当前位置:文档之家› 米氮平的合成进展-张润虎

米氮平的合成进展-张润虎

天然气制取芳烃的可行性

天然气制取芳烃的可行性分析 一、天然气制取芳烃的重要性 天然气主要成分烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般有硫化氢、二氧化碳、氮和水气和少量一氧化碳及微量的稀有气体,如氦和氩等。苯及其衍生物是重要的基础化工料,目前主要来源于石油的铂催化重整及裂化制乙烯的副产品。而随着石油资源的日益短缺,以及汽油等燃料对芳烃含量的要求日益严格,正影响苯及其衍生物的生产来源,所以天然气制取芳烃十分必要。 二、天然气制取芳烃的技术现状 传统天然气制取芳烃有两种方式,一是由甲烷直接转化芳烃,二是由天然气制取合成气,然后转化为芳烃。其中,甲烷芳构化工艺如图所示。 图1 甲烷芳构化工艺 甲烷的芳构化分为有氧气氛和无氧两种。1993年,大连化物所的王林胜等人首次报道了Mo/HZSM—5分子筛催化剂上逢续流动模式下甲烷无氧芳构化反应,在973K,1个大气压下,甲烷转化率大约为6%,芳烃的选择性大于90%(不计反应积碳)。这个结果吸引了大量的国内外科学家参与到甲烷无氧芳构化催化剂的研究与开发中,目前已取得了一定的进展。甲烷无氧芳构化的研究经过多年的发展主要集中在催化剂的制备和改性方面,在提髙催化剂活性的同时更注重提高催化剂的稳定性。但是目前文献所报道的的单程寿命仍然不足以实现该过程的工业化。使用中温有氧再生,并通过流化床反应器实现反应和再生的连续进行是该过程工业化的有效途径。其次是有氧气氛的甲烷芳构化,氧化剂为分子氧和氮氧化合物,催化剂为分子筛,担载氧化物和混合氧化物。甲烷与氧气混合体系在空石英管反应器及金属氧化物或担载金属催化剂上可氧化聚合成芳烃。如下表一所示为甲烷有氧芳构化的结果。表二为甲烷有氧及无氧芳构化特点对比。 表一甲烷有氧芳构化的结果

费托合成工艺学习分析报告本科

关于煤间接液化技术“费-托合成”的学习报告报告说明 F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。 一、F-T合成的基本原理 主反应 生成烷烃: (1) (2) 生成烯烃: (3) (4) 副反应 生成含氧有机物: (5) (6) (7) 生成甲烷: (8) 积碳反应: (9) 歧化反应:

(10) F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1和3是生产过程中主要反应。其合成的烃类基本为直链型、烯烃基本为1-烯烃。5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。 二、高温工艺与低温工艺 反应温度不同,F-T合成液体产物C数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。低温工艺约在200-240摄氏度下反应,即可使用Fe催化剂也可用Co系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。高温工艺约在350摄氏度情况下反应,一般使用熔铁催化剂,产品主要是小分子烯烃和汽油。 由于温度不同,高低温工艺采用的反应器也有所不同,低温工艺主要采用固定床反应器、浆态床反应器;高温工艺主要用循环流化床、固定流化床反应器。 下面关于首先报告我对反应基本流程的认识 首先无论何种反应器都需要先将合成气和循环气加热到一定温度后输入反应器,再经过均布装置将合成气均匀散开,之后进入反应段。由于炉内反应基本为强放热反应,对于低温工艺需要设置通水的管道利用水汽蒸发转移热量提高效率,而高温工艺由于强烈的对流换热所以并不要求特殊的冷却系统。 反应段过后主要是催化剂回收和产品分离的问题,这一点主要是利用旋分器、重力沉降(反应中催化剂结团结块)等方式。图1为反应器的基本结构示意图 图错误!未指定顺序。反应器基本结构示意图 这里再简要报告我对以上提到的四类反应器认识 固定床反应器(Arge反应器) 由于催化剂到冷却界面的传热距离限制,固定床式反应器要想法设法增大表面积。早期由于管式反应器直径过大而采取了层炉式反应器,然而由于散热和催化剂利用效率的问题而不被广泛使用。随后的发展趋势就是反应器内“管”越来越多、越来越细;1955年Sasol公司开发了内含2052根直径50毫米“管”的固定床反应器;1990年Shell公司开发了内含26150根直径26毫米“管”的反应器。而“管越多、越细”,反应器的效率和生产能力也越高(这点后面要提到)。 这种反应器优点易于操作运行,产品易于分离,适用于蜡生产;但是缺点也很明显,由于此类反应器温度分布不均,其温度需要控制在较低水平,影响反应速率和产率,以及因此带来的对于催化剂细度的要求,使得催化剂利用效率低,用量大;同时反应器由于承受压降厚度较大,铁催化剂定期更换要求复杂的网络结构,加大了设备成本。 浆态床反应器

甲醇制芳烃技术进展及经济分析

甲醇制芳烃技术进展及经济分析
2014年12月17日(亚化咨询-上海)

? 前言 ? 甲醇制芳烃技术进展

? 甲醇制芳烃技术经济分析 ? 结束语



芳烃,特别是轻质芳烃BTX(苯、甲苯、二甲苯) 是重要的基本有机化工材料,其产量与规模仅次 于乙烯和丙烯。其衍生物广泛地应用于化纤、塑 料和橡胶等化工产品和精细化学品的生产中。近 年来,随着石油化工及纺织工业的不断发展,世 界上对芳烃的需求量不断增长。
3


芳烃主要来源于石油路线。石油芳烃是目前芳 烃最主要的来源。 国内芳烃来源于石油和煤焦油,其中石油生产 的芳烃约占芳烃生产总量的85%以上。 国外通过石油路线生产的芳烃高达芳烃总产量 的98%以上。



从石油获取芳烃资源主要来自三个方面的 技术:石脑油重整、乙烯裂解汽油加氢抽 提和碳四、碳五芳构化技术。 已经成功工业化的甲醇甲苯甲基化成为制 取BTX的一种新技术路线。





国内市场对芳烃的需求量很大,而且增长较快。 由于我国近几年聚酯产业的迅猛发展,芳烃的产 量,尤其是PX产量难以满足国内市场快速增长的 巨大需求。2013年,我国PX表观消费量达到1650 万吨,其中国内产量760万吨,进口量890万吨。 2014年前三季度PX进口约700万吨。


2013年,我国的进口原油依存度58%,单纯依赖石油资源已 经很难满足日益增长的化工基础原料需求,同时,巨大的 石油资源缺口也已严重威胁到国家的能源安全。 我国化石能源中煤炭资源相对丰富,利用煤炭资源生产 甲醇,继而从煤基甲醇或是海外进口廉价的甲醇为原料制 取芳烃,提高甲醇下游产品的附加值,延长煤化工产业链 ,是一条发展中国特色芳烃产业的新路。

药物化学实验讲义(萘普生)2011版

手性药物萘普生的光学拆分法制备 一:实验目的 掌握用光学拆分法制备手性药物萘普生,了解拆分消旋化合物的原理,学习用旋光仪分析手性药物中间体光学纯度的方法。 二:实验原理 具有手性的药物其对映体往往有完全不同的药理活性,单一对映体的手性药物因其药效高、副作用低和安全等优点,受到了化学家和制药企业的重视,近二、三十年,手性药物得到了很大的发展,其销售额以每年15%的速度在增长。 萘普生为非甾体类抗炎镇痛药,用于治疗风湿性和类风湿性关节炎、胃关节炎、强直性脊柱炎、痛风、关节炎、腱鞘炎.亦可用于缓解肌肉骨骼扭伤、挫伤、损伤以及痛经等所致的疼痛。研究表明(S)-萘普生的药效是(R)-萘普生的28倍。 目前获得单一手性化合物的方法主要有:①手性源合成法:以手性物质为原料合成其他手性化合物。②不对称催化合成法:是在催化剂或酶的作用下合成得到单一对映体化合物的方法。③外消旋体拆分法:是在拆分剂的作用下,利用物理化学或生物方法将外消旋体拆分成两个对映体,其中化学拆分法是工业生产上广泛应用的方法。化学拆分法是利用如果外消旋体分子含有的活性基团与某一光学活性试剂(拆分剂)进行反应,生成两种非对映异构体的盐或其它复合物,再利用它们物理性质(如溶解度)和化学性质的不同将两者分开,最后把拆分剂从中分离出去,便可得到单一对映体。 本实验拆分的反应式如下: H3CO CHCOOH CH3 (±)-萘普生 H3CO CHCOOH CH3 (+)-萘普生 (-)-葡辛胺 拆分 反应结束后得到的产物(S)-萘普生,需测定其对映选择性,即产物的对映体过剩(ee 值)。其测定方法有多种,本实验利用的是旋光仪的方法。 三、仪器和试剂 旋光仪;熔点仪;磁力搅拌器(带加热控温);搅拌子;100 ml烧瓶;冷凝管;布氏漏斗;烘箱;小勺。 主要原料、试剂的规格和用量 名称规格用量外消旋萘普生 C.P. 2.5 g (—)-葡辛胺 C.P. 3.2 g 甲醇 C.P. 50 mL 氢氧化钠 A.R. 少量 盐酸少量

费托合成工艺学习报告(本科)

关于煤间接液化技术“费-托合成”的学习报告 报告说明 F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。 一、F-T合成的基本原理 主反应 生成烷烃: nCO+2n+1H2==C n H2n+2+nH2O(1) n+1H2+2nCO==C n H2n+2+nCO2(2) 生成烯烃: nCO+2n H2==C n H2n+nH2O(3) n H2+2nCO==C n H2n+nCO2(4) 副反应 生成含氧有机物: nCO+2n H2==C n H2n+nH2O(5) nCO+(2n?2)H2=C n H2n O2+(n?2)H2O(6) n+1CO+2n+1H2==C n H2n+1CHO+nH2O(7) 生成甲烷: CO+3H2==CH4+H2O(8) 积碳反应: CO+H2==C+H2O(9) 歧化反应: 2CO==C+C O2(10) F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1

和3是生产过程中主要反应。其合成的烃类基本为直链型、烯烃基本为1-烯烃。5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。 二、高温工艺与低温工艺 反应温度不同,F-T 合成液体产物C 数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。低温工艺约在200-240摄氏度下反应,即可使用Fe 催化剂也可用Co 系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。高温工艺约在350摄氏度情况下反应,一般使用熔铁催化剂,产品主要是小分子烯烃和汽油。 由于温度不同,高低温工艺采用的反应器也有所不同,低温工艺主要采用固定床反应器、浆态床反应器;高温工艺主要用循环流化床、固定流化床反应器。 下面关于首先报告我对反应基本流程的认识 首先无论何种反应器都需要先将合成气和循环气加热到一定温度后输入反应器,再经过均布装置将合成气均匀散开,之后进入反应段。由于炉内反应基本为强放热反应,对于低温工艺需要设置通水的管道利用水汽蒸发转移热量提高效率,而高温工艺由于强烈的对流换热所以并不要求特殊的冷却系统。 反应段过后主要是催化剂回收和产品分离的问题,这一点主要是利用旋分器、重力沉降(反应中催化剂结团结块)等方式。图1为反应器的基本结构示意图 图1反应器基本结构示意图 这里再简要报告我对以上提到的四类反应器认识 2 46 5 3 1 1-合成气注入通道;2-均布段;3-冷却管道;4- 反应段;5-分离段;6-输出通道;(吴尧绘制)

对二甲苯生产技术研究进展及发展趋势

对二甲苯生产技术研究进展及发展趋势 摘要:现如今,我国的经济在迅猛发展,社会在不断进步,阐述了甲苯歧化和 烷基转移、二甲苯异构化、甲醇芳构化、甲苯选择性歧化及甲醇甲苯选择性烷基 化等对二甲苯生产技术的研究进展,并分析了各种技术的优势及不足。分析表明,与甲醇制芳烃技术相比,甲醇甲苯选择性烷基化制对二甲苯技术具有对二甲苯选 择性高、流程短、无需吸附分离等方面的显著优势,是实现煤经甲醇(和甲苯或苯)制对二甲苯产业发展的最佳选择;采用芳烃联合装置与甲醇甲苯选择性烷基 化技术耦合,理想状况下可实现对二甲苯增产40%以上,同时不副产苯。提出了 对二甲苯生产工艺技术的发展趋势:发展甲醇甲苯选择性烷基化制对二甲苯技术,既利于煤炭的清洁高效利用,保障聚酯产业链安全,还有助于形成煤化工和石油 化工技术互补、协调发展的新格局。 关键词:二甲苯;生产技术;研究进展 引言 对二甲苯作为炼油和化工的桥梁,既是芳烃产业中最重要的产品,亦是聚酯 产业的龙头原料。目前,对二甲苯应用中约97%用于生产精对苯二甲酸(PTA),其 余用于医药、溶剂、涂料等领域。近年来,随着我国聚酯产业的飞速发展,对二 甲苯供不应求,利润率居高不下,引发项目建设热潮。未来几年,对二甲苯产能 将集中释放,供需格局将发生巨大变化。本文就对分离技术进行简要介绍并对市 场进行分析,为企业应对未来市场变化提供参考。 1对二甲苯生产工艺技术 现在全球美国环球油品公司(UOP)和法国Axens公司拥有整套且比 较成熟的对二甲苯生产工艺技术,2011年我国拥有了自主知识产权的对二甲 苯整套生产技术。其中UOP是世界领先的芳烃生产工艺技术供应商,截至20 14年,UOP已经为100多套联合成套装置和700多套单独芳烃生产工艺 装置发布了许可。本文主要以混合二甲苯为原料,装置采用无歧化流程,即由二 甲苯精馏、异构化、产品分离三个单元组成。其中二甲苯精馏是通过精馏除去混 合二甲苯原料中除二甲苯之外的其它组分;异构化是将精馏后二甲苯中的1,2 -二甲苯(邻二甲苯)、1,3-二甲苯(间二甲苯)和乙苯转化为1,4-二 甲苯(对二甲苯),最大限度地生产需要的PTA原料;PTA原料分离是将异 构化产物中的1,4-二甲苯与反应后还存在的1,2-二甲苯和1,3-二甲 苯等进一步分离,从而得到纯度符合要求的1,4-二甲苯。工艺全部采用美国 UOP(环球油品公司)的成套专利技术。其中,吸附分离采用ParexTM 工艺技术和ADS-37吸附剂,该工艺利用吸附分离原理选择分离生产高纯度 的1,4-二甲苯,利用模拟移动床原理实现固液相连续逆向分离;异构化工艺 采用IsomarTM工艺技术和乙苯异构型催化剂I-400,可充分利用C 8芳烃资源,最大限度地生产1,4-二甲苯。 2二甲苯异构化技术 2.1甲苯一甲醇烷基化工艺 以甲苯和甲醇为原料,在一定的反应条件和催化剂存在的条件下,就会发生烷基化反应,从而得到对二甲苯以及其他附加产品,这个过程就是甲苯一甲醇烷基化工艺。甲苯一甲醇烷基化工艺以分子筛为催化剂,采用氢气或氮气或水蒸气为反应载气,对二甲苯选择性可达到百分之九十以上。甲苯一甲醇烷基化工艺作为一种新型 的生产工艺,与传统生产工艺相比具有诸多优点。首先,极大地降低了原料的消耗,

煤制芳烃行业

煤制芳烃行业 煤制芳烃作为新兴的芳烃生产技术,近年来才受世人关注,由于发展时间较短,目前尚未有完全工业化生产的装置。在一众煤制芳烃的生产技术中,甲醇制芳烃是发展较早、技术相对成熟的生产路线,目前已有成功运行的中试装置,未来有望实现工业化生产,成为新型煤化工行情专区领域的耀眼新星。 1、煤制芳烃:具有潜力的新兴芳烃生产技术 1.1、甲醇制芳烃是煤制芳烃中相对成熟的技术 煤制芳烃是新兴的芳烃生产技术。煤制芳烃是指以煤为原料,通过煤气化行情股吧买卖点技术进行芳烃的合成。煤制芳烃作为新兴的芳烃生产技术,近年来才受世人关注。以煤为原料生产芳烃技术可分两大类:合成气直接制芳烃技术;合成气制甲醇后再生产芳烃的合成气间接制芳烃技术。合成气间接制芳烃技术又分为:1从甲醇起步,以生产芳烃BTX为目的的甲醇芳构化技术;2以生产对二甲苯为目的的甲苯甲基化技术;3以生产烯烃联产芳烃的组合技术。 甲醇制芳烃是煤制芳烃中的相对成熟的路线。煤制芳烃由于发展时间较短,目前尚未有完全工业化生产的装置。在一众煤制芳烃的生产技术中,甲醇制芳烃是发展较早、技术相对成熟的生产路线,目前已有成功运行的中试装置。甲醇芳构化技术是在择形分子筛催化剂的催化作用下进行的,其反应机理主要包括3个关键步骤:甲醇脱水生成二甲醚,甲醇或二甲醚脱水生成烯烃,烯烃最终经过聚合、烷基化、裂解、异构化、环化、氢转移等过程转化为芳烃和烷烃。 理论上若甲醇完全转化为芳烃,则每生产1吨苯、甲苯或二甲苯分别需要消耗甲醇2.46吨、2.43吨、2.42吨,同时副产大量的氢气和水。而实际过程中还伴有其他副反应的发生,使得芳烃的总选择性降低,通常需要3吨以上甲醇才能获得1吨BTX. 1.2、甲醇制芳烃技术的前世今生 甲醇制芳烃的起源:Mobil甲醇芳构化技术。甲醇芳构化的研究起源于20世纪70年代美国Mobil石油行情专区公司开发的甲醇转化为汽油的MTG路线。采用ZSM-5沸石分子筛择形催化剂,可使甲醇全部转化,生成丰富的烃类,尤其对高辛烷值汽油具有优良的选择性,同时也获得了少量的芳烃产物。MTG是世界上甲醇制烃领域最早实现工业化的路线,以ZSM-5催化剂最为成熟。随后Mobil公司在20世纪80年代的研究发现,经改性的ZSM-5分子筛催化剂具有更高的芳烃选择性,该研究停留在实验阶段,未进行工业化。随着石油能源的日渐紧缺,原作为石油化工产物的芳烃变得紧俏,使甲醇转化为芳烃的产业应运而生,从而形成了甲醇芳构化制芳烃MTA这一概念。

费托合成(F-T)综述

综述 F-T合成的基本原料为合成气,即CO和H2。F-T合成工艺中合成气来源主要有煤、天然气和生物质。以煤为原料,通过加入气化剂,在高温条件下将煤在气化炉中气化,然后制成合成气(H2+CO),接着通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程便是煤的间接液化技术。煤间接液化工艺主要有:Fischer-Tropsch 工艺和莫比尔(Mobil)工艺。 典型的Fischer-Tropsch工艺指将由煤气化后得到的粗合成气经脱硫、脱氧净化后,根据使用的F-T合成反应器,调整合成气的H2/CO 比,在反应器中通过合成气与固体催化剂作用合成出混合烃类和含氧化合物,最后将得到的合成品经过产品的精制改制加工成汽油、柴油、航空煤油、石蜡等成品。F-T合成早已实现工业化生产,早在二战期间,德国的初产品生产能力已到达每年66万吨[1] (Andrei Y Khodakov, Wei Chu, Pascal Fongarland. Chem. Rev. Advances in the Development of Novel Cobalt Fischer?Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. 2007, 107, 1692?1744 )。二战之后,由于石油的迅述兴起,间接液化技术一度处于停滞状态。期间,南非由于种族隔离制度而被“禁油”,不得不大力发展煤间接液化技术。但是随着70年代石油危机的出现,间接液化技术再次受到强烈关注。同时,由间接液化出来的合成液体燃料相比由原油得到的燃料产品具有更低的硫含量及芳烃化合物[1],更加环保。80年代后,国际上,一些大的石油公司开始投资研发GTL相关技术和工艺[1]。目

萘普生临床实例及药理研究

该品有抗炎、解热、镇痛作用为PG合成酶抑制剂。口服吸收迅速而完全,1次给药后2~4小时血浆浓度达峰值,在血中99%以上与血浆蛋白结合,t1/2为13~14小时。约95%自尿中以原形及代谢产物排出。对于类风湿性关节炎、骨关节炎、强直性脊椎炎、痛风、运动系统(如关节、肌肉及腱)的慢性变性疾病及轻、中度疼痛如痛经等,均有肯定疗效。中等度疼痛可于服药后1小时缓解,镇痛作用可持续7小时以上。对于风湿性关节炎及骨关节炎的疗效,类似阿司匹林。对因贫血、胃肠系统疾病或其他原因不能耐受阿司匹林、吲哚美辛等消炎镇痛药的病人,用本药常可获满意效果。 可安全地与皮质激素合用,但与皮质激素合用时,疗效并不比单用皮质激素时好。该品与水杨酸类药物合用也不比单用水杨酸类好。此外,阿司匹林可加速该品的排出。 1次0.2~0.3g,1日2~3次。可口服,开始每日剂量0.5~0.75g,维持量每日0.375~0.75g,分早晨及傍晚2次服用。轻、中度疼痛或痛经时,开始用0.5g,必需时经6~8小时后再服0.25g,日剂量不得超过1.25g。肌内注射,1次100—200mg,1日1次。栓剂直肠给药,1次0.25g,1日0.5R。 (1)长期服用耐受良好,副作用主要为胃肠道轻度和暂时不适。偶见恶心、呕吐、消化不良、便秘、胃肠道出血、失眠或嗜睡、头痛、头晕、耳鸣、瘙痒、皮疹、血管神经性水肿、视觉障碍及出血时间延长,一般不需中断治疗。 (2)与阿司匹林等非甾体抗炎药有交叉过敏反应,萘用于对该品及对阿司匹林过敏的患者。 (3)对伴有消化性溃疡或有消化性溃疡病史者慎用;对有活动性胃及十二指肠溃疡患者应在严格监督下使用。 (4)该品可加强双香豆素的抗凝血作用。 (5)与丙磺舒合用时可增加该品的血浆水平及明显延长该品的血浆t1/2 实例: 一、复方萘普生钠针剂的药效试验 摘要:以萘普生钠注射液、安痛定注射液和生理盐水为片照,片复方萘普生钠注射液进 行了药效试验.结果表明复方萘普生钠注射液的抗炎和镇痛作用均明显优于萘普生钠注射液和安痛定注射液((P<0.05, P<0.01).解热作用在给药后30 min内复方制剂不如单方制剂和安痛定注射液((P < 0.01),而从1h开始.三者作用无显著性差荆(P >0.05)。 萘普生钠是一种非甾体类抗炎解热镇痛药,临床主要用于产后或术后止痛及抗风湿治疗.目前国内外主要用其片剂和胶囊剂,注射剂和复方制剂目前尚未见有文献报道.我们在单方萘普生钠注射液研制的基础上,又进行了复方萘普生钠注射液的研制.根据巴比妥类药物可增强解热镇痛药作用的原理,在单方注射液的基础上设计了复方注射液.为了确认复方制剂的有效性,以萘普生钠注射液和安痛定注射液为对照,并以生理盐水为空白对照,对复方萘普生钠注射液进行了抗炎、解热和镇痛的药效学研究,本文报道用家兔和大鼠进行临床前药效学研究的结果. 1、抗炎作用:用游标卡尺测量大鼠一侧后肢足拓厚度,作为正常值.然后在此足拓注射

煤制芳烃简介

煤制芳烃简介 一、产品市场情况 我国高质量芳烃产品的生产主要来自石油技术路线,由乙烯裂解生产芳烃产品。随着对芳烃需求的日益增长,作为芳烃生产原料的石油资源,面临着越来越严重的短缺局面,已成为制约我国芳烃发展的主要瓶颈之一。 芳烃为大宗基础有机化工原料,目前我国年消费量超过2000万吨。是化纤、工程塑料及高性能塑料等的关键原料,广泛用于服装面料、航空航天、交通运输、装饰装修,电器产品、移动通讯等。 目前芳烃97%以上来源依赖于石油原料,由于受到产能影响,多年来对外依存都接近总需求量的50%。芳烃产品中产能最大、与国民经济密切相关的对二甲苯,2012年的产量是773万吨,表观消费量1382万吨,自给率55.9%。2012年,我国芳烃进口量达609万吨,对外依存度为44%。截止2013年国内PX产能仅896万吨,对外依存度达46%。预测2015PX进口1000万吨,投资空间3000亿元。 同时,中国PX产能增长一直比较缓慢。一些拟建或建成的PX装臵因种种原因未能按计划投产,导致国内PX产不足需矛盾加剧。随着厦门、福州、大连、咸阳等PX项目因当地群众抗议而被迫搁浅。中国PX正遭遇后续项目断档的危机,这为煤制芳烃的成长与发展提供了巨大的空间。 ?页岩气大规模开发,已经将石油化工领域‘三烯三苯’格局打破,将页岩气作为原料生产烯烃,产品大部分是乙烯,丙烯很少,几乎没有芳烃。造成了国际上芳烃价格的上涨。未来十年内芳烃还会处于紧缺状态,5-6年内价格还会上涨。 与芳烃缺口形成鲜明对比的是甲醇的产能过剩。来自氮肥工业协

会统计数据显示,2012年我国甲醇产量为3164万吨,同比增加 19.08%,装臵开工负荷仅61.3%。近年来,我国每年芳烃缺口约为600万至700万吨,如果按1吨芳烃消耗3吨甲醇计算,那么仅用来制芳烃的甲醇就将达到每年2000多万吨。 截止2013底,我国只建成陕西华电榆横煤化工有限公司万吨级中试装臵和内蒙庆华集团10 万吨甲醇制芳烃装臵,国内总产能达11万吨。陕西华电榆横煤制芳烃示范项目于2011年3月正式开工建设,先行建设万吨级煤制芳烃中试装臵,同时启动百万吨级工业示范项目,规模为300万吨煤制甲醇和100万吨芳烃装臵。2012年,万吨级甲醇制芳烃中试试验装臵在陕西榆林煤化工基地建成。2013年1 月13日,第一次投料原料甲醇转化率高于99.99%,油相产物中甲基苯(主要指甲苯、二甲苯和三甲苯)的含量达到90%以上。截止1月15日中午15时,原料甲醇累计进料约100吨,装臵平稳运转54小时,工业试验装臵实现了一次点火成功,一次投料试车成功,打通关键流程。2013年3月18日,该项中试技术通过了国家能源局委托和化学工业联合会组织的科技成果鉴定。中试结果显示,3.07 吨甲醇就可以生产1吨芳烃,并副产大量氢气,工艺废水不含氨氮,废气不含硫氮。2013年3月,由赛鼎公司设计的内蒙庆华集团10 万吨甲醇制芳烃装臵一次试车成功,项目顺利投产。这是赛鼎运用与中科院山西煤化所合作开发的?一种甲醇一步法制取烃类产品的工艺?专利技术设计的我国第一套甲醇制芳烃装臵。 另外,国内煤制芳烃新建拟建项目5个,总产能445万吨,在建产能165万吨。见表1。 表1我国建成和在建煤制芳烃项目万吨 建成项目

费托合成工艺及研究进展

费托合成 定义 费托合成(Fischer-Tropsch synthesis)是煤间接液化技术之一,它以合成气(CO和H2)为原料在催化剂(主要是铁系) 和适当反应条件下合成以石蜡烃为主的液体燃料的工艺过程。1923年由就职于Kaiser Wilhelm 研究院的德国化学家Franz Fischer 和Hans Tropsch开发,第二次世界大战期间投入大规模生产。 其反应过程可以用下式表示:nCO+2nH2─→[-CH2-]n+nH2O 副反应有水煤气变换反应H2O + CO → H2 + CO2 等。 一般来说,烃类生成物满足Anderson-Schulz-Flor分布。 工艺 费托合成总的工艺流程主要包括煤气化、气体净化、变换和重整、合成和产品精制改质等部分。合成气中的氢气与一氧化碳的摩尔比要求在2~2.5。反应器采用固定床或流化床两种形式。如以生产柴油为主,宜采用固定床反应器;如以生产汽油为主,则用流化床反应器较好。此外,近年来正在开发的浆态反应器,则适宜于直接利用德士古煤气化炉或鲁奇熔渣气化炉生产的氢气与一氧化碳之摩尔比为0.58~0.7的合成气。铁系化合物是费托合成催化剂较好的活性组分。 研究进展 传统费托合成法是以钴为催化剂,所得产品组成复杂,选择性差,轻质液体烃少,重质石蜡烃较多。其主要成分是直链烷烃、烯烃、少量芳烃及副产水和二氧化碳。

50年代,中国曾开展费托合成技术的改进工作,进行了氮化熔铁催化剂流化床反应器的研究开发,完成了半工业性放大试验并取得工业放大所需的设计参数。南非萨索尔公司在1955年建成SASOL-I小型费托合成油工厂,1977年开发成功大型流化床Synthol反应器,并于1980年和1982年相继建成两座年产 1.6Mt的费托合成油工厂(SASOL-Ⅱ、SASOL-Ⅲ)。此两套装置皆采用氮化熔铁催化剂和流化床反应器。反应温度320~340℃,压力2.0~2.2MPa。产品组成为甲烷11%、C2~C4烃33%、C5~C8烃44%、C9以上烃6%、以及含氧化合物6%。产品组成中轻质烃较多,适宜于生产汽油、煤油和柴油等发动机燃料,并可得到醇、酮类等化学品。 目前,以煤为原料通过费托合成法制取的轻质发动机燃料,在经济上尚不能与石油产品相竞争,但对具有丰富廉价煤炭,而石油资源贫缺的国家或地区解决发动机燃料的需要,费托合成法也是可行的。 另外,近年来南非SASOL公司改良费托合成,其创造的巨大经济效益,正在吸引全世界的瞩目。 2006年4月,利用中科院山西煤炭化学研究所自创技术(费托合成、煤基液体燃料合成浆态床技术),由煤化所牵头联合产业界伙伴内蒙古伊泰集团有限公司、神华集团有限责任公司、山西潞安矿业(集团)有限责任公司、徐州矿务集团有限公司等和科研机构共同出资组建成立了中科合成油技术有限公司。实现了中国的煤炭间接液化技术的真正产业化。

萘普生制药工艺研究

题目:萘普生的生产工艺研究 目录 一、概述 (1) 二、研究进展 (2) 三、合成路线及选择 (2) (一)、(±)—萘普生的合成路线 (2) (二)、(±)—萘普生的拆分 (7) 三、萘普生的不对称合成 (8) 四、生产工艺原理及过程 (11) 一、1—氯—2—甲氧基萘的制备 (11) 二、1—(5—氯—6—甲氧基—2—萘基)丙—1—酮的制备 (12) 三、2—溴—1—(5—氯—甲氧基—2—萘基)丙—1—酮的制备 (13) 四、5,5—二甲基—2—(1——溴乙基)—2—(5—氯—6—甲氧基—2—萘基)—1, 3—二氧己环的制备 (15) 五、(±)—萘普生的制备 (16) 六、萘普生的制备 (18) 五、三废处理及综合利用 (19)

一、概述 1、名称: 萘普生,化学名为(+)—6—甲氧基—α—甲基—2—萘乙酸,英文名为(+)—6—methoxy—α—methyl—2—naphthaleneacetic aid。 结构式: 萘普生为白色或类白色结晶粉末;无臭或几乎无臭,无味。熔点为153~158℃.萘普生在甲醇或氯仿中溶解,在乙醚中略溶,微溶于乙醇,在水中几乎不溶。日光照射下颜色变深。萘普生为S构型。 3、药物作用: 萘普生为芳基丙酸类非甾体消炎镇痛药(NSAIDs),具有明显一直前列腺素合成的作用,并可稳定溶酶体活性。具有较强的抗炎、抗风湿和解热镇痛作用。动物实验证明,萘普生的抗炎作用约为保泰松的11倍、镇痛作用是阿司匹林的7倍、解热作用是阿司匹林的22倍。即使在切除了肾上腺的动物身上也表现出消炎效能,这表明此作用并非通过垂体——肾上腺传输。临床上主要用于治疗风湿、类风湿性关节炎、骨关节炎、强直性脊椎炎、急性痛风、运动系统的慢性疾病及轻、中度疼痛。

6_氰基_1_羟基_7_甲基_5_氧_3_5_二氢中氮茚_2_羧酸甲酯的合成工艺

收稿日期:2003-10-12 基金项目:国家973基金资助项目(G 1998051104) 作者简介:杨松(1975-),男(汉族),安徽宿州人,博士研究生;张万年(1947-),男(汉族),安徽灵壁人,教授,博士 生导师,主要从事抗肿瘤和抗真菌药物研究,Tel/Fax :(021)25074460,E 2mail :zhangwn @online 1sh 1cn 。 文章编号:1005-0108(2004)02-0106-03 62氰基212羟基272甲基252氧23,52二氢中氮茚222 羧酸甲酯的合成工艺改进 杨松,张万年,周有骏,姚建忠,季海涛 (第二军医大学药学院,上海200433) 摘 要:目的改进喜树碱全合成关键中间体62氰基212羟基272甲基252氧23,52二氢中氮茚222羧酸甲 酯(4)的合成工艺。方法通过控制滴速与反应时间,提高了乙酰丙酮酸乙酯的产率,并由该化合物以“一锅煮”的方法制备了化合物4。结果总收率由31%提高到4215%。结论新工艺简化了操作、提高了收率、缩短了反应时间、减少了试剂的用量。关键词:药物化学;工艺改进;化学合成;喜树碱;中间体中图分类号:R91415 文献标识码:A 喜树碱(camptothecin ,CPT )是从中国喜树中 提取得到的一个五环相并的天然生物碱, 是特异 性的拓扑异构酶Ⅰ抑制剂,在体内外都显示了强大的抗肿瘤活性,由于其作用机理独特,成为当前抗肿瘤药物研究的热点之一。目前该类已有伊立 替康和拓扑替康两个药物经FDA 批准上市,并有多个药物处于临床开发的不同阶段。由于天然喜树碱类化合物种类稀少,为了得到更多活性高、毒性小、更具开发价值的CPT 衍生物,需对其进行全合成研究。 62氰基212羟基272甲基252氧23,52二氢中氮茚222羧酸甲酯(4)是喜树碱及其类似物全合成的关键中间体,构成最终目标化合物五个环中的CD 二环。文献[1~4]报道的合成方法见图1。首先,丙酮和草酸二乙酯在乙醇钠作用下缩合得化合物1,文献[1]收率61%~66%。 本研究 Fig 11 R eported synthesis route of compound 4 第14卷 第2期 2004年4月 总58期 中国药物化学杂志 Chinese Journal of Medicinal Chemistry Vol 114 No 12 p.106Apr 12004 Sum 58

生物质制芳烃技术进展与发展前景_董丽

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2013年第32卷第7期·1526· 化工进展 生物质制芳烃技术进展与发展前景 董丽 (中国石化上海石油化工研究院,上海 201208) 摘要:对目前利用生物质生产芳烃几种路线以及研究进展进行评述。介绍了前景较好的代表性工艺,如:Anellotech公司开发的生物质热解制芳烃(Bio-Aromatics TM)工艺、Virent公司开发的生物基氢解糖类经过催化转化制PX(Bio-Forming TM)工艺以及Gevo公司开发的生物质异丁醇制芳烃工艺,并详细分析了各工艺的原料来源、工艺流程、工艺条件等特点。分析几种生物质芳烃工艺生产成本,并对照传统石脑油裂解重整制芳烃生产成本,分析各工艺经济性后,得出结论:Anellotech公司开发的生物质热解制芳烃工艺经济性成本与经济性最佳。在此基础上,提出今后生物质制芳烃的研究应当以提高原料利用效率、增加芳烃产率和选择性为重点,开发适合生物质转化反应的催化剂和反应器。 关键词:生物质;芳烃;气化;热解;水解 中图分类号:TQ 031;TQ 35;Q 81文献标志码:A 文章编号:1000–6613(2013)07–1526–08 DOI:10.3969/j.issn.1000-6613.2013.07.013 Development of aromatics production from biomass DONG Li (Shanghai Research Institute of Petrochemical Technology,SINOPEC,Shanghai 201208,China)Abstract:Research progress and production routes of aromatics from biomass are reviewed. Several promising representative processes,such as Bio-Aromatics TM developed by Anellotech which produces BTX by catalytic pyrolysis,BioForming TM developed by Virent which produces BTX by catalysis of sugars and the process developed by Gevo which produces PX from bio-based isobutanol. Characteristics of above mentioned processes are analyzed,such as source of raw materials,process flow,process condition etc. Compared with production cost of traditional naphtha cracking process,production cost and economics of bio-aromatic processes are discussed. Bio-Aromatics TM process is most cost effective. Future research on bio-aromatics should focus on improvement of utilization efficiency of biomass and yield and selectivity of aromatics,and development of newly catalyst and reactor fit for conversion of biomass. Key words:biomass;aromatics;gasification;pyrolysis;hydrolysis 芳烃(包括苯、甲苯、二甲苯,简称BTX)是重要的基本有机原料,利用芳烃资源可衍生出多种产品链,广泛用于合成树脂、合成纤维单体、涂料、燃料、医药以及精细化学品等领域。目前国内外芳烃生产主要依赖石油资源,在芳烃联合生产装置中,在催化剂和高温高压的条件下经过加氢、重整、芳烃转化、分离等过程获得苯、甲苯、二甲苯,工艺复杂。石油等化石燃料储量有限,随着化石燃料的大量消耗,原油价格不断上升,以石油为主导的化工工业成本也不断攀升。不仅如此,石油炼化过程中产生大量副产物及其它有毒气体和废料,严重污染环境。因此,寻找可再生、环保型的替代原料并将其转化为芳烃产品便引起了国内外许多公司和研 收稿日期:2013-01-07;修改稿日期:2013-01-29。 作者:董丽(1987—),女,硕士,助理工程师,目前从事情报调研和技术经济性分析工作。E-mail dongl.sshy@https://www.doczj.com/doc/db12106183.html,。

费托合成生产人造石油的化学工艺

费托合成生产人造石油 的化学工艺 1 费托合成的概念、历史背景及技术现状 费托合成(Fischer-Tropsch synthesis)是煤间接液化技术之一,它以合成气(CO和H )为原料在催化剂(主要是铁系) 和适当反应条件下合成以石蜡烃为 2 主的液体燃料的工艺过程。其反应过程可以表示:nCO+2nH2─→[-CH2 -]n+nH2O 副反应有水煤气变换反应 H2O + CO → H2 + CO2 等。费托合成总 的工艺流程主要包括煤气化、气体净化、变换和重整、合成和产品精制改质等 部分。 费托合成总的工艺流程主要包括煤气化、气体净化、变换和重整、合成和 产品精制改质等部分。合成气中的氢气与一氧化碳的摩尔比要求在2~2.5。反 应器采用固定床或流化床两种形式。如以生产柴油为主,宜采用固定床反应器;如以生产汽油为主,则用流化床反应器较好。此外,近年来正在开发的浆态反 应器,浆态床反应器比管式固定床反应器结构简单、易于制作,而且价格便宜 易于放大。则适宜于直接利用德士古煤气化炉或鲁奇熔渣气化炉生产的氢气与 一氧化碳之摩尔比为 0.58~0.7的合成气。铁系化合物是费托合成催化剂较好 的活性组分。 传统费托合成法是以钴为催化剂,所得产品组成复杂,选择性差,轻质液 体烃少,重质石蜡烃较多。其主要成分是直链烷烃、烯烃、少量芳烃及副产水 和二氧化碳。50年代,中国曾开展费托合成技术的改进工作,进行了氮化熔铁 催化剂流化床反应器的研究开发,完成了半工业性放大试验并取得工业放大所 需的设计参数。南非萨索尔公司在1955年建成SASOL-I小型费托合成油工厂,1977年开发成功大型流化床 Synthol反应器,并于1980年和1982年相继建成两座年产 1.6Mt的费托合成油工厂(SASOL-Ⅱ、SASOL-Ⅲ)。此两套装置皆采 用氮化熔铁催化剂和流化床反应器。反应温度320~340℃,压力 2.0~2.2MPa。产品组成为甲烷11%、C2~C4烃33%、C5~C8烃44%、C9以上烃6%、以及含氧 化合物6%。产品组成中轻质烃较多,适宜于生产汽油、煤油和柴油等发动机燃料,并可得到醇、酮类等化学品。 目前,以煤为原料通过费托合成法制取的轻质发动机燃料,在经济上尚不 能与石油产品相竞争,但对具有丰富廉价煤炭,而石油资源贫缺的国家或地区 解决发动机燃料的需要,费托合成法也是可行的。另外,近年来南非SASOL公 司改良费托合成,其创造的巨大经济效益,正在吸引全世界的瞩目。 2006年4月,利用中科院山西煤炭化学研究所自创技术(费托合成、煤基 液体燃料合成浆态床技术),由煤化所牵头联合产业界伙伴内蒙古伊泰集团有

布洛芬合成路线综述

布洛芬合成路线综述 姓名:XXX 班级:制药XXX班学号:XXX 【摘要】 布洛芬(C12H18O2)又名异丁苯丙酸,芳基丙酸类非甾体抗炎药物,本品为白色晶体性粉末,有异臭,无味。不溶与水,易溶于乙醇、乙醚三氯甲烷基丙酮,易溶于氢氧化钠及碳酸钠溶液中。布洛芬具有抗炎、镇痛、解热作用,适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。布洛芬的基本机构为笨环,苯环上含有异丁基与α-甲基乙酸。作为新一代非甾体消炎镇痛 药物,具有比阿司匹林更强的解热、消炎和镇痛作用,副作用则比阿司匹林小得多。 【关键词】 布洛芬抗炎镇痛解热非甾体消炎镇痛药物合成路线【前言】 1964 年英国的 Nicholson 等人最早合成了布洛芬,其他各国也逐渐对布洛芬展开研究,英国的布茨药厂首先获得专利权并投入生产。在最初的生产过程中,由于生产工艺落后,导致布洛芬的生产成本高,产量低,企业规模受到很大限制。直到20世纪80年代后期,随着羧基化法和1,2-转位法等布洛芬新工艺的出现,布洛芬的生产成本大大降低,企业的规模也越来越大。目前,德国的巴斯夫公司,美国的Albemarle 公司和乙基公司都具有庞大的生产规模。他们分别具有自

己的核心技术,选择合适的工艺,从而具有经济效益和规模优势。近十多年来,由于政府扶持,印度的医药工业发展迅速。印度的 Sumitra 公司和 Cheminor 公司的生产规模也达到上述西方国家大公司的水平,而且由于印度的劳动力价格低廉,使得生产成本较低。印度低价格的布洛芬大量出口,大大冲击了全球的布洛芬市场。 【研究现状】 对于布洛芬这种医药结晶产品而言,质量的好坏对产品能否在国际市场竞争中占据有利地位往往起着重要的作用。目前,国内布洛芬同国外同类产品相比存在着晶形不好、颗粒不均匀等质量方面的差距。国内生产企业所使用的落后结晶技术与设备,一方面导致产品质量差,另一方面导致生产成本居高不下,使得国内布洛芬产品难以与国外产品相竞争,导致在国内市场和中国外的布洛芬产品占主导地位,如中美史可公司的布洛芬制剂占据了中国的70%的市场份额。如今我国已经加入 WTO,要改变这种现状,就必须对结晶及装置进行改进,从而生产出高质量的布洛芬结体产品。有关其工艺改进和新工艺、拆分或不对称合成获得其手性体、其衍生物以及各种制剂的研究报道层出不穷。 【布洛芬的合成】 1转位重排法 芳基 1,2-转位重排法是目前国内厂家普遍采用的一种合成方法。它以异丁苯为原料,经与 2-氯丙酰氯的傅克酰化,与新戊二醇的催

相关主题
文本预览
相关文档 最新文档