当前位置:文档之家› (完整版)基于ZEMAX的激光扩束镜的优化设计.doc

(完整版)基于ZEMAX的激光扩束镜的优化设计.doc

(完整版)基于ZEMAX的激光扩束镜的优化设计.doc
(完整版)基于ZEMAX的激光扩束镜的优化设计.doc

光学软件设计

实验报告:

基于 ZEMAX的激光扩束镜的优化设计

姓名:

学号: 2011146211

一、实验目的

学会使用 ZEMAX软件对多重结构配置的激光束扩大器进行优化设计。

二、实验要求

1、掌握使用多重结构配置。

2、进一步学习构建优化函数。

三、实验内容

设计一个激光扩束器,使用的波长为 1.053um,输入光束直径为 100mm ,输出光束的直径为20mm,且输入光束和输出光束平行。要求只使用两片镜片,设计必须是伽利略式的

(没有内部焦点),在镜片之间的间隔必须不超过 250mm ,只许使用 1 片非球面,系统必须在波长为 0.6328um 时测试。

玻1、打开 ZEMAX软件,关闭默认的上一个设计结果,然后新建一个空白透镜。

2、在 IMA 面(像平面)前使用insert 插入 4 个面,输入相关各面的厚度、曲率半径和

璃类型值。

3 、点击Gen设置入瞳直径为100 ,点击Wav设置波长为1.053微米。

4、在主菜单Editors 5, Py 输入 1, taiget 输入里构建一个优化函数,将第一行操作数类型改为

10, weight 输入 1。

REAY , surf 输入

5、在评价函数编辑窗中选工具—默认优化函数。选reset,将“开始在”的值设置为2,

确定。

6、点击 Opt 进行优化,优化后生产OPD 图。

7、将第一面的conic 设置为变量( control+z )。再次进行优化,重新生产O PD 图并观察。

并8、将三个曲率和圆锥西数的变量状态去掉。

9、点击 Wav 重新配置光波长,将之前的

1.053 改为0.6328,确定后再次更新

OPD 图

此10、将第二面的厚度

时去掉

250mm

设为可变,然后再次点击Opt

二面的可

优化,重新生成

变状

OPD

图。

11、从主菜单—编辑中调出多重结构编辑窗,在这个窗口的编辑菜单中选“插入结构”

来插入一个新的结构配置,双击第一行第一列,从下拉框中选wave,在同样的对话框里为wavelength选择 1 ,确定。在config1下输入 1.053 ,在config2下输入0.6328 。

12、为多重结构编辑器加入新的一行,在新的“1”行的第一列双击,然后选THIC为操作数类型。从 surface 列选 2,确定。在 config1 下输入 250,config2 下也输入 250。将 config2

下的第二面厚度设为变量。

13、回到优化函数编辑器。选工具—默认优化函数,在显示的对话框中将“开始在”的

值改成 1,确定。

14、在结构配置 1 的第一个 OPDX 行之前插入新的一行,将新加的这一行的操作数类型

改为 REAY ,为 surf 输入 5,Py 输入 1, target 输入 10。结构配置 2 中不需要更改。

15、回到 LDE ,将第 1、2 和 4 面的曲率半径以及第 1 面的 conic 设为变量。重新优化。

16、此时双击多重结构的 config1 列头,更新 OPD 图,得到关于 1.053 波长的 OPD 图;同样若双击 config2 列头,则得到 0.6328 波长的 OPD 图,分析像质。

(完整word版)基于ZEMAX的激光扩束镜的优化设计

光学软件设计 实验报告: 基于ZEMAX的激光扩束镜的优化设计 姓名: 学号:2011146211

一、实验目的 学会使用ZEMAX软件对多重结构配置的激光束扩大器进行优化设计。 二、实验要求 1、掌握使用多重结构配置。 2、进一步学习构建优化函数。 三、实验内容 设计一个激光扩束器,使用的波长为1.053um,输入光束直径为100mm,输出光束的直径为20mm,且输入光束和输出光束平行。要求只使用两片镜片,设计必须是伽利略式的(没有内部焦点),在镜片之间的间隔必须不超过250mm,只许使用1片非球面,系统必须在波长为0.6328um时测试。 1、打开ZEMAX软件,关闭默认的上一个设计结果,然后新建一个空白透镜。 2、在IMA面(像平面)前使用insert插入4个面,输入相关各面的厚度、曲率半径和玻璃类型值。 3、点击Gen设置入瞳直径为100,点击Wav设置波长为 1.053微米。

4、在主菜单Editors里构建一个优化函数,将第一行操作数类型改为REAY,surf输入5,Py输入1,taiget输入10,weight输入1。 5、在评价函数编辑窗中选工具—默认优化函数。选reset,将“开始在”的值设置为2,

确定。 6、点击Opt进行优化,优化后生产OPD图。

7、将第一面的conic设置为变量(control+z)。再次进行优化,重新生产OPD图并观察。 8、将三个曲率和圆锥西数的变量状态去掉。 9、点击Wav重新配置光波长,将之前的1.053改为0.6328,确定后再次更新OPD图并分析。

10、将第二面的厚度250mm设为可变,然后再次点击Opt优化,重新生成OPD图。此时去掉第二面的可变状态。 11、从主菜单—编辑中调出多重结构编辑窗,在这个窗口的编辑菜单中选“插入结构”来插入一个新的结构配置,双击第一行第一列,从下拉框中选wave,在同样的对话框里为wavelength选择1,确定。在config1下输入 1.053,在config2下输入0.6328。

(完整版)激光扩束望远镜设计

激光扩束望远镜设计 一、 项目研究背景 在激光发射系统中,为了增大激光平行度作用距离,要求减小光束的发散角.这样才更大的范围内激光都可以保持较好的线性度。因此,在发射系统中常采用扩束望远镜来扩展激光光束,达到系统的准直性要求。而与一般的发射系统相比,强脉冲激光发射系统对光学系统的整体性能提出了更高的要求,不仅要求光学系统的准直性好,而且要求整个光学系统具有高抗光损阔值、高反射率、热变形小等特点.此外,在实际应用中还要求目标距离处的光斑尺寸具有可调节性,因此该种激光发射系统在理论设计与实际工程监理方面都面临着极大的考验。 二、 项目研究内容 1、望远镜系统激光扩束原理 激光扩束器的设计中常采用倒置的望远镜系统,高斯光束通过望远镜系统的变换矩阵为 11221M l f f f M f ττ???+ ? ? ???-+ ??? 式中12,f f 分别表示两镜的焦距,两镜间距 12l f f =++?,其中?表示失调量,2 1f M f τ=-为放大镜的放大率。 设入射光束束腰为0w ,焦参数为 20w f πλ=,物距为s ,经望远镜系统后变为束腰为'0w ,像距为' s 的高斯光束。 其中对于调焦系统有: 2' 12()s M f f M s ττ=-+- '00 w M w τ= 远场发散角0θ与束腰0w 间有反比关系,即 02011M τθθ=,远场发散角被压缩M τ倍,且与物距和像距均无关。当1s f =时,'2s f =,即像方激光束腰位于第二透镜2 L 的后

焦面上;当12s f f >>+时,'2s M s τ≈-,该望远镜系统的扩束比'00w M M w τ==。 2、几种激光扩束望远镜的性能分析 2.1折射式扩柬组远镜系统 使用透镜作物镜的望远系统称为折射式望远镜,根据不同的目镜类型可分为伽利略望远镜系统和开普勒望远镜系统。 伽利略望远镜系统具有结构简单、筒长短、等优点,但是其局限性在于不能容纳空间滤波或进行大倍率的扩束,因此其应用领域受到了比较大的限制。而开普勒望远镜系统可以配合空间滤波片使用,使非对称光束分布变为对称分布,并可使激光能量分布得更加均匀,但是建造成本相比于伽利略望远镜也有所提升。 2.2反射式扩束望远镜系统 反射式望远镜系统是指用凹面反射镜作物镜的望远镜系统,与折射式望远镜系统相比具有大口径、无色差、传输效率高等优点,已得到广泛的应用.在激光扩束器设计和制造中应用较广的有无焦格里格利系统和无焦卡塞格林系统 反射式望远镜系统在光学性能方面的最大缺点是存在较为严重的像差,因此在实际使用中必须应用非球面的不同组合,实现不同的消像差能力,激光扩束望远镜中最常用的是抛物面。 3、设计指标 强脉冲激光发射系统的工作波长为10.6m λμ=,入射光束口径050D mm ≤, 要求出射光束口径200D mm =,在距离激光器100m 范围内,激光光束的口径250D mm ≤,在100m 的目标距离处光斑大小具有一定的可调节性。

伽利略望远镜设计说明书

伽利略望远镜设计报告 1. 总体设计要求及方法 课题要求设计一个伽利略望远系统,要求:放大倍率为5X ,筒长为250mm ,物镜最大直径不大于25mm ,接受器为人眼。 伽利略望远镜是由正光焦度的物镜和负光焦度的目镜组成,其放大倍率大于 1。光路图如下: 图 1 伽利略望远镜光路图 为对光学系统进行迭代设计和优化,采用光学设计软件Zemax 对望远镜的物镜、目镜分别进行建模和优化,以取代繁琐复杂的光路计算。之后再将二者组合建模,并对最后的成像质量进行详细的评价。 2. 光学系统设计 2.1 初步参数设计 根据系统设计要求,镜筒长度250mm ,而物镜到目镜的间距为: 'o e l f f =- 视觉放大率要求为5x ,故有: '/5o e f f = l 应当略小于筒长,因此将l 设计为240mm ,计算得出物镜焦距f o ’为300mm ,目镜焦距f e 为60mm 。伽利略望远镜一般以人眼作为视场光阑,物镜框为视场光阑,同时为望远系统的入射窗。由于视场光阑不与物面重合,因此伽利略望远镜

一般存在渐晕现象。出瞳应位于人眼观察处,为方便观察,设定出瞳距离目镜15mm 处,物镜的直径为25mm ,因此出瞳据物镜距离为: ''2z o e z l f f l =-+ 当视场为50%渐晕时,望远镜的视场角为: tan Z D l ω= 计算得出望远镜的视场角ω为2.8°,可见伽利略望远镜的视场非常小。 2.1 物镜设计 2.1.1 结构选择 一般有三种结构形式:折射式、反射式和折返式。而一般军用光学仪器和计量仪器中使用的望远镜物镜为折射式物镜。单透镜的色差和球差都相当严重,现代望远镜一般都采用两块或多块透镜组成的镜组。其中又可分为双胶合物镜、双分离物镜、三分离物镜、摄远物镜,如下图所示。 图 2 常见的物镜结构 双胶合物镜是最简单和常用的望远物镜,由一个正透镜和一个负透镜胶合而成。双胶合物镜的优点为结构简单,制造和装配方便。通过选择材料以及弯曲镜面可以矫正透镜组的球差、彗差和轴向色差。 2.1.2 优化设计 根据前面的计算,物镜焦距f o ’设计为300mm ,最大口径为25mm 。目视光学系统,波段选取为可见光波段0.4μm -0.75μm,并将人眼敏感的绿光0.55μm 设为主要计算波段,如下图所示:

激光扩束望远镜设计

激光扩束望远镜设计 一、项目研究背景在激光发射系统中,为了增大激光平行度作用距离,要求减小光束的发散角、这样才更大的范围内激光都可以保持较好的线性度。因此,在发射系统中常采用扩束望远镜来扩展激光光束,达到系统的准直性要求。而与一般的发射系统相比,强脉冲激光发射系统对光学系统的整体性能提出了更高的要求,不仅要求光学系统的准直性好,而且要求整个光学系统具有高抗光损阔值、高反射率、热变形小等特点、此外,在实际应用中还要求目标距离处的光斑尺寸具有可调节性,因此该种激光发射系统在理论设计与实际工程监理方面都面临着极大的考验。 二、项目研究内容 1、望远镜系统激光扩束原理激光扩束器的设计中常采用倒置的望远镜系统,高斯光束通过望远镜系统的变换矩阵为式中分别表示两镜的焦距,两镜间距,其中表示失调量,为放大镜的放大率。设入射光束束腰为,焦参数为,物距为s,经望远镜系统后变为束腰为,像距为的高斯光束。其中对于调焦系统有:远场发散角与束腰间有反比关系,即,远场发散角被压缩倍,且与物距和像距均无关。当时,,即像方激光束腰位于第二透镜的后焦面上;当时,,该望远镜系统的扩束比。 2、几种激光扩束望远镜的性能分析2、1折射式扩柬组远镜系统使用透镜作物镜的望远系统称为折射式望远镜,根据不同的

目镜类型可分为伽利略望远镜系统和开普勒望远镜系统。伽利略望远镜系统具有结构简单、筒长短、等优点,但是其局限性在于不能容纳空间滤波或进行大倍率的扩束,因此其应用领域受到了比较大的限制。而开普勒望远镜系统可以配合空间滤波片使用,使非对称光束分布变为对称分布,并可使激光能量分布得更加均匀,但是建造成本相比于伽利略望远镜也有所提升。2、2反射式扩束望远镜系统反射式望远镜系统是指用凹面反射镜作物镜的望远镜系统,与折射式望远镜系统相比具有大口径、无色差、传输效率高等优点,已得到广泛的应用、在激光扩束器设计和制造中应用较广的有无焦格里格利系统和无焦卡塞格林系统反射式望远镜系统在光学性能方面的最大缺点是存在较为严重的像差,因此在实际使用中必须应用非球面的不同组合,实现不同的消像差能力,激光扩束望远镜中最常用的是抛物面。 3、设计指标强脉冲激光发射系统的工作波长为,入射光束口径,要求出射光束口径,在距离激光器100m范围内,激光光束的口径,在100m的目标距离处光斑大小具有一定的可调节性。

激光扩束

题目:基于MATLAB的简易激光扩束系统设计

一、实习要求: 1、理解高斯光束q 参数; 2、能够熟练使用CCD 采集光强度图样并用MATLAB 分析信号; 3、学生可以讨论编写MATLAB 仿真程序; 4、能够使用MATLAB 软件分析光强图样; 二、实验仪器: 计算机、CCD 、偏振片、透镜、接收屏、氦氖激光器 三、实验原理: 1)普通球面波在自由空间的传输: 2)普通球面波通过透镜的变化规律: 3)描述高斯光束的方法 ①fz 参数:q(z)=z+if ②WR 参数: 1/q(z)=1/R(z)-i(λ/πw 2 (z)) R2=R1+L 1/R2=1/R1-1/F

q 参数: z f z z R f z f z w /2^)() /2^()(+=+= π λ (f=πw 0^2 /λ) 4)gaussian beam 的复参数q 表示: 复参数q 的定义为: 1/q(z)=1/R(z)-i(λ/πw 2(z)) 将波前的曲率半径R(z)和光斑半径w(z)代入上式: ] 2)^z /2^0w (1[)(2)^2 ^w0(10)(λππλ+=+=z z R z w z w z f z z R f z f z w /2^)()/2^(/)(+=+=πλ 5)高斯光束通过薄透镜的变换 : Q1 ?? ? ???D C B A q2 高斯光束经过透镜矩阵传输方程 D Cq B Aq q ++= 112 ]202 2020 0202 02202 02)(1[])( 1[)(])(1[])(1[])( 1[)(z z z z w z z R z z z z z w w z w z w +=+=+=+=+=λππλπλ 6)双凸透镜扩束法: 设透镜的焦距为F ,物距和象距分别为s01和s02,它们之间 的关系为: 1/s01+1/s02=1/F

望远镜系统结构设计

光学课程设计 望远镜结构系统设计 姓名:曾茂桃 班级:光通信082 学号:2008031126 指导老师:张翔

摘要 该报告运用应用光学知识,了解望远镜的历史,在工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW 法基本原理。并应用光学设计软件对系统误差、成像质量进行理论分析。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析等都有了一个明确的简要的介绍。 关键字:望远镜物镜目镜放大率分辨率内调焦望远镜 PW法光栅

目录 一概述…………………………………………………………页二望远镜尺寸设计与分析…………………………………页2.1 望远镜的简述…………………………………………………………页2.2 望远镜的主要特性分析………………………………………………页三分物镜组与目镜组的选………………………………………………页 3.1望远镜物镜需要消除的像差类型及主要结构形式…………………页3.2双胶物镜和双分离物镜………………………………………………页 3.3内调焦望远镜…………………………………………………………页 四.目镜组的主要种类及其结构:………………………….. 页 4.1惠更斯目镜……………………………………………………………页4.2冉斯登目镜……………………………………………………………页 4.3Porro、Roof棱镜结构及其特点…………………………………页 五.望远镜像差设计PW法………………………………….. 页 5.2物体在有限距离时的P,W的规化……………………………………页5.5用C ,表示的初级像差系数………………………………………页 P, W 六.光学系统中的光栅分析……………………………………页

激光扩束镜原理讲解

激光扩束镜原理 衍射 通常我们以光束的发散参数作为完美的高斯激光束的特征。发散是指光波在其空间传播过程中以一定角度展开。甚至完美的没有任何异常的光线也会由于衍射效应经历某些光束的发散。衍射是指光线在被不透明的物体,比如刀锋切断的时候产生的弯曲效应。展开(spreading)产生于在切断的边缘发出的次级波面阵。这些次级波和主波会发生干涉,同时相互也会产生干涉,在某些时候就会形成复杂的衍射图案。 衍射使得完美的校准光束成为不可能,或者不能够将光束聚焦到无限小的点。幸运的是衍射的效果是能够被计算的。因此存在着可以预知对于任何衍射极限的透镜光束被准直的程度和光斑大小的理论。 我们现在考虑一束这样由低功率TEM00气体激光器产生的光束,光腰为S0。这样我们就能够假定它能够达到衍射极限同时能够不用考虑任何热透镜效应。它将会显现出由于衍射引起的光腰的弯曲,或者说展开效应: S(x)=S0[1+(λx/πS0²)²]½ 在这里x是指离开光源的距离,λ是指激光波长,如果λx/πS0²»1,那么: S(x)≈λx/πS0² 利用这个近似值,我们可以写出光束由于衍射发散的角度: θ= S(x)/x=λ/πS0 θ我们都知道指的是远场发散角。 改善发散角 光束的远场发散定义了一个给定光束直径最好的准直效果。它也说明了光束的零发散角或者说最好的准直是不可能达到的,因为要做到这些需要有无穷大的光束直径。但是这个等式也表明了改善发散的可能性。 考虑一个已经准直的光束,发散角为θ光腰为S0,我们可以看到如果光束直径能够增大,远场发散角将会减小。这就是扩大光束的优点所在。另外,小的发散能够使高斯光束聚焦得更好。为了实现这些改善,在这里我们将描述几种对准直光束扩束的方法。 伽利略扩束镜 最通用的扩束镜类型起源于伽利略望远镜,通常包括一个输入的凹透镜和一个输出的凸透镜。输入镜将一个虚焦距光束传送给输出镜。一般的低倍数的扩束镜都

激光扩束镜选择指南

激光扩束器选择指南 消色差系列伽利略式激光扩束镜 高功率系列伽利略式激光扩束镜 低功率系列伽利略式激光扩束镜 可变倍率系列伽利略式激光扩束镜 紫外波段伽利略式激光扩束镜 大光束大倍率开普勒式激光扩束镜

消色差系列伽利略式激光扩束镜 该设计使用一片平-凹单透镜来提供所需的发散度,以及经过优化设计的空气间隔透镜组来平衡像差和重准直光束。调节单透镜控制发散透镜的调节,分度为50微米。所有的设计均提供A (400-650纳米),B(650-1050 纳米)或C(1050-1620纳米)宽带增透膜。 ● 降低光束发散度 ● 提供衍射极限性能,引入的波前误差小于λ/4 ● 光洁度:20-10 ● 增透膜: R avg < 0.5% ● 抗损伤阈值:100W/cm 2 CW 2倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB ) BE02M-A ?8mm 350 - 650 1.035”-40 ¥2240 BE02M-B ?8mm 650 - 1050 1.035”-40 ¥2240 BE02M-C ?8mm 1050 - 1620 1.035”-40 ¥2240 典型波前畸变网格线图

3倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB) BE03M-A?8mm 350 - 650 1.035”-40 ¥2650 BE03M-B?8mm 650 - 1050 1.035”-40 ¥2650 BE03M-C?8mm 1050 - 1620 1.035”-40 ¥2650 5倍伽利略式扩束器 Item Input Beam Coating(nm) Thread Price(RMB) BE05M-A?4.5mm 350 - 650 1.035”-40 ¥2820 BE05M-B?4.5mm 650 - 1050 1.035”-40 ¥2820 BE05M-C?4.5mm 1050 - 1620 1.035”-40 ¥2820

第13课带有衍射光学元件的激光扩束器

第13课.带有衍射光学元件的激光扩束器 在第11课中,您了解了如何使用普通球面透镜设计激光扩束器,并了解到需要多个透镜元件才能获得良好的性能。第12课采用相同的设计,使用两个非球面元件,效果极佳。本课程将证明您可以使用DOE(衍射光学元件)。 to within10%.目标是将腰半径为0.35mm的HeNe激光器转换成直径为10mm且均匀至10%以内的光束 这是我们初始的输入文件: RLE!Beginning of lens input file.。 ID KINOFORM BEAM SHAPER WA1.6328!Single wavelength UNI MM!Lens is in millimeters OBG.351!Gaussian object;waist radius-.35mm;define full aperture=1/e**2point. 1TH22!Surface2is22mm from the waist. 2RD-2TH2GTB S!Guess some reasonable lens parameters;use glass type SF6from Schott catalog SF6 3TH20!Surface3is a kinoform on side2of the first element 3USS16!Defined as Unusual Surface Shape16(simple DOE) CWAV.6328!Zones are defined as one wave phase change at this wavelengt HIN1.798855!Assume the zones are machined into the lens.You can also apply!a film of a different index. RNORM1 4TH2GTB S SF6 4USS16 CWAV.6328 HIN1.798855 RNORM1!The first side of the second element is also a DOE 5CV0TH50!Start with a flat surface 7!Surfaces6and7exist AFOCAL!because they are required for AFOCAL output. END!End of lens input file. 我们给第2个表面指定了一个合理RD值。这是现阶段还没有DOE的非球面系数的系统:

伽利略望远镜设计原理

光电技术学院 ——望远镜系统结构设计专业:电子科学与技术 班级:光电子082班 姓名:张毅 学号:2008031161 指导老师:张翔

2010年5月28日 目录 第一章引言......................................................................................... . (3) 第二章概述 (3) 2.1 课程设计的目的及意义 (3) 2.2 课程设计的内容 (3) 2.3 望远镜的介绍 (3) 2.4 望远镜的分类 (4) 第三章伽利略望镜工作原理及发展简史 (5) 3.1 望远镜的工作原理 (5) 3.2 望远镜发展简史 (5) 第四章望远镜的主要特性分析 (6) 4.1 望远镜的主要特性分析 (6) 4.2 开普勒望远镜的参数计算 (8) 第五章物镜和目镜的选择 (9) 5.1 物镜的选择 (9) 5.2 物镜实例 (10) 5.3 目镜的选择 (12) 5.4 目镜实例 (13) 第六章测微准直望远镜 (15) 6.1 测微准直望远镜概述 (15) 6.2 测微准直望远镜计量特性 (15) 第七章棱镜转向系统 (16) 7.1 Porro棱镜结构及其点 (16) 7.2 Roof棱镜结构及其特点 (16) 7.3 折转形式望远镜系统分 (17) 7.4 类似棱镜结构晶体分析 (17) 第八章光学系统初始结构参数计算方法 (17) 第九章光栅 (19) 第十章心得体会 (19)

第十一章参考文献 (20) 第一章引言 本课程的任务是在学习工程光学基础、光学测试技术等技术基础课程的基础上,进行光学仪器的设计,目的是让学生了解光学设计中主要的环节,掌握光学仪器设计、开发的基本方法,以便今后能从事光学仪器的设计、研发工作。本课程主要研究光学仪器设计中的基本部分,如:光源、目镜、物镜、分化板等,以及光学仪器设计中考虑的基本问题,如:物象位置关系、系统放大倍数、系统分辨率、相差等。课程涉光学基础、光学测试技术、误差理论及数据处理、精密仪器设计等多方面。光学设计过程分为四个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及像质评价。了解光学系统的光学特性、光学系统的设计过程。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析。 关键词:光学系统成像质量像差像距望远镜 第二章概述 2.1 课程设计的目的及意义 运用应用光学的知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸,物镜组,目镜组及转向系统的简易设计原理。了解光学系统中pw法的基本原理。 2.2 课程设计的内容 初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。 目镜设计的特点、常用目镜的型式和像差分析。 2.3 望远镜的介绍 1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。 2.望远镜的一般特性 望远镜的光学系统简称望远系统,是由物镜和目镜组成。当用在观测无限远物体

伽利略望远镜和开普勒望远镜的区别

伽利略望远镜和开普勒望远镜的区别 开普勒式望远镜,折射式望远镜的一种。 物镜组也为凸透镜形式,但目镜组是凸透镜形式。 这种望远镜成像是上下左右颠倒的,但视场可以设计的较大,最早由德国科学家开普勒(Johannes Kepler)于1611年发明。 为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜[1]在光路中增加了转像稜镜系统。 此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。 开普勒式原理由两个凸透镜构成。 由于两者之间有一个实像,可方便的安装分划板(安装在目镜焦平面处),并且性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。 但这种结构成像是倒立的,所以要在中间增加正像系统。 正像系统分为两类:棱镜正像系统和透镜正像系统。 我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。 这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。 透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜既采用设计精良的透镜正像系统。开普勒式望远镜看到的是虚像,物镜相当于一个投影仪,目镜相当于一个放大镜.伽利略望远镜:物镜是会聚透镜而目镜是发散透镜的望远镜。 光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。 伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。

其优点是镜筒短而能成正像,但它的视野比较小。 把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为观剧镜;因携带方便,常用以观看表演等。 伽利略发明的望远镜在人类认识自然的历史中占有重要地位。 它由一个凹透镜(目镜)和一个凸透镜(物镜)构成。 其优点是结构简单,能直接成正像。 你可以用很低的费用制作一架伽利略式望远镜。 伽利略望远镜从文化用品商店买一块直径、焦距大一些的眼镜片作为物镜和一块焦距、直径较小的透镜作为目镜。 伽利略望远镜用胶水和小槽把两块镜片装在硬纸筒内,再做一个简单的台座,于是一架能够看到月亮上的群山、银河中的繁星和木星的卫星的望远镜便制成了。 想想看,伽利略就是用这人发现的。但是切记,不要通过望远镜直接观察太阳,以免高温灼伤眼睛!伽利略的折射望远镜有一个令人讨厌的缺点,就是在明亮物体周围产生假色。 假色产生的症结在于通常所谓的白光根本不是白颜色的光,而是由组成彩虹的从红到紫的所有色光混合而成的。 当光束进入物镜并被折射时,各种色光的折射程度不同,因此成像的焦点也不同,模糊就产生了。

激光扩束镜设计

一、激光扩束镜设计 一、设计要求: 设计一个激光扩束镜,扩束倍数为三倍,入射孔径为3mm,斜入射角1°,同时要求几何尺寸合适。 二、设计思路: 1.确定第一面透镜 由于激光能量较高,所以光线追迹时,尽量使光束不在镜筒中汇聚,如果采用两面透镜来完成设计,就要保证第一面透镜为凹凸镜,先将光线发散,第二面为凸透镜再将光线汇聚,平行光出射。 2.确定第二面透镜: 在第一面透镜后放置凸透镜才能满足对无限远处对焦的要求。3.几何参数的确定: 由于要求几何尺寸合适,不妨将总尺寸设为160mm,由应用光学知识可以计算,则第一面透镜的焦距应该取-80mm,第二面透镜焦距取为240mm,筒长为160mm(也就是两透镜的几何距离)。 4.做到了平行光出射,并扩束三倍的要求后,下一步需要做的便是减少像差,这个里面可以调整的有透镜的材质,在几何尺寸允许的条件下还可以再对相对距离等参数做出微调,以求能调出像差较小的设计。同时为增加可调自由度,还可以考虑再增加一面或者两面透镜,来达到消像差的目的。 三、设计过程 (1)第一面透镜 在设计第一面透镜时,先大致利用应用光学知识进行计算,估算透镜两个面的曲率半径,这里,大约可以取R1=-50mm,R2=200,材质使用BK7玻璃。这时,可以先看看这一面透镜的相关参数,探究下像差与单面透镜的一些参数的关系,这里,发现,当透镜的曲率半径取得越大时,透镜显示的球差和慧差越大,所以,在实验和实际工程中,建议使用曲率合适的透镜。 同样,根据设计思路,这时需要解决的另一个问题便是确定第一面透镜的焦距,这里可以使用SYNOPSYS软件中的edit solves 功能来确定其焦距,最后,经过调试,选择的是R1=-55,R2=150,选用BK7玻璃。(2)第二面透镜 下一步便是确定第二面透镜的相关参数,根据设计思路中的计算,可以知道两面透镜之间的距离,所以需要确定的是透镜在像差比较小的情况下,能使光纤平行出射的焦距,也就是设计思路里面所确定的240mm。 这时,如何能确定出合适的参数便是需要解决的问题,这里所选用的方法还是利用SYNOPSYS

激光振镜工作原理

激光振镜工作原理 激光打标设备的核心是激光打标控制系统和激光打标头,因此,激光打标的发展历程就是打标控制系统和激光打标头的发展过程。从1995年起,在激光打标领域就经历了大 幅面时代、转镜时代和振镜时代,控制方式也完成了从软件直接控制到上下位机控制到实时处理、分时复用的一系列演变,如今,半导体激光器、光纤激光器、乃至紫外激光的出现和发展又对光学过程控制提出了新的挑战,振镜式激光打标头(振镜式扫描系统)是最新产品。1998年,振镜式扫描系统在中国的大规模应用开始到来。所谓振镜,又可以称之为电流表计,它的设计思路完全沿袭电流表的设计方法,镜片取代了表针,而探头的信号由计算机控制的-5V—5V或-10V-+10V的直流信号取代,以完成预定的动作。同转镜式扫描 系统相同,这种典型的控制系统采用了一对折返镜,不同的是,驱动这套镜片的步进电机被伺服电机所取代,在这套控制系统中,位置传感器的使用和负反馈回路的设计思路进一步保证了系统的精度,整个系统的扫描速度和重复定位精度达到一个新的水平。 振镜扫描式打标头主要由XY扫描镜、场镜、振镜及计算机控制的打标软件等构成。根据激光波长的不同选用相应的光学元器件。相关的选件还包括激光扩束镜、激光器等。其工作原理是将激光束入射到两反射镜(扫描镜)上,用计算机控制反射镜的反射角度,这两个反射镜可分别沿X、Y轴扫描,从而达到激光束的偏转,使具有一定功率密度的激 光聚焦点在打标材料上按所需的要求运动,从而在材料表面上留下永久的标记,聚焦的光斑可以是圆形或矩形,其原理如右图所示。在振镜扫描系统中,可以采用矢量图形及文字,这种方法采用了计算机中图形软件对图形的处理方式,具有作图效率高,图形精度好,无失真等特点,极大的提高了激光打标的质量和速度。同时振镜式打标也可采用点阵式打标方式,采用这种方式对于在线打标很适用,根据不同速度的生产线可以采用一个扫描振镜或两个扫描振镜,与前面所述的阵列式打标相比,可以标记更多的点阵信息,对于标记汉字字符具有更大的优势。

激光扩束系统设计

光学设计 Optical design 题目名称:准直扩束系统的设计学校:长春理工大学 学院:光电工程学院 专业:光电信息工程 学号: 姓名:魏松岩 目录 第一章绪论 (1) 引言 (1) 激光束及其准直扩束的原理 (1) 折射型扩束器基本结构 (4) 开普勒扩束镜 伽利略扩束镜 第二章光学设计软件ZEMAX概述 (5) 第三章激光准直扩束系统设计 (9) 准直扩束系统的参数确定 (9) 确定激光扩束系统的初始结构 (9) ZEMAX的优化 (11)

第一章绪论 引言 激光扩束系统是激光干涉仪、激光测距仪、激光雷达等诸多仪器设备的重要组成部分,其光学系统多采用通过倒置的望远系统,来实现对激光的扩束,其主要作用是压缩激光束的空间发散角,使扩束后的激光束口径满足其他系统的要求。 激光器发出的光束直径很细小,通常只有零点几到几毫米,激光束的这些特性在某些方面是很有用的。然而在一些应用领域中需要的确是宽光束,如激光全息、光信息处理、激光照明、激光测距等。例如在激光干涉仪的应用中,它要照射比激光束口径大得多的被测物体,然后通过光束的干涉来实现测量。又如在激光的全息应用中,它要照射比激光束口径大得多的全息记录介质,以实现信息的记录和重现。因此需要使用激光扩束系统来实现激光束的准直扩束。 激光束及其准直扩束的原理 激光束的性质是由激光共振腔的几何形状和尺寸决定的,激光束具有特殊的结构,光束呈双曲线形,光束的截面上最小处称束腰(见图,其半径为 其中,b为共振腔的共振参数。共振腔的共焦参数b可由下式求得: 其中,R为共振腔球面镜的曲率半径,d为共振腔二镜面之间的距离。 最通用的扩束镜起源于伽利略望远镜,通常包括一个输入负透镜和一个输出正透镜。输入镜将一个虚焦点光束传送给输出镜,两个透镜是虚共焦结构。一般小于20倍的扩束镜都用该原理制造,因为它简单、体积小、价格也低。尽可能的该扩束镜设计成小的球面相差、低的波前变形和消色差。它的局限性在于不能容纳空间滤波或者进行大倍率的扩束。

实验七多重结构的激光扩束器

多重结构的激光扩束器 设计一个激光光束扩展器,使用的波长为λ=1.053μm,输入光束直径为100mm,输出光束的直径为20mm,且输入光束和输出光束平行。如果全长没有限制,这个设计是比较容易的,但是为了使之变得复杂一点,我们将加上几条限制条件: 1)只使用两片镜片。 2)设计必须是伽利略式的(没有内部焦点)。 3)在镜片之间的间隔必须不超过250mm。 4)只允许使用1片非球面。 5)系统必须在λ=0.6328μm时测试。 本实验不只是要矫正像差,而是在两个不同wave lengths的情况下都要做到符合设计要求。 条件2中什么是伽利略式呢?Galilean 就是光线从入射到离开 光学系统,在光学系统内部不能有焦点的现象,在本例中即beams 在两个镜片之间不能有focus。 本设计不是同时在2个wavelengths 下操作,所以在操作时我们可以变动某些共轭数。 现在开始设计,依据下图的LDE表键入各surface 的相关值。 注意 “Glass”列右边的好几列才是“Focal Length”列。表头“Focal Length”只在你将表面类型从“Standard”改变为“Paraxial”后才会显示。

不是所有的列都会清楚地显示出来。 其中surface 5 的surface type 从Standard 改为Paraxial,这时在镜片后面的focal length 项目才会出现。 注意到使用paraxial lens 的目的是把collimated light(平行光)给focus。

同时把surface 5 的thickness 及focal length 皆设为25。 entrance pupil 的diameter 定为100 wavelength 只选一个1.053 microns 即可,记住不要在设第二个wavelength。 调出merit function,在第1 列中把operand type 改为REAY 这

多波长激光扩束系统的设计

文章编号:0258-7025(2001)08-0714-03 多波长激光扩束系统的设计 李良钰 1,3  李常春2 李银柱1 戴亚平1 刘 诚1 程笑天1 朱健强1 王仕 3 (1 中国科学院上海光机所高功率激光物理国家实验室 上海201800;2 重庆通信学院 重庆400035;3电子科技大学应用物理系 成都610054) 提要 在ICF 高功率激光驱动器中,用双胶合透镜代替扩束望远系统中的较大透镜,或用两反射镜做成反射式扩束系统,两种情形都能对多种波长进行扩束,达到了设计要求。关键词 激光扩束,双胶合透镜,像差,非球面 中图分类号 TL 632+.1;TH 743 文献标识码 A Design of Laser Expanding Systems for Multi -wave Length LI Liang -yu 1,3  LI Chang -chun 2 LI Yin -zhu 1 DAI Ya -ping 1 LIU Cheng 1  CHENG Xiao -tian 1  ZHU Jian -qiang 1  WANG Shi -fan 3 (1 State Key Lab of High Lase r Physics ,Shanghai Institute of Optics and Fine Mec hanics ,The Chinese A cademy of Sc ienc es ,Shanghai 2018002 Institute of Chongqing Commniuc ation ,Chongqing 400035 3 Department of A pplied Physics ,Unive rsity of Ele ctronic Science and Technology of China ,Chengdu 610054) A bstract In the ICF high power laser drivers ,a cemented doublet lens laser expanding system and reflectional expanding s y stem for multi -wave length are given . Key words expand ing of laser ,cemented doublet ,aberration ,asphere 收稿日期:2000-12-05;收到修改稿日期:2001-04-05 1 引 言 激光光学系统有时需要有较宽的光束,故应对激光束进行扩束。一般的激光扩束系统结构如图1所示,图中(a )为开普勒望远系统,在扩束系统的中间焦点处加一小孔光阑,以限制聚焦光点的大小,这种结构外型尺寸较长,在激光扩束中用得不多;(b )为伽利略望远系统,由于其外型尺寸小,作为扩束系统更具有其优越性而被经常采用。当采用伽利略望远系统时,图1(b )左边是一小孔径负透镜,右边是一大孔径正透镜,为了校正轴上像差,正透镜的一面采用非球面。这种典型的目镜和物镜都是单片透镜的扩束系统,只能对某一波长的激光扩束。由于色差的存在,要对另一波长的激光进行扩束,必须针对该波长另设计扩束系统,这样很不方便,也不经济。 图1扩束望远系统 (a )开普勒望远系统;(b )伽利略望远系统 Fig .1Expanding telescope (a )Keplerian telescope ;(b )Galileo tel esc ope   第28卷 第8期2001年8月 中 国 激 光 CHINESE JOURNAL OF LASERS Vol .A28,No .8 August ,2001

伽利略望远镜设计

伽利略望远镜设计

————————————————————————————————作者:————————————————————————————————日期: ?

伽利略望远镜设计报告 1. 总体设计要求及方法 课题要求设计一个伽利略望远系统,要求:放大倍率为5X,筒长为250m m,物镜最大直径不大于25m m,接受器为人眼。 伽利略望远镜是由正光焦度的物镜和负光焦度的目镜组成,其放大倍率大于1。光路图如下: 图 1 伽利略望远镜光路图 为对光学系统进行迭代设计和优化,采用光学设计软件Zemax 对望远镜的物镜、目镜分别进行建模和优化,以取代繁琐复杂的光路计算。之后再将二者组合建模,并对最后的成像质量进行详细的评价。 2. 光学系统设计 2.1 初步参数设计 根据系统设计要求,镜筒长度250mm ,而物镜到目镜的间距为: 'o e l f f =- 视觉放大率要求为5x,故有: '/5o e f f = l 应当略小于筒长,因此将l 设计为240mm,计算得出物镜焦距fo ’为300m m,目镜焦距fe 为60mm 。伽利略望远镜一般以人眼作为视场光阑,物镜框为视场光阑,同时为望远系统的入射窗。由于视场光阑不与物面重合,因此伽利

略望远镜一般存在渐晕现象。出瞳应位于人眼观察处,为方便观察,设定出瞳距离目镜15mm 处,物镜的直径为25mm,因此出瞳据物镜距离为: ''2z o e z l f f l =-+ 当视场为50%渐晕时,望远镜的视场角为: tan Z D l ω= 计算得出望远镜的视场角ω为2.8°,可见伽利略望远镜的视场非常小。 2.1 物镜设计 2.1.1 结构选择 一般有三种结构形式:折射式、反射式和折返式。而一般军用光学仪器和计量仪器中使用的望远镜物镜为折射式物镜。单透镜的色差和球差都相当严重,现代望远镜一般都采用两块或多块透镜组成的镜组。其中又可分为双胶合物镜、双分离物镜、三分离物镜、摄远物镜,如下图所示。 图 2 常见的物镜结构 双胶合物镜是最简单和常用的望远物镜,由一个正透镜和一个负透镜胶合而成。双胶合物镜的优点为结构简单,制造和装配方便。通过选择材料以及弯曲镜面可以矫正透镜组的球差、彗差和轴向色差。 2.1.2 优化设计 根据前面的计算,物镜焦距f o’设计为300mm ,最大口径为25m m。目视光学系统,波段选取为可见光波段0.4μm -0.75μm,并将人眼敏感的绿光0.55μm 设为主要计算波段,如下图所示:

望远镜、显微镜组装与设计和zemax使用光学课程设计

长沙学院 光学工程CAD设计 课程设计说明书 题目光学课程设计 系(部) 电子与电气工程系 专业(班级) 光电信息工程(2013级2班)姓名 学号 指导教师孙利平、周远、谭志光、刘莉起止日期2015.6.22—2013.6.25

长沙学院课程设计鉴定表

目录 一、望远镜的设计与组装 (3) 1、项目设计目的 (3) 2、望远镜的基本原理 (3) 3、设计任务 (4) 设计与组装一个开普勒望远镜 (4) 设计与组装一个伽利略望远镜 (4) 设计和组装一个带正像系统的开普勒望远镜 (4) 4、数据记录 (4) (1)测得透镜焦距 (4) (2)开普勒望远镜的组装 (4) (3)开普勒望远镜特性参数测量 (4) 5、照片展示 (5) 6、可用器材 (5) 二、显微镜的设计与组装 (6) 1、项目设计目的 (6) 2、望远镜的基本原理 (6) 3、显微镜的设计及数据记录 (7) ①视放大率 (7) ②系统总长度不能大于光学平台的长度 (7) ③要给出设计值和实测值 (7) ④用手机拍一幅从目镜后拍出的微尺放大图 (7) 4、设计思路 (8) 5、可用器材 (8) 三、Zemax的光学设计 (8) 1、选定光学设计题目 (8) 2、学习zemax的使用 (8) 3、使用zemax软件设计光学器件 (10) ①设计单透镜 (10) ②设计牛顿望远镜 (12) ③设计施密特---卡塞格林系统 (14) 结束语 (16) 参考文献 (16)

一、望远镜的设计与组装 1、项目设计目的 掌握望远镜的原理及特性,并在此基础上通过自组望远镜来提高学生的动手能力以进一步加深对望远系统的理解。 2、望远镜的基本原理 存在两类最简单的望远镜,分别为开普勒望远镜的伽利略望远镜。 开普勒望远镜是由一片长焦距的凸透镜作为物镜,用一短焦距的凸透镜作为目镜组合而成,如下图。 远处的物经过物镜在其后焦面附近成一缩小的倒立实像,物镜的像方焦平面与目镜的物方焦平面重合,光学间距为0。在公共焦平面上可置分划板以测量像的尺寸和位置。平行光射入平行光射出。开普勒望远镜可观测到远处倒立的像。 伽利略望远镜是由一片长焦距的凸透镜作为物镜,用一短焦距的凹透镜作为目镜组合而成,如下图。 物镜的像方焦平面与目镜的物方焦平面重合,光学间距为0。平行光射入平行光射出。伽利略望远镜可观测到远处正立的像。 两种望远镜的视放大率都可表示为: 式中为物镜焦距,为目镜焦距,为入瞳口径,为出瞳口径。两种望远镜物镜均为正透镜,即,开普勒望远镜目镜为凸透镜,即,故开普勒望远镜的视放大率,即成倒像。伽利略望远镜目镜为凹透镜,即,故伽利略望远镜的视放大率,即成正像。

相关主题
文本预览
相关文档 最新文档