东低,具体到与电力相关的资源能源来说,我国目前有超过百分之七十的水力资源在西南,有大约百分之七十五的煤炭资源储存西北,风电和太阳能等能够用于发电的可再生能源也主要分布在西部、北部。因此,这种电力资源能源分布和电力资源需求的极不平衡性,决定着我国能源分配面对的巨大压力,以及通过多种方式优化电力资源配置的迫切性和重要性,其中,特高压交流和高压直流输电系统就是当前技术成熟,应用较为普及的两种主流输电方式,它们为我国电力资源的合理配置的大好局面,提供了重要的助力。所以,不断地分析和研究特高压交流和高压直流输电系统,也是提高电力资源配置效率和质量的必然要求。 分析输电系统经济性的重要内容,就是分析输电系统的运行损耗。对于本文的研究对象来说,特高压交流和直流输电系统经济性分析主要集中在前期建设投资、中期的输电网络运性维修、输电运行中不可避免的输电损耗和以及停电造成的损失费用四个方面。 2特高压交流和直流输电系统经济性分析 本文主要运用对比法分析特高压交流和直流系统的经济性,其中涉及二者经济性比较,主要从投资、运维、输电损耗和停电损失费用四个方面来进行比较,最后再进行综合汇总。 在对比分析法中,我们需要设定一个恒量,为了便于比较和计算,设置特高压交流和高压直流两种输电系统中,输电距离相同,在500-2000千米范围内,分为500千米、1000千米、1500千米和2000千米四个固定值。然后在此基础上,根据输电能力的大小、额定输送量和负载率对两种输电系统的影响大小。 采用的研究对象中,两种输电系统的具体参数分别为:特高压交流输电系统2个1000千伏变电站和多个中间开关站以及1回输电线路组成,线路规格为8×500平方毫米,并且每400千米一个间距设置一个开关站。高压直流输电系统无变电站及中间开关,但需架设1台换流站,同时采用的是6×900平方毫米的线路。 2.1投资费用分析 特高压交流输电系统中,需要建设变电站,变电站的建设费用为430元/千伏,8×500平方毫米规格的线路为425万元/千米。所以,变电站的建设费用为86亿元,线路的费用为500千米21.25亿元,1000千米42.5亿元,1500千米6 3.75亿元、2000千米85亿元。 高压直流输电系统中,不需要建设变电站,但是需要投资建设换流站,一台换流站单价为65亿元,6×900平方毫米规格的线路单价为397万元/ 千米,因此,线路的费用为500千米19.85亿元,1000千米39.7亿元,1500千米59.55亿元、2000千米79.4亿元。 因此,经过对比,在不考虑其他任何因素的情况下,在特高压交流电输电网络的前期站设投资要远远大于高压直流电的输电网络。直到输电距离达到6000千米,高压直流输电网络才更加具有经济价值。 2.2运维费用分析 输电网络的运维就是指输电网络硬件设备的元件耗损率和故障维修的费用。通过对比,我们不难发现,高压直流换流站设备和阀组众多,系统的运行状态比交流系统多,类似换流变压器和阀组这部分元件故障频率较多,维修更新的时间较长,特高压交流变电站的元件较少且故障持续时间短。因此,可以说在各个距离高压直流输电网络的运维费用都要大于特高压交流输电网络,在运维费用方面,特高压交流输电网络更具经济性。 2.3输电损耗费用分析 特高压和超高压交流输电系统的运行损耗主要包括变电站损耗和输电线路损耗两部分。一方面变电站损耗包括变压器、电抗器、电容器等设备损耗等硬件和变电站日常运行用电造成的损耗,这种损耗鱼输电系统的随输送容量基本成正比,随着输送容量的变化成比例调整。另一方面,输电线路损耗主要包括电阻损耗、电晕损耗和泄漏损耗,其中电阻损耗属于硬件损耗的一种,电阻损耗量同样随输送容量的变化成比例变化,电晕损耗的变化则基本受电压等级、导线结构和天气情况等因素影响,泄漏损耗通常并不计入记录分析中。 2.3.1电阻损耗 通常情况下,电路损耗是理论意义上的损耗,是指线路在满负荷运行时造成的功率损耗。然而在实际电力输送中,输电系统不可能不间断地满负荷运行。 计算公式如下:线路电阻损耗值=线路电阻×额定电流×损耗小时数 计算结果可由两种输电系统的具体参数估算到。 2.3.2电晕损耗 交流线路电晕损耗很容易受到线路电压、导线结构和气候条件的影响,经过研究发现,在雨雪天起电晕平均损耗可以达到为晴朗天气平均损耗的37-50倍。电晕损耗年平均值计算公式为 电晕损耗年平均值=(好天气小时数损耗+雪天小时数损耗+雨天小时数损耗)/全年日历小时数” 2.4停电损失费用分析

三大特高压直流输电线路背景资料

三大特高压直流输电线路背景资料 一、特高压直流线路基本情况 ±800kV复奉直流线路四川段起于复龙换流站,止于377#塔位,投运时间2009年12月,长度187.275km,铁塔378基,途径四川省宜宾市宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共8个区县,在合江县出境进入重庆境内。线路全部处于公司供区,途径地市公司供电所35个。接地极线路79公里,铁塔189基。±800kV 复奉线输送容量6400MW。 ±800kV锦苏直流线路四川段起于锦屏换流站,止于987#塔位,投运时间2012年12月,长度484.034km,铁塔988基,自复龙换流站起与复奉线同一通道走线,途径四川省凉山州西昌市、普格县、昭觉县、美姑县、雷波县、云南省昭通市绥江县、水富县、宜宾市屏山县、宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共16个区县,在合江县出境进入重庆境内。线路处于公司供区长度268.297公里、铁塔563基,途径地市公司供电所44个;另有0036#-0344#、0474#-0493#区段(长度153.268公里、铁塔320基)处于地方电力供区,0494#-0598#区段(长度62.469公里、铁塔105基)处于南方电网供区。接地极线路74公里,铁塔207基。±800kV锦苏线输送容量7200MW。

±800kV宾金直流线路工程四川段起于宜宾换流站,止于365#塔位,试运行时间2014年03月,长度182.703km,铁塔366基,途径四川省宜宾市宜宾县、珙县、兴文县、泸州市叙永县、古蔺县共5个区县,在古蔺县出境进入贵州境内。线路全部处于公司供区,途径地市公司供电所22个。接地极线路101公里,铁塔292基。±800kV宾金线输送容量8000MW。 线路名称线路长度 (km) 杆塔数量投运时间 途径区县数 量 途径属地公 司供电所 ±800kV 复奉直流 187.275 378 2009.12 8 35 复龙换流站 接地极线路 79.106 189 ±800kV 锦苏直流 484.034 988 2012.12 16 44 锦屏换流站 接地极线路 74.147 207 ±800kV 宾金直流 182.703 366 2014.03(试 运行)5 22 宜宾换流站 接地极线路 101.174 292

相关主题
文本预览
相关文档 最新文档