当前位置:文档之家› 高三数学冲刺检测试题6

高三数学冲刺检测试题6

高三数学冲刺检测试题6
高三数学冲刺检测试题6

高考数学最后冲刺必读题解析(6)

5、已知两个向量)log ,log 1(22x x a +=,),(log 2t x b = )0(≠x . (1)若t =1且b a ⊥,求实数x 的值; (2)对t R 写出函数b a x f ?=)(具备的性质.

1

知得

0log 2log 222=+x x ……2分

2

log 0log 22-==x x 或

……4分 解

1

±=x ,或

4

=x (6)

分 (

2)

x

t x x f 222log )1(log )(++=

……8分 具备的性质: ①偶函数; ②当2

1log 2t

x +-=即2

12

t x +-±=时,

)(x f 取得最小值4

)1(2

t +-

(写出值域为

)4

)1[2

∞++-,(t 也可)

; ③单调性:在]2,0(2

1t

+-

上递减,),2

[2

1+∞+-

t 上递增;由对称性,在)0,2[2

1t +-

-上

]

2

,(2

1t

+---∞递

减 ……

14分

说明:写出一个性质得3分,写出两个性质得5分,写出三个性质得6分,包括写出函数的零点(1±=x ,)1(2t x +-±=)等皆可。写出函数的定义域不得分,写错扣1分

6、已知函数12()(,0)4f t at t R a a

=-+∈<的最大值为正实数,集

}0|

{<-=x

a

x x A ,集合}|{22b x x B <=。 (1)求A 和B ;

(2)定义A 与B 的差集:A x x B A ∈=-|{且}B x ?。

设a ,b ,x 均为整数,且A x ∈。)(E P 为x 取自B A -的概率,)(F P 为

x 取自B A 的概率,写出a 与b 的二组值,使32

)(=

E P ,3

1)(=F P 。 (3)若函数)(t f 中,a ,b 是(2)中a 较大的一组,试写出)(t f 在区

间[n 上的最大值函数()g n 的表达式。

解:(1)∵)()(12R t t b at t f ∈+-=,配方得a b

a

b t a t f 4122)()(-+-=,由0?>-b a

b 。……………………………………………………………3分

∴}0|{<<=x a x A ,}|{b x b x B <<-=。…………………………6分

(2)要使2)(=E P ,1)(=F P 。可以使①A 中有3个元素,B A -中有2个

素, B A 中有1个元素。则2,4=-=b a 。…………………………………………………9分

②A 中有6个元素,B A -中有4个元素, B A 中有2个元素。则3,7=-=b a …………………………………………………………………………12分

(3)由(2)知

21()4([])16

f t t t n n =--∈-…………………………13分

(

g n

1

16116

21

164,,0

4,0

n n n n --<≤-+>………………………………………………18分

7、⑴证明:当a >1时,不等式2

3

a 12a 13a a +>+成立。

⑵要使上述不等式2

3

a 12a 13a a +>+成立,能否将条件“a >1”适当

放宽?若能,请放宽条件并简述理由;若不能,也请说明理由。 ⑶请你根据⑴、⑵的证明,试写出一个类似的更为一般的结论,且给予证明。

解:(1)证:1)-1)(a -(a -a -a 5a 1a 12a 133

2

3

=+,∵a >1,∴1)-1)(a -(a 5a 13

0,

∴原不等式成立 (6

)

(2)∵a-1与a 5-1同号对任何a >0且a 1恒成立,∴上述不

等式的条件可放宽 为a >0且a

1 (9

)

(3)根据(1)(2)的证明,可推知:若a >0且a 1,m >n >

0,则有n

m

a 1n a 1m a a +>+(12

) 证

-右式

=1)-1)(a -(a 1)-(a -1)-(a a -a -a n m n -m a 1n -m a 1n -m n a 1a 1n m +==+ (14)

若a >1,则由m >n >0a m-n >0,a m+n >0

不等式成立;

若0<a <1,则由m >n >00<a m-n <1, 0<a m+n <1

不等

式成立.(16)

8、已知函数12

()log (1)f x x =+,当点00()P x y ,在()y f x =的图像上移动时,

点001

(

)2

x t Q y t R -+∈,()

在函数()y g x =的图像上移动. (1) 若点P 坐标为(1-1,),点Q 也在()y f x =的图像上,求t 的值; (2) 求函数()y g x =的解析式;

(3) 当0t >时,试探求一个函数()h x 使得()()()f x g x h x ++在限定定义域为

[0 1),时有最小值而没有最大值.

解:(1)当点P 坐标为(1-1,),点Q 的坐标为11( 1)2

t -+-,,…………

2分

∵点Q 也在()y f x =的图像上,∴1

2

1log (11)2

t -=-+,即0t =. (5)

(根据函数()y f x =的单调性求得0t =,请相应给分)

(2)设( )Q x y ,

在()y g x =的图像上 则

00

1

2x t x y y -+??=?=??,即

{

0021

x x t y y

=+-= ……………………………………8分 而00()P x y ,在()y f x =的图像上,∴0102

log (1)y x =+

代入得,1

2

()log (2)y g x x t ==+为所求.…………………………………

11分

(3)12

1()log 2x h x x t

-=+;或12

32()l o g

2x h x x t

-=+ 等. …………………15分

如:当12

1()log 2x h x x t

-=+时,

()()()f x g x h x ++1112221log (1)log (2)log 2x x x t x t

-=+++++1

2log (1)x =- ∵21x -在[0 1),单调递减, ∴2011x <-≤ 故 1

2

2log (1)0x -≥,

即()()()f x g x h x ++有最小值0,但没有最大值.………………………18分

(其他答案请相应给分)

(参考思路)在探求()h x 时,要考虑以下因素:①()h x 在[0 1),

上必须有意义(否则不能参加与()()f x g x +的和运算);②由于()f x 和()g x 都是以12

为底的对数,所以构造的函数()h x 可以是以12

为底的对数,这样

与()f x 和()g x 进行的运算转化为真数的乘积运算;③以12

为底的对数

是减函数,只有当真数取到最大值时,对数值才能取到最小值;④为方便起见,可以考虑通过乘积消去()g x ;⑤乘积的结果可以是x 的二次函数,该二次函数的图像的对称轴应在直线12

x =的左侧(否则真数

会有最小值,对数就有最大值了),考虑到该二次函数的图像与x 轴

已有了一个公共点( 1 0)-,,故对称轴又应该是y 轴或在y 轴的右侧(否则该二次函数的值在[0 1),上的值不能恒为正数),即若抛物线与x 轴的另一个公共点是( 0)a ,

,则12a ≤<,且抛物线开口向下.

高三文科数学模拟试题含答案知识分享

高三文科数学模拟试题 满分:150分 考试时间:120分钟 第Ⅰ卷(选择题 满分50分 一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数31i i ++(i 是虚数单位)的虚部是( ) A .2 B .1- C .2i D .i - 2.已知集合{3,2,0,1,2}A =--,集合{|20}B x x =+<,则()R A C B ?=( ) A .{3,2,0}-- B .{0,1,2} C . {2,0,1,2}- D .{3,2,0,1,2}-- 3.已知向量(2,1),(1,)x ==a b ,若23-+a b a b 与共线,则x =( ) A .2 B . 12 C .1 2 - D .2- 4.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那 么这个几何体的表面积为( ) A .4π B . 3 2 π C .3π D .2π 5.将函数()sin 2f x x =的图象向右平移6 π 个单位,得到函数 () y g x =的图象,则它的一个对称中心是( ) A .(,0)2π - B . (,0)6π- C . (,0)6π D . (,0) 3π 6.执行如图所示的程序框图,输出的s 值为( ) A .10- B .3- C . 4 D .5 7. 已知圆22 :20C x x y ++=的一条斜率为1的切线1l ,若 与1l 垂直的直线2l 平分该圆,则直线2l 的方程为( ) A. 10x y -+= B. 10x y --= C. 10x y +-= D. 10x y ++= 8.在等差数列{}n a 中,0>n a ,且301021=+++a a a Λ, 则65a a ?的最大值是( ) A . 94 B .6 C .9 D .36 正视图 侧视图 俯视图 1k k =+结束 开始 1,1 k s ==5?k < 2s s k =- 输出s 否 是

2018年高三数学模拟试题理科

黑池中学2018级高三数学期末模拟试题理科(四) 一、选择题:本大题共12小题,每小题5分,共60分. 1.已知集合{}2,101,, -=A ,{} 2≥=x x B ,则A B =I A .{}2,1,1- B.{ }2,1 C.{}2,1- D. {}2 2.复数1z i =-,则z 对应的点所在的象限为 A .第一象限 B.第二象限 C.第三象限 D.第四象限 3 .下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是 A .2x y = B .y x = C .y x = D .2 1y x =-+ 4.函数 y=cos 2(x + π4 )-sin 2(x + π4 )的最小正周期为 A. 2π B. π C. π2 D. π 4 5. 以下说法错误的是 ( ) A .命题“若x 2 -3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2 -3x+2≠0” B .“x=2”是“x 2 -3x+2=0”的充分不必要条件 C .若命题p:存在x 0∈R,使得2 0x -x 0+1<0,则﹁p:对任意x∈R,都有x 2 -x+1≥0 D .若p 且q 为假命题,则p,q 均为假命题 6.在等差数列{}n a 中, 1516a a +=,则5S = A .80 B .40 C .31 D .-31 7.如图为某几何体的三视图,则该几何体的体积为 A .π16+ B .π416+ C .π8+ D .π48+ 8.二项式6 21()x x +的展开式中,常数项为 A .64 B .30 C . 15 D .1 9.函数3 ()ln f x x x =-的零点所在的区间是 A .(1,2) B .(2,)e C . (,3)e D .(3,)+∞ 10.执行右边的程序框图,若0.9p =,则输出的n 为 A. 6 B. 5 C. 4 D. 3 开始 10n S ==, S p

高三数学理科模拟试题及答案

一、选择题: 1. 10i 2-i = A. -2+4i B. -2-4i C. 2+4i D. 2-4i 解:原式10i(2+i) 24(2-i)(2+i) i = =-+.故选A. 2. 设集合{}1|3,| 04x A x x B x x -?? =>=

A. 10 10 B. 15 C. 310 10 D. 35 解:令1AB =则12AA =,连1A B 1C D ∥1A B ∴异面直线BE 与1CD 所成的角即1A B 与BE 所成的角。在1A BE ?中由余弦定理易得1310 cos A BE ∠=。故选C 6. 已知向量()2,1,10,||52a a b a b =?=+=,则||b = A. 5 B. 10 C.5 D. 25 解:222250||||2||520||a b a a b b b =+=++=++||5b ∴=。故选C 7. 设323log ,log 3,log 2a b c π===,则 A. a b c >> B. a c b >> C. b a c >> D. b c a >> 解:322log 2log 2log 3b c <<∴> 2233log 3log 2log 3log a b a b c π<=<∴>∴>> .故选A. 8. 若将函数()tan 04y x πωω??=+> ? ? ? 的图像向右平移6 π个单位长度后,与函数tan 6y x πω?? =+ ?? ? 的图像重合,则ω的最小值为 A .1 6 B. 14 C. 13 D. 12 解:6tan tan[(]ta )6446n y x y x x π ππππωωω??? ?=+?????? →=-=+ ? +? ????向右平移个单位 1 64 ()6 62k k k Z π π ωπωπ += ∴=+∈∴ - , 又min 1 02 ωω>∴=.故选D 9. 已知直线()()20y k x k =+>与抛物线 2:8C y x =相交于A B 、两点,F 为C 的焦点,

2020-2021高考理科数学模拟试题

高三上期第二次周练 数学(理科) 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.设集合{}=0123A ,,,, {}=21B x x a a A =-∈,,则=( )A B ? A. {}12, B. {}13, C. {}01 , D. {}13-, 2.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( ) A. i - B. i C. 1- D. 1 3.在等比数列{}n a 中, 13521a a a ++=, 24642a a a ++=, 则数列{}n a 的前9项的和9S =( ) A. 255 B. 256 C. 511 D. 512 4.如图所示的阴影部分是由x 轴,直线1x =以及曲线1x y e =-围成, 现向矩形区域OABC 内随机投掷一点,则该点落在阴影区域的概率是( ) A. 1e B. 21 e e -- C. 11e - D. 11e - 5.在 52)(y x x ++ 的展开式中,含 2 5y x 的项的系数是( ) A. 10 B. 20 C. 30 D. 60 6.已知一个简单几何体的三视图如右图所示,则该几何体的 体积为 ( ) A. 36π+ B. 66π+ C. 312π+ D. 12 7.已知函数 ())2log(x a x f -= 在 )1,(-∞上单调递减,则a 的取值范围是( ) A. 11<<

高三数学模拟试题一理新人教A版

山东省 高三高考模拟卷(一) 数学(理科) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间 120分钟 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.把复数z 的共轭复数记作z ,i 为虚数单位,若i z +=1,则(2)z z +?= A .42i - B .42i + C .24i + D .4 2.已知集合}6|{2--==x x y x A , 集合12{|log ,1}B x x a a ==>,则 A .}03|{<≤-x x B .}02|{<≤-x x C .}03|{<<-x x D .}02|{<<-x x 3.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示: 若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为 A .10 B .20 C .8 D .16 4.下列说法正确的是 A .函数x x f 1)(=在其定义域上是减函数 B .两个三角形全等是这两个三角形面积相等的必要条件 C .命题“R x ∈?,220130x x ++>”的否定是“R x ∈?,220130x x ++<” D .给定命题q p 、,若q p ∧是真命题,则p ?是假命题 5.将函数x x x f 2sin 2cos )(-=的图象向左平移 8 π个单位后得到函数)(x F 的图象,则下列说法中正确的是 A .函数)(x F 是奇函数,最小值是2- B .函数)(x F 是偶函数,最小值是2-

高三数学模拟试题及答案word版本

高三数学模拟试卷 选择题(每小题5分,共40分) 1.已知全集U ={1,2,3,4,5},集合M ={1,2,3},N ={3,4,5},则M ∩(eU N )=( ) A. {1,2} B.{4,5} C.{3} D.{1,2,3,4,5} 2. 复数z=i 2(1+i)的虚部为( ) A. 1 B. i C. -1 D. - i 3.正项数列{a n }成等比,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是( ) A. -24 B. 21 C. 24 D. 48 4.一组合体三视图如右,正视图中正方形 边长为2,俯视图为正三角形及内切圆, 则该组合体体积为( ) A. 23 B. 43 π C. 23+ 43 π D. 5434327π+ 5.双曲线以一正方形两顶点为焦点,另两顶点在双曲线上,则其离心率为( ) A. 22 B. 2+1 C. 2 D. 1 6.在四边形ABCD 中,“AB u u u r =2DC u u u r ”是“四边形ABCD 为梯形”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 7.设P 在[0,5]上随机地取值,求方程x 2+px +1=0有实根的概率为( ) A. 0.2 B. 0.4 C. 0.5 D. 0.6 8.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,|φ|<2 π ) 的图象(部分)如图所示,则f (x )的解析式是( ) A .f (x )=5sin( 6πx +6π) B.f (x )=5sin(6πx -6π) C.f (x )=5sin(3πx +6π) D.f (x )=5sin(3πx -6 π ) 二、填空题:(每小题5分,共30分) 9.直线y =kx +1与A (1,0),B (1,1)对应线段有公 共点,则k 的取值范围是_______. 10.记n x x )12(+ 的展开式中第m 项的系数为m b ,若432b b =,则n =__________. 11.设函数 3 1 ()12 x f x x -=--的四个零点分别为1234x x x x 、、、,则 1234()f x x x x =+++ ; 12、设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 11.2 1 1 lim ______34 x x x x →-=+-. 14. 对任意实数x 、y ,定义运算x *y =ax +by +cxy ,其中 x -5 y O 5 2 5

高三数学高考模拟题(一)

高三数学高考模拟题 (一) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三数学高考模拟题(一) 一. 选择题(12小题,共60分,每题5分) 1. 已知集合{}{} M N x x x x Z P M N ==-<∈=?13302,,,,又|,那么集合 P 的子集共有( ) A. 3个 B. 7个 C. 8个 D. 16个 2. 函数y x =-的反函数的图象大致是( ) A B C D 3. 已知直线l 与平面αβγ、、,下面给出四个命题: ()//(),()()////12314若,,则若,若,,则若,,则l l l l l ααββαββγαγγγββ αβαβ⊥⊥⊥⊥⊥?⊥⊥? 其中正确命题是( ) A. (4) B. (1)(4) C. (2)(4) D. (2)(3) 4. 设cos ()31233 x x x =-∈-,且,,则ππ 等于( ) A B C D ....±±±± ππππ 18929518 5. 设a b c a b c =+=-=sin cos cos 1313221426 2 2 ,,,则、、之间的大小关系是( )

A b c a B c a b C a c b D c b a ....>>>>>>>> 6. ()15+x n 展开式的系数和为a x n n ,()572+展开式的系数和为 b a b a b n n n n n n ,则lim →∞-+234等于( ) A B C D ....- --12131 71 7.椭圆 x y M 22 4924 1+=上有一点,椭圆的两个焦点为F F MF MF MF F 121212、,若,则⊥?的面积是( ) A. 96 B. 48 C. 24 D. 12 8. 已知椭圆x y t 22 1221 1+-=()的一条准线的方程为y =8,则实数t 的值为( ) A. 7和-7 B. 4和12 C. 1和15 D. 0 9. 函数y x x x =+2sin (sin cos )的单调递减区间是( ) A k k k Z B k k k Z C k k k Z D k k k Z .[].[].[].[]28278 27821588 58 3878 ππππ ππππππ ππ ππππ-+∈++∈-+ ∈+ +∈,,,, 10. 如图在正方体ABCD -A B C D 1111中,M 是棱DD 1的中点,O 为底面ABCD 的中心,P 为棱A B 11上任意一点,则直线OP 与直线AM 所成的角( ) A. 是π4 B. 是π 3 C. 是π 2 D. 与P 点位置有关 1 A 11. 在平面直角坐标系中,由六个点O(0,0)、A(1,2)、B(-1,-2)、C(2,4)、D(-2,-1)、E(2,1)可以确定不同的三角形共有( )

湖南省怀化市2019届高三数学(理)统一模拟考试试题一(含答案)

湖南省怀化市2019届高三数学统一模拟考试试题(一)理 本试卷共4页,23题(含选考题)。全卷满分150分。考试用时120分钟。 注意事项: 1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 5、考试结束一定时间后,通过扫描二维码查看考题视频讲解。 第Ⅰ卷 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A={02|2 ≥++-∈x x N x },则满足条件的集合B 的个数为 A. 3 B. 4 C. 7 D. 8 2.已知i 为虚数单位,且复数2满足|34|)21(i i z -=+,则复数z 的共轭复数为 A.1-2i B. l+2i C. 2-i D. 2+i 3.双曲线 14822=-y x 与双曲线14 82 2=-x y 有相同的 A.渐近线 B.顶点 C.焦点 D.离心率 4.已知倾斜角为α的直线与直线012:=-=y x l 垂直,则αα2 2 sin cos -的值为 A. 5 3- B. 53 C. 56 D. 0 5.某网店2018年全年的月收支数据如图所示,则针对2018年这一年的收支情况,说法错误的是

2020-2021年高三数学二模考试试题理(含解析)

高三数学二模考试试题 理(含解析) 第Ⅰ卷(共60分) 一、选择题(本大题共12小题,共60.0分) 1.已知集合{}|13A x R x =∈-<≤,{}2101234B =--,,,,,,,则A B ?=( ) A. {}1,0,1,2,3- B. {}0,1,2,3 C. {}1,2,3 D. {}0,1,2 【答案】B 【解析】 【分析】 利用交集定义直接求解即可. 【详解】∵ 集合{}|13A x R x =∈-<≤,{}2,10123,4B =--,,,,,∴{}0,1,2,3A B =I . 故选:B . 【点睛】本题考查集合交集的运算,考查交集定义,属于基础题. 2.已知复数1i z i =-,则z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】A 【解析】 【分析】 利用复数代数形式的乘除运算化简z ,求得z 在复平面内对应的点的坐标即可. 【详解】∵ ()()()111 11122i i i z i i i i += ==-+--+,∴ 12 z i +=+, ∴z 在复平面内对应的点的坐标为12????? ,位于第一象限. 故选:A . 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.

3.设x ,y 满足约束条件326020480x y x y x y --≤?? +-≥??-+≥? ,则2z x y =-的最小值是( ) A. -4 B. -2 C. 0 D. 2 【答案】A 【解析】 【分析】 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求解即可. 【详解】作出不等式组对应的平面区域如图(阴影部分ABC ),由2z x y =-得 122 z y x = -, 平移直线122z y x =-,由图象可知当直线122z y x =-,过点B 时, 直线122z y x = -的截距最大,此时z 最小,由48020x y x y -+=??+-=? ,解得()02,B . 代入目标函数2z x y =-,得0224z =-?=-, ∴ 目标函数2z x y =-的最小值是4-. 故选:A . 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法,属于基础题. 4.抛物线2 :2(0)C y px p =>的焦点为F ,点()06,A y 是C 上一点,||2AF p =,则p = ( ) A. 8 B. 4 C. 2 D. 1 【答案】B

高三数学模拟试卷精编(含答案及解析)

高三数学模拟试题 一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={}1Z x x x ≤∈,,B ={}02x x ≤≤,则A I B = . 答案:{0,1} 考点:集合的运算 解析:∵A ={}1Z x x x ≤∈, ∴A ={﹣1,0,1} ∵B ={}02x x ≤≤ ∴A I B ={0,1} 2.已知复数z =(1+2i)(a +i),其中i 是虚数单位.若z 的实部与虛部相等,则实数a 的值为 . 答案:﹣3 考点:复数的运算 解析:z =(1+2i)(a +i)=a ﹣2+(2a +1)i 由z 的实部与虛部相等得:a ﹣2=2a +1,解得a 的值为﹣3. 3.某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是 . 答案:18 考点:系统抽样方法 解析:根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,已知 其中三个个体的编号为5,31,44,故还有一个抽取的个体的编号为18.

4.3张奖券分别标有特等奖、一等奖和二等奖,甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是 . 答案:13 考点:古典概型 解析:甲、乙两人同时各抽取1张奖券共有6种不同的情况,其中两人都未抽得 特等奖有2种情况,所以P =2 6 =13 . 5.函数2()log (1)f x x x =+-的定义域为 . 答案:[0,1) 考点:函数的定义域 解析:由题意得:0 10x x ≥??->? ,解得0≤x <1,所以函数的定义域为[0,1). 6.下图是一个算法流程图,则输出的k 的值为 . 答案:3 考点:算法初步 解析:n 取值由13→6→3→1,与之对应的k 为0→1→2→3,所以当n 取1时,

江西省南昌市高三数学二模考试试题理

江西省南昌市高三数学二模考试试题理 本试卷分必做题和选做题两部分。满分150分,考试时间120分钟。 注意事项: 1.答卷前,考生务必将自已的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考拭科目”与考生本人的准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,用0.5毫米的黒色墨水笔写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将答题卡收回。 选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合 A= {0>2|2 --x x x },B={3<<0|x x },则=B A A. (-1,3) B. (0,3) C. (1,3) D. (2,3) 2.已知R b a ∈,,复数bi a z -=,则=2 ||z A. abi b a 222-+ B. abi b a 222-- C. 22b a - D. 2 2b a + 3.已知函数a x ax x f ++=2 )(,命题0)(,:00=∈?x f R x p ,若p 为假命题,则实数a 的取值范围是 A. ]21,21[- B. )21,21(- C. ),21()21,(+∞--∞ D. ),21 []21,(+∞--∞ 4. 己知抛物线x y 82 =的焦点为F ,点P 在该抛物线上,且P 在y 轴上的投影为点E ,则 ||||PE PF -的值为 A.1 B. 2 C. 3 D. 4 5. 一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是 A. 21 2- π B. 12-π C. 22-π D. 42-π 6. 已知函数2 <||,0>,0>)(sin()(π ?ω?ωA x A x f +=为图像上

高三数学模拟试题及答案

高三数学模拟试题及答案 一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的 1. 设集合≤ ≤ , ≤ ≤ ,则 2. 计算: A. B.- C. 2 D. -2 3. 已知是奇函数,当时,,则 A. 2 B. 1 C. D. 4. 已知向量 ,则的充要条件是 A. B. C. D. 6. 已知函数,则下列结论正确的是 A. 此函数的图象关于直线对称 B. 此函数的最大值为1 C. 此函数在区间上是增函数 D. 此函数的最小正周期为 8. 已知、满足约束条件, 若,则的取值范围为 A. [0,1] B. [1,10] C. [1,3] D. [2,3] 第二部分非选择题共100分 二、填空题本大题共7小题,分为必做题和选做题两部分,每小题5分,满分30分。 一必做题:第9至13题为必做题,每道试题考生都必须作答。 9. 已知等比数列的公比为正数,且,则 = . 10. 计算 . 11. 已知双曲线的一个焦点是,则其渐近线方程为 . 12. 若 n的展开式中所有二项式系数之和为64,则展开式的常数项为 . 13. 已知 依此类推,第个等式为.

二选做题:第14、15题为选做题,考生只选做其中一题,两题全答的只算前一题得分。 14. 坐标系与参数方程选做题已知曲线C的参数方程为θ为参数,则曲线C上的点到直线3 -4 +4=0的距离的最大值为 三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤。 17.本小题满分12分 某连锁超市有、两家分店,对该超市某种商品一个月30天的销售量进行统计:分店的销售量为200件和300件的天数各有15天; 分店的统计结果如下表: 销售量单位:件 200 300 400 天数 10 15 5 1根据上面统计结果,求出分店销售量为200件、300件、400件的频率; 2已知每件该商品的销售利润为1元,表示超市、两分店某天销售该商品的利润之和,若以频率作为概率,且、两分店的销售量相互独立,求的分布列和数学期望. 19.本小题满分14分 已知数列中,,且当时,, . 记的阶乘 ! 1求数列的通项公式;2求证:数列为等差数列; 3若,求的前n项和. 20.本小题满分14分 已知椭圆:的离心率为,连接椭圆的四个顶点得到的四边形的面积为 . 1求椭圆的方程; 2设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线交于点M,求点M的轨迹的方程; 3设O为坐标原点,取上不同于O的点S,以OS为直径作圆与相交另外一点R,求该圆面积的最小值时点S的坐标. 21.本小题满分14分

山西省太原市2020届高三数学模拟试题(一)理

山西省太原市2020届高三数学模拟试题(一)理 (考试时间:下午3:00——5:00) 注意事项: 1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至4页,第Ⅱ卷5至8页。 2.回答第I 卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 3.回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。 4.回答第Ⅱ卷时,将答案写在答题卡相应位置上,写在本试卷上无效。 5.考试结束后,将本试卷和答题卡一并交回。 第Ⅰ卷 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}26,3x x y x N x x M -+==<=,则M∩N =( ) A .{}32<<-x x B .{}32<≤-x x C .{}32≤<-x x D .{} 33≤<-x x 2.设复数z 满足5)2(=+?i z ,则i z -=( ) A .22 B .2 C .2 D .4 3.七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.(清)陆以湉《冷庐杂识》卷中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( ) A.165 B.3211 C.167 D.32 13 4.已知等比数列{n a }中,1a >0,则“41a a <”是“53a a <”的( )

2020年浙江省嘉兴市高考数学二模试卷(理)含答案解析

2020年浙江省嘉兴市高考数学二模试卷(理科) 一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(?U B)=()A.{2}B.{2,3}C.{3}D.{1,3} 2.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是() A.若l⊥m,m?α,则l⊥αB.若l⊥α,l∥m,则m⊥α C.若l∥α,m?α,则l∥m D.若l∥α,m∥α,则l∥m 3.“”是“tanθ=1”的() A.充分不必要条件B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.函数(其中a∈R)的图象不可能是() A.B.C.D. 5.已知{a n}是等差数列,公差为2,{b n}是等比数列,公比为2.若{b n}的前n项和为, 则a1+b1等于() A.1 B.2 C.3 D.4 6.如图,小于90°的二面角α﹣l﹣β中O∈l,A,B∈α,且∠AOB为钝角,∠A′OB′是∠AOB在β内的射影,则下列结论错误的是() A.∠A′OB′为钝角B.∠A′OB′>∠AOB C.∠AOB+∠AOA′<πD.∠B′OB+∠BOA+∠AOA′>π 7.如图,双曲线﹣=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点p是 双曲线右支上一点,PF1交左支于点Q,交渐近线y=x于点R,M是PQ的中点,若RF2⊥PF1,且AM⊥PF1,则双曲线的离心率是()

A.B.C.2 D. 8.已知0<x<y,2<x2,则下列不正确的是() A.sinx2<sin(﹣y)B.sinx2>sin(2﹣y) C.sin(2﹣x2)<siny D.sinx2<cos(y﹣1) 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 9.已知φ∈[0,π),函数f(x)=cos2x+cos(x+φ)是偶函数,则φ=,f(x)的最小值为. 10.已知函数,则=,方程f(x)=2的 解为. 11.某几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3,表面积为cm2. 12.已知x,y∈R且满足不等式组,当k=1时,不等式组所表示的平 面区域的面积为,若目标函数z=3x+y的最大值为7,则k的值为.13.已知a>0,f(x)=acosπx+(1﹣x)sinπx,x∈[0,2],则f(x)所有的零点之和为. 14.设,已知x,y∈R,m+n=6,则F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值为.

高三数学模拟试题(文科)及答案

高三数学模拟试题(文科) 一、选择题:本大题共10小题,每小题5分,共50分. 1.已知x x x f 2)(2 -=,且{}0)(<=x f x A ,{} 0)(>'=x f x B ,则B A I 为( ) A .φ B .{}10<x x 2.若0< B .b a > C . a b a 11>- D .b a 1 1> 3.已知α是平面,b a ,是两条不重合的直线,下列说法正确的是 ( ) A .“若αα⊥⊥b a b a 则,,//”是随机事件 B .“若αα//,,//b a b a 则?”是必然事件 C .“若βαγβγα⊥⊥⊥则,,”是必然事件 D .“若αα⊥=⊥b P b a a 则,,I ”是不可能事件 4.若0x 是方程x x =)2 1 (的解,则0x 属于区间( ) A .( 2 3 ,1) B .( 12,23) C .(13,1 2 ) D .(0, 1 3 ) 5.一个几何体按比例绘制的三视图如图所示(单位:m ),则该几何体的体积为( ) A . 3 4 9m B . 337m C .327m D .32 9 m 6.若i 为虚数单位,已知),(12R b a i i bi a ∈-+=+,则点),(b a 与圆222=+y x 的关系为 ( ) A .在圆外 B .在圆上 C .在圆内 D .不能确定 7.在ABC ?中,角A 、B 、C 所对的边长分别为a 、b 、c ,设命题p : A c C b B a sin sin sin = =,命题q : ABC ?是等边三角形,那么命题p 是命题q 的 ( ) A .充分不必要条件 B .必要不充分条件. C .充要条件 D .既不充分也不必要条件 8.已知函数12 ++=bx ax y 在(]+∞,0单调,则b ax y +=的图象不可能... 是( )

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案) 本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项: 1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号. 3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回. 第Ⅰ卷 (选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合2 {1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I (A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数1 1i z = +,则||z = (A) 2 (B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2 ()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)2 4. 已知单位向量12,e e 的夹角为 2π 3 ,则122e e -= (A)3 (B)7 5. 已知双曲线22 221(0,0)x y a b a b -=>>的渐近线方程为3y x =±,则双曲线的离心率是 (B) 3 (C)10 (D)10 9 6. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的

广东省2019届高三数学模拟试题(一)理(含解析)

广东省2019届高三数学模拟试题(一)理(含解析) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则() A. B. C. D. 【答案】D 【解析】 【分析】 先求出集合A,B,再求两集合的交集即可. 【详解】在集合A中,得x<3,即A=(,3), 在集合B中y=2x在(,3)递增,所以0<y<8,即B=(0,8), 则A∩B=(0,3). 故选:D. 【点睛】本题考查了集合的交集及其运算,也考查了指数函数的值域,属于基础题. 2.复数(为虚数单位)的虚部为() A. B. C. D. 【答案】A 【解析】 【分析】 利用复数代数形式的乘除运算化简即可得答案. 【详解】 =,所以z的虚部为. 故选:A 【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,属于基础题. 3.双曲线的焦点坐标为() A. B. C. D. 【答案】A 【解析】 【分析】

将双曲线化成标准方程,可得,,即可得焦点坐标. 【详解】将双曲线化成标准方程为:,得,,所以 ,所以,又该双曲线的焦点在x轴上,所以焦点坐标为 . 故选:A 【点睛】本题考查双曲线的简单性质,将双曲线的方程化为标准形式是关键,属于基础题. 4.记为等差数列的前项和,若,,则() A. 4 B. 5 C. 6 D. 7 【答案】B 【解析】 【分析】 设等差数列{a n}的公差为d,首项为运用等差数列的通项公式和求和公式,解方程即可.【详解】设等差数列{a n}的公差为d,首项为,由,, 得2a1+8d=34,4a1+×4×3d=38,解得d=3, 故选:B. 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想以及运算能力,属于基础题. 5.已知函数在上单调递减,且当时,,则关于的不等式的解集为() A. B. C. D. 【答案】D 【解析】 【分析】 当时,由=,得,由函数单调性的性质,即可得 的解集. 【详解】当时,由=,得或(舍),又因为函数在

江西省南昌市2019届高三二模考试数学(理)试卷(带答案)

NCS20190607项目第二次模拟测试卷 理科数学 本试卷分必做题和选做题两部分。满分150分,考试时间120分钟。 注意事项: 1.答卷前,考生务必将自已的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考拭科目”与考生本人的准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,用0.5毫米的黒色墨水笔写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将答题卡收回。 选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合 A= {0>2|2 --x x x },B={3<<0|x x },则=B A I A. (-1,3) B. (0,3) C. (1,3) D. (2,3) 2.已知R b a ∈,,复数bi a z -=,则=2 ||z A. abi b a 222-+ B. abi b a 222-- C. 22b a - D. 2 2b a + 3.已知函数a x ax x f ++=2 )(,命题0)(,:00=∈?x f R x p ,若p 为假命题,则实数a 的取值范围是 A. ]21,21[- B. )21,21(- C. ),21()21,(+∞--∞Y D. ),2 1 []21,(+∞--∞Y 4. 己知抛物线x y 82 =的焦点为F ,点P 在该抛物线上,且P 在y 轴上的投影为点E ,则 ||||PE PF -的值为 A.1 B. 2 C. 3 D. 4 5. 一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体 积是 A. 2 1 2-π B. 12-π C. 22-π D. 42-π 6. 已知函数2 <||,0>,0>)(sin()(π ?ω?ωA x A x f +=为图像上 的所有点向左平移 4 π 个单位得到函数)(x g 的图像,则函数)(x g 的单调递增区间是

高三数学模拟测试题含答案

数 学 选择题部分(共40分) 一、选择题 1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B e= A .{}1- B .{}0,1? C .{}1,2,3- D .{}1,0,1,3- 2.渐近线方程为x ±y =0的双曲线的离心率是 A B .1 C D .2 3.若实数x ,y 满足约束条件3403400x y x y x y -+≥?? --≤??+≥? ,则z =3x +2y 的最大值是 A .1- B .1 C .10 D .12 4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到到柱体体积公式V 柱体 =Sh ,其中S 是柱体的底面积,h 是柱体的高. 若某柱体的三视图如图所示,则该柱体的体积是 A .158 B .162 C .182 D .32 5.若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件

C .充分必要条件 D .既不充分也不必要条件 6.在同一直角坐标系中,函数y =1x a ,y =log a (x +),(a >0且a ≠0)的图像可能是 7.设0<a <1,则随机变量X 的分布列是 则当a 在(0,1)内增大时 A .D (X )增大 B .D (X )减小 C . D (X )先增大后减小 D .D (X )先减小后增大 8.设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 9.已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >-1,b >0 D .a >-1,b <0 10.设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,b *∈N ,则 A .当b =,a 10>10 B .当b =,a 10>10 C .当b =-2,a 10>10 D .当b =-4,a 10>10

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷及答案3套 模拟试卷一 试卷满分:150分 一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的,请将正确的选项填涂在答题卡...... 上) 1. 2020i = ( ) A .1 B .1- C . i D .i - 2.设i 为虚数单位,复数()()12i i +-的实部为( ) A.2 B.-2 C. 3 D.-3 3.若向量,)()3,(R x x a ∈=ρ ,则“4=x ”是“5=a ρ ”的( ) A.充分而不必要条件 B.必要而不充分条件 C 充要条件 D.既不充分也不必要条件 4.下列函数中,在区间(0,+∞)上单调递增的是( ) A. B. C. x y 2 1log = D. 5.已知)cos(2)2 cos( απαπ +=-,且3 1 )tan(= +βα,则βtan 的值为( ) .A 7- .B 7 .C 1 .D 1- 6.将函数()()()sin 20f x x ??=+<<π的图象向右平移 4 π 个单位长度后得到函数()sin 26g x x π? ?=+ ?? ?的图象,则函数()f x 的一个单调减区间为( ) A .5,1212ππ?? - ???? B .5,66ππ?? - ???? C .5,36ππ?? - ???? D .2,63ππ?? ? ??? 7. 如图,在平行四边形ABCD 中,11 ,,33 AE AB CF CD G ==为EF 的中点,则DG =u u u r ( )

A .1122A B AD -u u u r u u u r B .1122 AD AB -u u u r u u u r C. 1133AB AD -u u u r u u u r D .1133 AD AB -u u u r u u u r 8. 执行如图所示的程序框图,则输出的a 值为( ) A .3- B . 13 C.1 2 - D .2 9. 公元前5世纪下半叶开奥斯地方的希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自于阴影部分的概率是( ) A . 384ππ++ B .684ππ++ C. 342ππ++ D .642 ππ++ 10.设椭圆22 221(0)x y a b a b +=>>的左焦点为F ,在x 轴上F 的右侧有一点A ,以FA 为直径 的圆与椭圆在x 轴上方部分交于M 、N 两点,则|||| || FM FN FA +等于( )

相关主题
文本预览
相关文档 最新文档