当前位置:文档之家› 大学物理教程上册习题集(免费)

大学物理教程上册习题集(免费)

大学物理教程上册习题集(免费)
大学物理教程上册习题集(免费)

一、单项选择题

1.一质点沿x 轴运动的规律是542

+-=t t x (SI 制),则前三秒内它的

(A) 位移和路程都是3m ; (B) 位移和路程都是-3m ; (C) 位移是-3m ,路程是3m ; (D) 位移是-3m ,路程是5m ; 2.()v f 为麦克斯韦速率分布函数,则()dv v f 表示

(A) 速率v 附近,dv 区间内的分子数; (B) 单位体积内速率在v ~v +dv 区间内的分子数; (C) 速率v 附近,dv 区间分子数占总分子数的比率; (D) 单位体积内速率在v 附近单位区间内的分子数;

3.一质点在力的作用下在X 轴上作直线运动,力23x F =,式中F 和x 的单位分别为牛顿和米。则质点从m x 1=处运动到m x 2=的过程中,该力所作的功为:

(A )42J ; (B )21J ; (C )7J ; (D )3J ; 4.已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为

(A )??? ??-=ππ3232cos 2t x ; (B )??? ??+=ππ323

2

cos 2t x ;

(C )??? ??-=ππ3234cos 2t x ; (D )??? ??+=ππ323

4

cos 2t x ;

5.一理想卡诺热机的效率%40=η,完成一次循环对外作功J A 400=,则每次循环向外界放出的热量为: (A )J 160; (B )J 240; (C )J 400; (D )J 600; 6. 关于横波和纵波下面说法正确的是

(A )质点振动方向与波的传播方向平行的波是横波,质点振动方向与波的传播方向垂直的波是纵波; (B )质点振动方向与波的传播方向平行的波是纵波,质点振动方向与波的传播方向垂直的波是横波;

(C )纵波的外形特征是有波峰和波谷; (D )横波在固体、液体和气体中均能传播;

7. 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止。当F N 逐渐增大时,物体所受的静摩擦力F f 的大小

(A )不为零,但保持不变; (B )随F N 成正比地增大; (C )开始随F N 增大,达到某一最大值后,就保持不变; (D )无法确定; 8.两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度,若使氢气也升高同样的温度,则应向氢气传递热量为

(A )3J ; (B )5J ; (C )6J ; (D )10J ; 9.质量为m 、半径为r 的均质细圆环,去掉1/2,剩余部分圆环对过其中点,与环面垂直的轴的转动惯量为 (A )mr 2; (B )2mr 2; (C )mr 2/2; (D )mr 2/4;

10.bt a F x +=(式中F x 的单位为N ,t 的单位为s )的合外力作用在质量为10kg 的物体上,在开始2s 内此力的冲量为 (A )b a +N ·s ; (B )b a 2+N ·s ; (C )b a 22+N ·s ; (D )b a 42+N ·s 。

二、填空题

1.质量为40 kg 的箱子放在卡车底板上,箱子与底板间的静摩擦系数为0.40,滑动摩擦数为0.25。则(1)当卡车以加速度2 m/s 2 加速行驶时,作用在箱子上摩擦力的大小为______________N ;(2)当卡车以 4.5 m/s 2 的加速度行驶时,作用在箱子上的摩擦力大小为 ____________N 。 2. 已知一谐振子在t =0时,x =0,v >0,则振动的初相位为 。

3. 质点系由A ,B ,C ,D 4个质点组成,A 的质量为m ,位置坐标为(0,0,0),B 的质量为2 m ,位置坐标为(1,0,0),C 的质量为3 m ,

位置坐标为(0,l ,0),D 的质量4 m ,位置坐标为(0,0,1),则质点系质心的坐标为 =c x _____________, =c y ______________, =c z ________。 4. 一理想卡诺热机的效率为30%,其高温热源温度为400K ,则低温热源温度为 K 。若该理想卡诺热机从高温热源吸收的热量为Q ,则用于对外作功的热量为 。

5. 已知质点沿x 轴作直线运动,其运动方程为x =2+6t 2-2t 3,式中x 的单位为m ,t 的单位为s ,t =4s 时质点的速度为 m/s ,加速度为 m/s 2。

6. 在室温下,已知空气中的声速u 1为340 m/s ,水中的声速u 2为1450 m/s ,频率相同的声波在空气中的波长 在水中的波长。(填长于、等于或短于)

7. 设氦气为刚性分子组成的理想气体,其分子的平动自由度数为_________,转动自由度为_________。

8. 一质量为m 、半径为R 的均质圆盘,绕过其中心的垂直于盘面的轴转动,由于阻力矩存在,角速度由 0ω减小到 0ω/2,则圆盘对该轴角动量的增量大小为 。

9. 均质圆盘对通过盘心,且与盘面垂直的轴的转动惯量为20kg/m 2。则该圆盘对于过R/2处,且与盘面垂直的轴的转动惯量为_______________________。

三、简答题

1. 质点作圆周运动时的加速度一定指向圆心,这种说法对吗?若不对,什么情况下该说法才成立呢?

2. 怎样判断两物体的碰撞是否是完全弹性碰撞?

四、计算题

1.一质量为m 的小球用l 长的细绳悬挂在钉子O 上。如质量同为m 的子弹以速率υ从水平方向击穿小球,穿过小球后,子弹速率减少到2υ。如果要使小球刚好能在垂直面内完成一个圆周运动,则子弹的速率最小值应为多大?(10分)

2.如右图所示,1mol 氦气在温度为300K ,体积为0.001m 3的状态下,经过(1)等压膨胀A1B 过程,(2)等温膨胀A2C 过程,(3)绝热膨胀A3D 过程,气体的体积都变为原来的两倍。试分别计算前面两种过程(等压膨胀过程和等温膨胀过程)中氦气对外作的功以及吸收的热量。(10分) (k =1.38×10-23J/K ,R =8.31J/mol ·K )

3. 一容器内储有氧气,其压强为1.01×105Pa ,温度为27o C ,求气体分子的数密度;氧气的密度。(10分) (k =1.38×10-23J/K ,R =8.31J/mol ·K )

一、单项选择题

1.质点沿轨道AB 作曲线运动(从A 向B 运动),速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度?

(A) (B) (C) (D)

2.机械波的表达式为()x t y ππ06.06cos 05.0+=,式中y 和x 的单位为m ,t 的单位为s ,则:

(A )波长为5m ; (B )波速为10m ·s -1; (C )周期为31

s ; (D )波沿x 轴正方向传播;

3.关于最可几速率P υ的下列说法,正确的是:

(A )P υ是气体分子的最大速率; (B )速率为P υ的分子数目最多; (C )速率在P υ附近单位速率区间内的分子比率最大; (D )以上说法都不正确;

4.在系统不受外力作用的非弹性碰撞过程中

(A) 动能不守恒、动量守恒; (B) 动能和动量都不守恒; (C) 动能和动量都守恒; (D) 动能守恒、动量不守恒;

5.关于保守力,下面说法有误的是

(A )保守力作正功时,系统内相应的势能减少; (B )作用力和反作用力大小相等、方向相反,两者所作功的代数和必为零; (C )质点运动经一闭合路径,保守力对质点作的功为零; (D )质点组机械能的改变与保守内力无关;

6、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们

(A )温度,压强均不相同; (B )温度相同,但氦气压强大于氮气的压强; (C )温度,压强都相同; (D )温度相同,但氦气压强小于氮气的压强;

7.均质细杆可绕过其一端且与杆垂直的水平光滑轴在竖直平面内转动。今使细杆静止在竖直位置,并给杆一个初速度,使杆在竖直面内绕轴向上转动,在这个过程中

(A ) 杆的角速度减小,角加速度减小; (B ) 杆的角速度增大,角加速度减小;

(C) 杆的角速度增大,角加速度增大; (D) 杆的角速度减小,角加速度增大;

8. 如右图所示为一定量的理想气体的p —V 图,由图可得出结论

(A )ABC 是等温过程; (B )B A T T >; (C )B A T T =; (D )B A T T <;

9.水平公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车在转弯处不致于发生侧向打滑,汽车在该处行驶速率:

(A )不得小于Rg μ; (B )不得大于Rg μ; (C )必须等于Rg μ; (D )应由汽车质量决定; 10. 机械振动在介质中传播形成波长为λ的简谐波,对于两个相邻的同相点,下列说法不正确的是: (A )在这两点处质元的振动状态相同; (B )这两点间的距离为λ;

(C )这两点处质元振动的振幅和频率相同; (D )这两点处质元振动的相位相同。

二、填空题

1.一质点具有恒定加速度j i a 46+=,在t =0时,其速度为零,位置矢量为i r 100=,在任意时刻的速度=t v ,位置矢量为

=t r 。

2.质量为m 的子弹以υ的速率水平射入置于光滑地面上的木块,且子弹留在木块中与木块共同运动,设木块的质量为M ,则木块和子弹共同运动的速率为 ,该过程中木块与子弹组成的系统损失的动能为 。

3.一理想卡诺热机,其高温热源温度为500K ,低温热源温度为300K ,则该卡诺热机的效率为 。

4.一平面简谐波的波动方程为y=0.02cos (400πt -20πx ),式中各物理量的单位均为国际单位制(SI )。该平面简谐波的波速为 m/s 、波源振动频率为 Hz 。

5.热力学过程可分为可逆过程和不可逆过程,如果逆过程能重复正过程的每一状态,而且不引起其他变化,这样的过程叫做 。根据熵增加原理,孤立系统中的不可逆过程,其熵要 。

6.质量为 0.25 kg 的物体以 9.0m/s 的加速度下降,物体所受空气的阻力为__________________N 。

7.在同一温度T =300K 时,氢气的分子数密度是氧气的3倍,则氢气的压强是氧气的 倍。若氢气的分子数密度为2.66×1025m -3,该气体的压强为 Pa 。(k =1.38×10-23J ·K -1)

8. 一质点在力的作用下沿X 轴作直线运动,力232x F +=,式中F 和x 的单位分别为牛顿和米。则质点从m x 1=处运动到m x 3=的过程中,该力所作的功为 J 。

9. 一质量为m 、半径为R 的均质圆盘,绕过其中心的垂直于盘面的轴转动,由于阻力矩存在,角速度由 0ω减小到 0ω/4,则圆盘对该轴角动量的增量大小为 。

10. 质量为m 、半径为r 的均质细圆环,去掉2/3,剩余部分圆环对过其中点,与环面垂直的轴的转动惯量为 。

三、简答题

1. 有人说:“分子很小,可将其当作质点;地球很大,不能当作质点”。这种说法对吗?能将物体当作质点的条件是什么?

2. 质点的动量、质点的动能、力做功和势能这几个物理量中哪些与惯性系有关?

四、计算题

)

33m -2

1.质量为m 的质点在外力F (平行于X 轴)的作用下沿X 轴运动,已知t=0时质点位于原点,且初始速度为零。设外力F=-kx+F 0,求从x=0运动到x=L 处的过程中力F 对质点所作的功。若外力F=10+2t ,求开始2s 内此力的冲量。(10分)

2.温度为0o C 和100o C 时理想气体分子的平均平动动能各为多少?(10分)

3.如右图所示,1mol 氢气在温度为300K ,体积为0.025m 3的状态下,经过(1)等压膨胀A1B 过程,(2)等温膨胀A2C 过程,(3)绝热膨胀A3D 过程,气体的体积都变为原来的两倍。试分别计算前面两种过程(等压膨胀过程和等温膨胀过程)中氢气对外作的功以及吸收的热量。(10分)(k =1.38×10-23J/K ,R =8.31J/mol ·K )

一、单项选择题

1.一质点在Y 轴上运动,其坐标与时间的变化关系为Y=4t-2t 2,式中Y 、t 分别以m 、s 为单位,则4秒末质点的速度和加速度为:

(A )12m/s 、4m/s 2; (B )-12 m/s 、-4 m/s 2 ; (C )20 m/s 、4 m/s 2 ; (D )-20 m/s 、-4 m/s 2;

2.在室温下,相同频率的声波在空气和水中的波长分别为气λ和水λ,则二者关系为:

(A )气λ>水λ; (B )气λ<水λ; (C ) 气λ=水λ; (D )无法确定; 3.关于作用力和反作用力,说法有误的是

(A )大小相等; (B )沿同一直线; (C )作用在同一物体上; (D )方向相反;

4.若f(v)为理想气体分子的速率分布函数,则dv v f v v ?2

1)(表示:

(A )速率在v 1→v 2之间的分子数占总分子数的比率; (B )速率在v 1→v 2之间的分子数; (C )分子在v 1→v 2之间的平均速率; (D )无明确的物理意义;

5.均质细圆环、均质圆盘、均质实心球、均质薄球壳四个刚体的半径相等,质量相等,若以直径为轴,则转动惯量最大的是 (A )圆环; (B )圆盘; (C )实心球; (D )薄球壳; 6.1mol 理想气体在等温过程中(温度为T )体积由V 膨胀到2V ,则该气体在此过程中吸收的热量为:

(A )0 ; (B )RT ; (C )RTln2; (D )条件不足,无法判断;

7.做匀速圆周运动的物体,其加速度

(A )大小不变; (B )方向不变; (C )大小方向都不变; (D )为零;

8.平衡态下,理想气体分子的平均平动动能只和气体的 有关

(A )体积 ; (B )温度; (C )压强; (D )质量;

9.一质点在力的作用下在y 轴上作直线运动,力y F 2=,式中F 和y 的单位分别为牛顿和米。则质点从m y 1=处运动到m y 3=的过程中,该力所作的功为:

(A )21J ; (B )9J ; (C )8J ; (D )2J ;

10.已知某简谐运动的振动曲线如右图所示,则关于此简谐运动的振幅、初相位、角频率、周期不正确的是(x 的单位为cm ,t 的单位为s )

(A )振幅为2cm ; (B )初相位为π3

2

rad ;

(C )角频率为π3

4

rad ·s -1; (D )周期为32s 。

二、填空题

1.理想气体在等温过程中体积被压缩为原来的1,则压缩后的压强为原来的 倍。

2.通常以地面作为惯性系,有A 、B 、C 三个物体,其中A 物体静止在地面上,B 物体在水平地面上作匀速直线运动,C 物体在水平地面上作匀加速直线运动,若以这三个物体为参考系,其中是惯性系的为以这三个物体中的 物体作为参考系。

3.假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的角动量____________,机械能_____________。(填守恒或不守恒) 4.一理想卡诺制冷机,其高温热源温度为320K ,低温热源温度为300K ,则该卡诺制冷机的制冷系数为 。若该制冷机传递给高温热源的热量为Q ,则制冷机从低温热源吸收的热量为 。

5.一平面简谐波沿ox 轴正向传播,波动方程为]4

)(cos[π

ω+-=u x t A y ,则同一时刻,2L x -=处质点的振动和1L x =处质点的振动的相位差为

=-12φφ 。

6.某振动质点的x -t 曲线如图所示,运动方程为 。

7.一质量为2kg 的物体沿X 轴运动,初速度为50m/s ,若受到反方向大小为10N 的阻力的作用,则产生的加速度 为_________m/s 2,在该阻力的作用下,经过 s物体的速度减小为初速度的一半。要使物体停下来,共需经过 s。 8.一质点的运动方程为()

j t i t r 222-+=,则其轨迹方程为 。

9.三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()

4:2:1::2

122

122

12

=c

b A v v v

,则其压强之比

=C B A p p p :: 。

10.单原子分子的摩尔定体热容为R 2

3

,若将氢分子视为刚性双原子分子,则氢分子的摩尔定体热容为 。

11. 质量为m 的质点沿竖直平面内半径为R 的光滑圆形轨道内侧运动,质点在最低点时的速率为 0v ,使质点能沿此圆形轨道运动而不脱离轨道,

0v 的值至少应为______________。

三、简答题

1.在一艘正在向目的地行驶的内河轮船中,乘客甲对乘客乙说:我静静地坐在这里好半天了,我一点也没有运动。乘客乙说:不对,你看看窗外,河岸上的物体都飞快地前进,你也在很快地运动。乘客甲以什么为参考系来作出以上判定的?究竟乘客甲是运动还是静止的呢?

2.内力作用既可以改变质点系的动量,又可以改变质点系的动能,这种说法正确吗?若不正确,说明该说法错在哪?

四、计算题

1.t F x 24+=(式中F x 的单位为N ,t 的单位为s )的合外力作用在质量为10kg 的物体上,求在开始2s 内此力的冲量;若冲量I=1N ·s ,此力作用的时间。(10分)

2.一容器内储有氢气,其压强为1.01×105Pa ,温度为300K ,求氢气的质量;氢分子的平均平动动能。(10分)(k =1.38×10-23J/K ,R =8.31J/mol ·K )

3.一定量的氢理想气体在保持压强为4.00×105

Pa 不变的情况下,温度由0℃升高到50.0℃时,吸收了6.0×104

J 的热量。(10分)

(1)氢气的量为多少摩尔?(2)氢气的内能变化了多少?(3)氢气对外做了多少功?(4)如果这氢气的体积保持不变而温度发生同样的变化,它吸收了多少热量? (普适气体常数 R = 8.31 J /(mol ?K ))

一、单项选择题

1、一质点按规律x =t 2-4t +5沿x 轴运动,(x 和t 的单位分别为m 和s ),前3秒内质点位移和路程分别为 A 、3m ,5m ; B 、-3m ,-3m ; C 、-3m ,3m ; D 、-3m ,5m ;

2、一个质点在几个力同时作用下的位移为654+-=?米,其中一个力为恒力F 953+--=牛,则这个力在该位移过程中所作的功为 A 、67J ; B 、91J ; C 、17J ; D 、—67J ;

3、水平公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车在转弯处不致于发生侧向打滑,汽车在该处行驶速率 A 、不得小于Rg μ; B 、不得大于Rg μ; C 、必须等于Rg μ; D 、应由汽车质量决定;

4、将一小球系于竖直悬挂的轻弹簧下端,平衡时弹簧伸长量为d ,现手托小球,使弹簧不伸长,然后释放任其自已下落,忽略一切阻力,则弹簧的最大伸长量为

A 、2d

; B 、d ; C 、d 2; D 、2d ;

5、一粒子弹以水平速度v 0射入静止于光滑水平面上的木后,随木块一起运动,对于这一过程的分析正确的是: A 、子弹和木块组成的系统机械能守恒; B 、子弹在水平方向动量守恒;

C 、子弹所受冲量的大小等于木块所受冲量的大小;

D 、子弹减少的动能等于木块增加的动能; 6、沿直线运动的物体,其速度与时间成反比,则其加速度的大小与速度的大小关系是: A 、加速度大小与速度大小成正比; B 、加速度大小与速度大小的平方成正比; C 、加速度大小与速度大小成反比; D 、加速度大小与速度大小的平方成反比;

7、下列说法中哪个是正确的:

A 、匀速率圆周运动的切向加速度一定等于零;

B 、质点作变速率圆周运动时,其加速度方向与速度方向处处垂直;

C 、质点作匀速率圆周运动时,其加速是恒定的;

D 、质点作变速率圆周运动时,其切向加速度的方向必与速度方向相同; 8、有一弹簧振子沿X 轴运动,它的振幅为A ,周期为T ,平衡位置在X =0处。当t =0时振子在X =A /2处向X 轴负方向运动,则运动方程是

A 、X=t A 2cos

π

; B 、X =

t A ωcos 2; C 、X =)32sin(ππ+-t T A ; D 、X =A )3

2cos(ππ+t T ;

9、设有一简谐横波)10

05.0(2cos 0.5x

t y -=π,其中x 、y 的单位为厘米,t 的单位为秒,则该简谐横波的波速及在x =10cm 处的初相位分别为: A 5ms -1,-2π; B 2 ms -1, -2π; C 2ms -1,2π; D 3 ms -1, π;

10、设f(v)为理想气体分子的速率布函数,则?2

1

)(v v dv v f 表示

A 、速率在v 1→v 2之间的总分子数;

B 、速率在v 1→v 2之间的分子数占总分子数的比率;

C 、速率在v 1→v 2之间的所有分子的平均速率;

D 、速率在v 1→v 2之间的所有分子的速率之代数和;

二、填空题

1、已知质点的质量为

m ,它的运动方程为r =Rcos ωt i +Rsin ωt j (R 、ω为常量),则该质点所受的合力F = ,质点的

动量p

= 、动能E K = 。

2、质量为2kg 的质点在X 轴上运动,所受合外力为F =2x (x 的单位为m ,F 的单位为N )。设最初质点静止,从原点开始出发,则当质点运动到x =4m 处时合外力所做的功为 J ,质点所受的冲量为 N .s 。

3、质量为m 的小球,在力F = -kx 作用下运动,已知x =Acos ωt ,其中k 、ω、A 均为常量,则t =0到t =ωπ2时间内小球动量的增量为 。

4、已知波源在原点(x =0)的平面简谐波方程为y =Acos(bt-cx),A 、b 、c 均为常量,则该波的波速u = ,波长λ= ,在传播方向上距波源L 处的质点振动的初相为 。

5、对于刚性双原子气体分子,其自由度i = 。根据能量均分定理,当由该分子组成的系统处于热力学温度为T 的平衡态时,则分子热运动的平均能量为ε= 。

三、计算题

1、质点在O-xy 平面内运动,其速度与时间的关系为v =3t 3i +5j ,位置的初始条件为t =0时r =-5j 。求(1)质点的运动方程的矢量表达式。(2)经过多少时间质点到达x 轴。(3)t =2s 时质点的加速度。(本题各量单位均为SI 制。)

2、一质量为m 的小球用l 长的细绳悬挂在钉子上。若质量为m 的子弹以速率υ从水平方向击穿小球,穿过小球后,子弹速率减少到2υ。如果要使小球刚好能在竖直面内完成圆周运动,则子弹速率的最小值应为多大?

3、如图所示,质量为m 1=0.01kg 的子弹以v 0=1000ms -1的水平速度射向并嵌入一质量为m 2 =4.99kg 的木块,木块与一劲度系数为k =8000N.m -1、一端固定的轻弹簧相连接。子弹射入前,木块自由静止在光滑水平面上。试问: (1)木块被击后那一瞬时的速度;

(2)木块被击后弹簧被压缩的最大长度; (3)木块振动运动学方程。(以平衡位置为坐标原点,如图所示的坐标系并以木块开始振动时为计时起点)

4、定体摩尔热容量为

R 2

5

的理想气体,从a 态(P a =2atm ,V a =24.6L )等体升压到b 态(P b =6atm ),然后从b 态等温膨胀到c 态(V C =49.2L ),再从c 态等体降压到d 态(P d =2atm ,V d =49.2L )。最后从d 态又等压压缩到a 态。(1atm=1.01*105pa 1L=10-3m 3) (1)试在P —V 图上画出其循环过程;(2)求bc 过程气体对外所做的功A bc ;(3)a 、b 两态的内能变化ΔU a b 。(4)循环过程中气体对外所做的净功。

一、填空题

1. 已知质点沿X 轴做直线运动,运动方程为x=2+6t 2-2t 3,式中x 的单位为m ,t 的单位为s ,则质点在运动开始后4.0s 内的位移为 ,质点在该时间内通过的路程为 ,t=4s 时质点的速度为 加速度为 。

2.一质量为10kg 的质点在力F=120t+40的作用下沿x 轴作直线运动t=0时,质点位于x=5.0m 处,速度V 0=6.0m.s -1,则质点在任意时刻的速度为 ;位置为 。 3.你对势能的理解为(1)势能是 的函数; (2)势能的数值是对零势能点言的,所以具有_________ ;

(3)势能是与保守力相关的,而保守力总是属于系统的,所以势能是属于_________ 的。 4.简谐运动方程为)4

20cos(10.0π

π+=t x ,则振幅为__________,频率__________,角频率__________,周期__________,初相__________。

5.理想气体分子微观模型为(1)_________ _; (2)_________ _; (3)_________ _;

6.能量均分定理的内容为_________ _; 7.准静态过程是指_________ _;

8.熵可以理解为:熵是 的单值函数,在热力学过程中,系统熵的增量等于 之间任一 过程热温比的积分。

二、单项选择

1. 一个质点在做圆周运动时,则有( )

(A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变

X

O

2 . 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( ) (A )不得小于

gR μ (B )必须等于gR μ (C )不得大于gR μ (D )还应由汽车的质量m 决定

3. 对质点组有以下几种说法:

(1)质点组总动量的改变与内力无关(2)质点组的总动能的改变与内力无关 (3)质点组机械能的改变与保守内力无关 下列对上述说法判断正确的是( )

(A )只有(1)是正确的 (B ) (1),(2)是正确的

(C ) (1),(3)是正确的 (D ) (2),(3)是正确的 4. 有两个倾角不同,高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( )

(A )物块到达斜面底端时的动量相等 (B )物块到达斜面底端时的动能相等

(C )物块和斜面(以及地球)组成的系统,机械能不守恒 (D )物块和斜面组成的系统水平方向上动量守恒 5. 对功的概念有以下几种说法;

(1)保守力作正功时,系统内相应的势能增加 (2)质点运动经一闭合路径,保守力对质点作的功为零

(3)作用力和反作用力大小相等方向相反,所以两者所作功的代数和必为零,下列对上述说法判断正确的是( ) (A )(1)(2)是正确的确 (B )(2)(3)是正确的 (C )只有(2)是正确的确 (D )只有(3)是正确的

6. 机械波的表达式为)06

.06cos(05.0x t y ππ+=,式中y 和x 的单位为m, t 的单位为s ,则 (A )波长为5m (B )波速为10m.s -1 (C )周期为1/3s (D )波沿x 轴正方向传播

7. 处于平衡态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则他们( ) (A )温度、压强均不相同 (B )温度相同,但氦气压强大于氮气压强 (C )温度、压强都相同 (D )温度相同,但氦气压强小于氮气压强 8. 已知n 为单位体积内的分子数,f (v)为Maxwell 速率分布函数,则n f (v)dv 表示( )

(A )速率v 附近,dv 区间内的分子数 (B )单位体积内速率在v~v+dv 区间内的分子数

(C )速率v 附近,dv 区间内分子数占总分子数的比率 (D )单位时间内碰到单位器壁上,速率在v~v+dv 区间内的分子数

9. 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体)。开始时它们的压强和温度都相同。现将3J 的热量传给氦气,使之温度升高到一定温度。若使氢气也升高相同的温度,则应向氢气传递热量( ) (A )6J (B )3J (C )5J (D )10J 10. 热力学第二定律表明( )

(A )自然界当中一切自发过程都是不可逆的 (B )不可逆过程就是不能向相反方向进行的过程

(C )热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (D )任何过程总是沿着熵增加的方向进行 三、一质点沿半径为R 的圆周按规律202

1

bt V S -

=而运动,V 0,b 都是常量,(1)求t 时刻质点的总加速度;(2)t 为何值时总加速度在数值上等于b ?(3)当加速度达到b 时,质点已沿圆周运行了多少圈?

四、F x =30+4t (式中F x 的单位为N ,t 的单位为s )的合外力作用在质量m=10kg 的物体上,试求(1)在开始2s 内此力的冲量I ;(2)若冲量I=300N.s ,此力作用的时间表;(3)若物体的初速度V 1=10m.s -1,方向与F x 相同,在t=6.86s 时,此物体的速度V 2。

五、如图所示为一平面简波在t=0时刻的波形图,求(1)该波的波动方程;(2)p 处质点的运动方程。

六、某单原子理想气体循环过程的V-T 图,图中Vc=2V A 。试问(1)图中所示循环是致冷机还是热机?(2)求循环效率。

一、选择题:

1、一质点在X 轴上运动,其坐标与时间的变化关系为x=4t-2t 3,式中X 、t 分别以m 、s 为单位,则3秒末质点的速度和加速度为:( )

(A )50m/s 、36m/s 2; (B )45 m/s 、15 m/s 2; (C )-50 m/s 、-36 m/s 2; (D )-45 m/s 、-15 m/s 2

; 2、一个质点在做圆周运动时,则有( )

(A )切向加速度一定改变,法向加速度也改变; (B ) 切向加速度可能不变,法向加速度一定改变; (C )切向加速度可能不变,法向加速度不变; (D )切向加速度一定改变,法向加速度不变。

3、一段路面水平的公路,转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车在转弯处不致于发生侧向打滑,汽车在该处行驶速率:( )

(A )不得小于Rg μ; (B )不得大于Rg μ; (C )必须等于Rg μ; (D )应由汽车质量决定; 4、 一质点受力kx

e F F -=0,k 为正的常数,若质点沿Ox 轴直线运动,且在0=x 处,速度为零,则在该力作用下,质点所能达到的最大动能为

( )

(A )k F 0

;(B )

k

e F 0 ; (C )

k

F 0; (D )

k

ke F 0

5、一粒子弹以水平速度v 0射入静止于光滑水平面上的木后而穿出,以地面为参照系,下列说法中正确的说法是:( ) (A )子弹减少的动能转变为木块的动能; (B )子弹和木块组成的系统机械能守恒;

(C )子弹动能的减少等于子弹克服木块阻力所做的功; (D )子弹克服木块阻力所做的功等于这一过程中产生的热。

6、均匀细棒OA 可绕一定轴转动,该轴为通过O 点与棒垂直的光滑水平轴,如图所示。今使棒从水平位置开始自由转下,在棒转动到竖直位置的过程中,正确的结论是( )。

A 、角速度增大,角加速度减小;

B 、角速度增大,角加速度增大;

C 、角速度增大,角加速度不变;

D 、角速度增大,角加速度为零。

7、若将氮气视为理想气体,则在热力学温度为T ( )

(A )kT 25和RT 25; (B )kT 23和RT 23; (C )kT 2

3和RT 25; (D )kT 25和RT 23

8、有一弹簧振子沿x 轴运动,它的振幅为A ,周期为T ,平衡位置在x =0处。当t=0时振子在A x 2

1

=处向x 轴正方向运动,则运动方程是( )

A 、t A x 2cos π=;

B 、t A x ωcos 2=;

C 、)32sin(ππ+=t T A x ;

D 、)3

2cos(

π

π-=t T A x 。 9、f(v)为理想气体的分子速率布函数,则

?2

1

)(v v dv v f 表示( )

A

A 、速率在v 1→v 2之间的分子数;

B 、速率在v 1→v 2之间的分子数占总分子数的比率;

C 、分子在v 1→v 2之间的平均速率;

D 、无明确的物理意义。 10、热力学第二定律表明( )

不可能从单一热源吸收热量使之全部变为有用的动; (B)在一个可逆过程中,工作物质净吸热等于对外作的功; (C)热不能全部转变为功; (D)热量不可能从温度低的物体传到温度高的物体。

二、填空题

1、设质点沿x 轴作直线运动,加速度).(22-=s m t a ,在0=t 时刻,质点的位置坐标0=x 且00=v ,则在时刻t ,质点的速度 ,和位置 。

2、质点作曲线运动时,质点在某一点的速度方向就是沿该点曲线的 方向。作圆周运动的质点的速率公式为 ,切向加速度公式 为 ,法向加速度公式为 。

3、做功只与质点的 有关,而与 无关的力叫做保守力。质点沿任意闭合路径运动一周时,保守力对它所作的功为 。

4、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程:(1)

T R M

m

V p d d =

表示 过程;

(2)

T R M m

p V d d =

表示 过程;3)0d d =+p V V p 表示 过程

5 、某刚性双原子理想气体,处于温度为T 的平衡态,则其分子的平均平动动能为 ,平均转动动能为 , 平均总能量为 。

6、1mol 理想气体的内能为 ,而物质的量为ν理想气体分子的内能为 。

7、已知波源在原点(x=0)的平面简谐波方程为y=Acos(bt-cx),A 、b 、c 均为常量,则该波的波速v= ,波长λ= ,在传播方向上距波源L 处一质点振动的初相 。

三、计算题

已知质点的运动方程为 j t i t r

6

sin 36cos 3ππ+= ,求:

质点的轨道方程;

(2) 质点的速度的大小 ; (3) 质点的加速度的大小;

四、计算题

m = 0.1kg 的小球,系在长度L = 2m 的细绳的一端,构成一个摆。将摆球移至摆与竖直线的夹角为600的位置,然后由静止放开。试求:

(1)在摆从600到00的过程中,重力和绳中的张力所作的功; (2)摆球在最低位置时的动能和速率; (3)摆球在最低位置时绳中的张力。

五、计算题

3、图所示,使1 mol 氧气作ABCA 循环,已知氧气的C v,m =2.5R ,T c = 0 0C , 试求: (1)循环过程中系统吸收的热量; (2) 循环过程中系统所作的功;

(3) 循环的效率;

六、计算题

一弹性系数为 k = 2210-?πN.m -1 的轻弹簧方在光滑的水平面上,左端固定,右端系一质量m=0.36kg 的物体。

(1)把物体从平衡位置向右拉到x = 0.08m 处停下后再释放,求简谐运动方程; (2)求t =2s 时,物体的位移和所受的力;

(3)物体从起始位置运动到x = - 0.04m 处所需的时间。

θ -3m 3)

大学物理演示实验报告

实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 图1,锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

实验二陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。 【实验步骤】: 用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。 【注意事项】: 注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。 实验三弹性碰撞仪 【实验目的】: 1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2. 演示弹性碰撞时能量的最大传递。 3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。 【实验仪器】:弹性碰撞仪 图3,弹性碰撞仪

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1—1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量。 ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1—1图所示. 题1—1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分 量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=

式中 dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度 和加速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而 求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确。因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 22 222 2 22 2 22d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v ==

大学物理上册课后习题答案

大学物理上册课后习题答案

习题解答 习题一 1-1 |r ?|与r ? 有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解: (1)r ?是位移的模,?r 是位矢的模的增量, 即r ?1 2r r -=,1 2 r r r ? ?-=?; (2)t d d r 是速度的模,即t d d r = =v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题 1-1图 (3) t d d v 表示加速度的模,即 t v a d d ? ?= ,t v d d 是加速度a 在切向上的分量.

∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d τ τ???+= 式中dt dv 就是加速度的切向分量. ( t t r d ?d d ?d τ??Θ与的运算较复杂,超出教材规定,故不予 讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r = 2 2 y x +,然后根据v =t r d d ,及a = 2 2d d t r 而求得结果; 又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种 方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 j y i x r ? ??+=, j t y i t x t r a j t y i t x t r v ??? ???? ?222222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x

大学物理学教案(上册)

大学物理学I 课程教案

大学物理学I 课程教案

第三章质点动力学 教材分析: 在前两章中,我们以质点为模型讨论了力学中的基本概念以及物体作机械运动的基本规律。在这一章中,我们将拓展这些概念和规律,把它们应用到刚体运动的问题中。本章主要讨论刚体绕定轴转动的有关规律,在此基础上,简要介绍刚体平面平行运动。 3.1 定轴转动刚体的转动惯量 教学目标: 1 理解刚体的模型及其运动特征; 2 理解转动惯量的概念和意义; 教学难点: 转动惯量的计算;动量矩守恒定律的应用 教学内容: 1 转动惯量的定义 2 转动惯量的计算(匀质长细杆的转动惯量、均匀细圆环的转动惯量、均匀薄圆盘的转动惯量、均匀球体的转动惯量) 3 平行轴定理 3.2刚体的定轴转动定理3.3 转动定理的积分形式——力矩对时间和空间的积累效应 3.5 守恒定律在刚体转动问题中的应用 教学目标: 1理解力矩的物理意义,掌握刚体绕定轴转动的转动定律 2 理解力矩的功和刚体转动动能的概念,并能熟练运动刚体定轴转动的动能定理和机械能守恒定律 3 用类比方法学习描述质点和刚体运动的物理量及运动规律 4 理解刚体对定轴转动的角动量概念和冲量矩的概念 5 掌握刚体对定轴转动的角动量定理和角动量守恒定律 教学难点: 刚体定轴转动定律 教学内容: 1 力矩 2 定轴转动的角动量定理 3 定轴转动的动能定理(力矩的功、定轴转动的动能、定轴转动的动能定理) 4 刚体的重力势能 5 机械能守恒定律的应用 6 角动量守恒定律及其应用 课后作业: 小论文: 1 关于转动惯量的讨论 2 陀螺运动浅析

第5章机械振动 教材分析: 与前几章所讨论的质点和刚体的运动相似,振动也是物质运动的基本形式,是自然界中的最普遍现象。振动几乎涉及到科学研究的各个领域。例如,在力学中有机械振动,在电磁学中有电磁振荡。近代物理学中更是处处离不开振动。本章将讨论机械振动的基本规律。 5.1 弹簧振子和单摆的运动方程 教学目标: 理解弹簧振子的动力学和运动学方程;理解单摆的动力学方程和运动学方程 教学重/难点: 弹簧振子的动力学方程的建立;单摆动力学方程的建立 教学内容: 弹簧振子的动力学方程、弹簧振子的运动学方程、单摆的运动方程 5.2 简谐振动 教学目标: 理解简谐振动的定义、简谐振动的运动方程 理解简谐振动的振幅、周期、相位的意义 掌握用旋转矢量表示简谐振动、理解简谐振动能量的特征 教学重/难点: 简谐振动的特征量:振幅、周期、相位 旋转矢量法、简谐振动的动能、势能 教学内容: 简谐振动的基本概念、简谐振动的旋转矢量图表示法、简谐振动的能量 5.3 同方向同频率的简谐振动的合成 教学目标: 理解同方向同频率的两个或多个简谐振动的合成 教学重/难点: 两个或多个同方向同频率简谐振动的合成 教学内容: 两个同方向同频率的简谐振动的合成、多个同方向同频率的简谐振动的合成 作业:P166 5.2 5.3 5.8 5.23

大学物理课程教学基本要求

大学物理课程教学基本 要求 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。它 的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他 自然科学和工程技术的基础。 在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世 界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社 会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。 一、课程的地位、作用和任务 以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门 重要的通识性必修基础课。该课程所教授的基本概念、基本理论和基本方法是 构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备 的。 大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的 世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意 识等方面,具有其他课程不能替代的重要作用。 通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基 本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。在大 学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和 解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知 识、能力、素质的协调发展。 二、教学内容基本要求(详见附表)

大学物理课程的教学内容分为A、B两类。其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。 1.力学 (A:7条,建议学时数14学时;B:5条) 2.振动和波 (A:9条,建议学时数14学时;B:4条) 3.热学 (A:10条,建议学时数14学时;B:4条) 4.电磁学 (A:20条,建议学时数40学时;B:8条) 5.光学 (A:14条,建议学时数18学时;B:9条) 6.狭义相对论力学基础 (A:4条,建议学时数6学时;B:3条) 7.量子物理基础 (A:10条,建议学时数20学时;B:4条) 8.分子与固体 (B:5条) 9.核物理与粒子物理 (B:6条)

大学物理创新实验报告

大学物理创新实验报告 篇一:大学物理创新实验报告 大学物理实验报告总结 一:物理实验对于物理的意义 物理学是研究物质的基本结构,基本的运动形式,相互作用及其转化规律的一门科学。它 的基本理论渗透在基本自然科学的各个领域,应用于生产部门的诸多领域,是自然科学与 工程科学的基础。物理学在本质上是一门实验学科,物理规律的发现和物理理论的建立都 必须以物理实验为基础,物理学中的每一项突破都与实验密切相关。物理概念的确立,物 理规律的发现,物理理论的确立都有赖于物理实验。 二:物理实验对于学生的意义 大学物理实验已经进行了两个学期,在这两个学期,通过二十几个物理实验,我们对物理 学的理解和认识又更上了一步台阶。通过对物理实验的熟悉,可以帮助我们掌握基本的物 理实验思路和实验器材的操作,进一步稳固了对相关的定理的理解,锻炼理性思维的能力。在提高我们学习物理物理兴趣的同时,培养我们的科学思维和创新意识,掌握实验研究的 基本方法,提高基本科学实验能力。它也是我们进入大学接触的第一门实践性教学环节, 是我们进行系统的科学实验方法和技能训练的重要必修课。它还能培养我们“实事求是的 科学态度、良好的实验习惯、严谨踏实的工作作风、主动研究的创新与探索精神、爱护公 物的优良品德”。 三:我眼中的物理实验的缺陷 1:实验目的与性质的单一性 21世纪的学科体系中,多种学科是相互结合,相互影响的,没有一门学科能独立于其他 学科而单独生存,但是在我们的实验过程中,全都是关于物理,这一单科的实验内容,很 少牵涉到其他。有些实验完全是为了实验而实验,根本不追求与其他学科的联系与结合。2:实验的不及时性及实验信息的不对称性 物理是一门以实验为基础的基本学科,在我们所学的物理内容中,更多的是关于公式定理的,这些需要及时的理解和记忆,最简单的方式是通过实验来进行。但是我们所做的实验,都是学过很久以后,甚至是已经学完物理学科后进行的,这就造成我们对物理知识理解的 不及时性,不能达到既定的效果。而且,我们重复科学实验伟人的实验很大程度上是得知结论后凭借少量的实验数据轻易得出相似的结论,与前人广袤的数据量不可同日而语,这就造成实验信息的不对称性, 不利于从本质上提高我们的实验能力。

大学物理演示实验报告.doc

大学物理演示实验报告 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

五、讨论与思考 雷电暴风雨时,最好不要在空旷平坦的田野上行走。为什么? 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

大学物理上实验报告(共2篇)

篇一:大学物理实验报告 大学物理演示实验报告 院系名称:勘察与测绘学院 专业班级: 姓名: 学号: 辉光盘 【实验目的】: 观察平板晶体中的高压辉光放电现象。 【实验仪器】:大型闪电盘演示仪 【实验原理闪电盘是在两层玻璃盘中密封了 涂有荧光材料的玻璃珠,玻璃珠充有稀薄的 惰性气体(如氩气等)。控制器中有一块振荡 电路板,通过电源变换器,将12v低压直流 电转变为高压高频电压加在电极上。 通电后,振荡电路产生高频电压电场, 由于稀薄气体受到高频电场的电离作用二产 生紫外辐射,玻璃珠上的荧光材料受到紫外 辐射激发出可见光,其颜色由玻璃珠上涂敷 的荧光材料决定。由于电极上电压很高,故 所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。 【实验步骤】: 1. 将闪电盘后控制器上的电位器调节到最小; 2. 插上220v电源,打开开关; 3. 调高电位器,观察闪电盘上图像变化,当电压超过一定域值后,盘上出现闪光; 4. 用手触摸玻璃表面,观察闪光随手指移动变化; 5. 缓慢调低电位器到闪光恰好消失,对闪电盘拍手或说话,观察辉光岁声音的变化。 【注意事项】: 1. 闪电盘为玻璃质地,注意轻拿轻放; 2. 移动闪电盘时请勿在控制器上用力,避免控制器与盘面连接断裂; 3. 闪电盘不可悬空吊挂。 辉光球 【实验目的】 观察辉光放电现象,了解电场、电离、击穿及发光等概念。 【实验步骤】 1.将辉光球底座上的电位器调节到最小; 2.插上220v电源,并打开开关; 3. 调节电位器,观察辉光球的玻璃球壳内,电压超过一定域值后中心处电极之间随机产生数道辉光; 4.用手触摸玻璃球壳,观察到辉光随手指移动变化; 5.缓慢调低电位器到辉光恰好消失,对辉光球拍手或说话,观察辉光随声音的变化。

大学物理(上册)参考答案

第一章作业题 P21 1.1; 1.2; 1.4; 1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62 x ,a 的单位为2 s m -?,x 的单 位为 m. 质点在x =0处,速度为101 s m -?,试求质点在任何坐标处的速度值. 解: ∵ x v v t x x v t v a d d d d d d d d === 分离变量: x x adx d )62(d 2 +==υυ 两边积分得 c x x v ++=32 2221 由题知,0=x 时,100 =v ,∴50=c ∴ 1 3s m 252-?++=x x v 1.10已知一质点作直线运动,其加速度为 a =4+3t 2 s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 1 223 4c t t v ++= 由题知,0=t ,00 =v ,∴01=c 故 2234t t v + = 又因为 2 234d d t t t x v +== 分离变量, t t t x d )23 4(d 2+= 积分得 2 3221 2c t t x ++= 由题知 0=t ,50 =x ,∴52=c 故 52123 2++ =t t x 所以s 10=t 时 m 70551021 102s m 1901023 10432101210=+?+?=?=?+ ?=-x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33 t ,θ式中以弧度计,t 以秒

大学物理演示实验报告文档2篇

大学物理演示实验报告文档2篇College physics demonstration experiment report docu ment 编订:JinTai College

大学物理演示实验报告文档2篇 小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:大学物理演示实验报告文档 2、篇章2:大学物理演示实验报告文档 篇章1:大学物理演示实验报告文档 院系名称:纺织与材料学院 专业班级:轻化工程11级03班 鱼洗是中国三大青铜器之一,在鱼洗内注入清水后摩擦其两耳,如果频率恰当,就会出现水面产生波纹,发出嗡嗡的声音并有水花跃出的现象。经验表明,湿润的双手比干燥的双手更容易引起水花飞跃。

鱼洗的原理应该是同时应用了波的叠加和共振。摩擦的 双手相当于两个相干波源,他们产生的水波在盆中相互叠加,形成干涉图样。这与实验中观察到的现象相同。按照我的分析,如果振动的频率接近于鱼洗的固有频率,才会产生共振现象。通过摩擦输入的能量才会激起水花。 令人不解的是,事实上鱼洗是否能产生水花与双手的摩 擦频率并没有关系。在场的同学试着摩擦的时候,无论是缓慢的摩擦还是快速的摩擦,都能引起水花四溅。通过查阅资料得知,鱼洗的原理其实是摩擦引起的自激振动。(就像用槌敲锣一样,敲击后锣面的振动频率并不等于敲击频率。)外界能量(双手的摩擦)输入鱼洗时,就会引起其以自己的固有频率震动。(正如在锣面上敲一下。) 为什么湿润的双手更容易引起鱼洗的振动呢?从实践的 角度,可能是因为湿润的双手有更小的摩擦系数,因为摩擦起来更流畅,不会出现干燥双手可能会出现的“阻塞”情况,这只是我个人猜想,并没有发现资料有关于这方面的讨论。 离心力演示仪是一个圆柱形仪器,中间有一个细柱,细 柱穿过一段闭合的硬塑料带上的两个正对小孔。塑料带的一段固定,静止时,系统为一个竖直平面的圆,中间由细柱传过。当摁下仪器上的按钮时,细柱带动塑料带在水平面旋转起来。

大学物理演示实验报告.doc

大学物理演示实验报告 大学物理演示实验报告一: 实验目的:通过演示来了解弧光放电的原理 实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。 雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。其下端的空气最先被击穿而放电。由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。 简单操作:打开电源,观察弧光产生。并观察现象。(注意弧光的产生、移动、消失)。 实验现象: 两根电极之间的高电压使极间最狭窄处的电场极度强。巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。 注意事项:演示器工作一段时间后,进入保护状态,自动断电,稍等一段时间,仪器恢复后可继续演示,

实验拓展:举例说明电弧放电的应用 大学物理演示实验报告二: 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

大学物理演示实验感想

大学物理演示实验感想 通过此次光学演示实验使我了解了光的实质,就是原子核外电子得到能量跃迁到更高的轨道上之后由于所处轨道不稳定,电子还要跃迁回去,跃迁回去会释放出一个光子,就是以光的形式向外发出能量,跃迁的能级不同,释放出来的能量不同,光子的波长就不同,光的颜色就不一样了。当复色光进入棱镜或光栅后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。使我深刻认识到光的传播、干射、衍射、散射、偏振等许多现象及其原理,还有发生这种现象的外部条件。通过对这些特性的理解,使我从现实方面认识到光的波粒二象性,认识到光在什么条件下表现粒子性,在什么条件下表现波动性。通过激光传播信号的演示实验中我知道光不但给人以美的感受还有诸多其它方面的用处。在光的色散实验中,我对牛顿环的印象最深刻,通过对牛顿环现象的认识,我加深了对等厚干涉的了解,尤其是半波损失对牛顿环的应用,对半波损失有了进一步的了解和记忆。 我觉得我们做的虽然是演示实验,但也很有收获,这是我们对课上所学知识的一个更直观的了解,通过此次光学演示实验使我对光有了一种感性的认识,加深了对光学现象及原理的认识,为今后光学的学习打下深厚的基础,此次演示实验把理论与现实相结合,让大家在现实生活中理解光波的本质,这给我们每天的理论学习增添了一点趣味。虽然说演示实验的过程是简单的,但它的意义绝非如此。我们学习的知识重在应用,对大学生来说,演示实验不仅开动了我们思考的马达,也让我们更好地把物理知识运用到了实际现象的分析中去,使我们不但对大自然产生了以前没有的敬畏和尊重,也有了对大自然探究的好奇心,我想这是一个人做学问最最重要的一点。因此我想在我们平时的学习中,要带着一种崇敬的心情和责任感,认认真真地学习,踏踏实实地学习,只有这样,我们才能真正学会一门课,学好一门

大学物理学教程(第二版)(下册)答案

物理学教程下册答案9-16 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说确的是( )

(A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域为常量,则电场强度在该区域必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子

大学物理学上册习题参考答案

第一章 质点运动学 1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为 01 ln(1)x v kt k = +. [证明](1)分离变量得2d d v k t v =-, 积分 020d d v t v v k t v =-??, 可得 0 11kt v v =+. (2)公式可化为0 01v v v kt = +, 由于v = d x/d t ,所以 00001 d d d(1) 1(1)v x t v kt v kt k v kt = =+++ 积分 000 01 d d(1) (1)x t x v kt k v kt =++?? . 因此 01 ln(1)x v kt k = +. 证毕. 1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为 ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为

a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2, 当a t = a /2时,有4a t 2 = a t 2 + a n 2,即 n a a = 由此得 2r r ω= 即 22 (12)24t = 解得 3 6t =. 所以 3242(13)t θ=+==3.154(rad). (3)当a t = a n 时,可得rβ = rω2, 即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s). 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? [解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为 a x = a cos α, a y = a sin α. 运动方程为 2 01 2x x x v t a t =+, 2 01 2y y y v t a t =-+. 即 201 c o s c o s 2x v t a t θ α=?+?, 2 01 sin sin 2y v t a t θα=-?+?. 令y = 0,解得飞机回到原来高度时的时间为 t = 0(舍去) ; 02sin sin v t a θ α= =.

大学物理演示实验报告

【实验名称】弹性碰撞演示仪 【实验目的】 本实验用于演示正碰撞和动量守恒定律,形象地显现弹性碰撞的情形。 【实验原理】 根据动量守恒定律可知,如果正碰撞的两球,撞前速度分别为V10和V20,碰撞后的速度分别为V1和V2,质量分别为m1和m2. 则 (1) 由碰撞定律可知:(2) 若e=1时,则分离速度()等于接近速度() 解式(1)和式(2)可得: (3) (4) 若m1=m2=m;e=1则v1=0,v2=v10 即球1正碰球2时,球1静止,球2继续以V10的速度正碰球3,等等以此类推,实现动量的传递。【实验器材】 1、实验装置如实验原理图示: 1一底座 2—支架 3—钢球 4—拉线 5—调节螺丝 2、技术指标 钢球质量:m=7×0.2kg 直径:l=7×35mm 拉线长度:L=55Omm 【实验操作与现象】 l、将仪器置于水平桌面放好,调节螺丝,使七个钢球的球心在同一水平线上。 2、将一端的钢球拉起后,松手,则钢球正碰下一个钢球,末端的钢球弹起,继而,又碰下一个钢球,另一端的钢球弹起,循环不已,中间的五个钢球静止不动。但在一般情况下,两球碰撞时,总要损失一部分能量,故两端的钢球摆动的幅度将逐渐减弱。 【注意事项】 操作前一定将七个钢球的球心调至同一水平线上,否则现象不明显。 在理想情况下,物体碰撞后,形变能够恢复,不发热、发声,没有动能损失,这种碰撞称为弹性碰撞(elastic collision),又称完全弹性碰撞。真正的弹性碰撞只在分子、原子以及更小的微粒之间才会出现。生活中,硬质木球或钢球发生碰撞时,动能的损失很小,可以忽略不计,通常也将它们的碰撞看成弹性碰撞。碰撞时动量守恒。当两物体质量相同时,互换速度。 大型闪电盘(辉光盘)演示实验 【实验目的】: 观察平板晶体中的高压辉光放电现象。

大学物理演示实验报告

【实验目的】:借助视觉暂留演示声波。 【实验仪器】:声波可见演示仪。 【实验原理】:不同长度,不同张力的弦振动后形成的驻波基频、协频各不相同,即合成波形各不相同。本装置产生的是横波,可借助滚轮中黑白相间的条纹和人眼的视觉暂留作用将其显示出来。 【实验步骤】: 1、将整个装置竖直放稳,用手转动滚轮。 2、依次拨动四根琴弦,可观察到不同长度,不同张力的弦线上出现不同基频与协频的驻波。 3、重复转动滚轮,拨动琴弦,观察弦上的波形。 【注意事项】: 1、滚轮转速不必太高。 2、拨动琴弦切勿用力过猛。 【实验目的】:演示翼形升力的产生。 【实验仪器】:飞机升力演示仪。 【实验原理】:一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。当气流迎面流过机翼时,流线分布情况如图。原来是一股气流,由于机翼的插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,使上方的那股气流的通道变窄,流速加快。根据伯努利原理可以得 知:流速大的地方压强小。机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。 【实验步骤】: 1.打开位于底座前方的电源开关,用手感受一下出风口处的气流; 2.把手移开,观察到小球从管内升起; 3.用手挡住出风口,小球立即从管内下落; 4.重复操作2、3,观察小球在管内的起落。 5.实验结束,关闭电源。 【注意事项】: 如果小球不能从管内升起,适当调节机翼的高度,使机翼的上部对准气咀,使流过机翼上部的气流最大。【思考】: 飞机的机翼为何做成上凸下平的形状?

【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象, 使学生加深了解在重力场中物体总是以降低重心,趋 于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运 动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 【实验原理】:能量最低原理指出:物体或系统的能 量总是自然趋向最低状态。本实验中在低端的两根导 轨间距小,锥体停在此处重心被抬高了;相反,在高 端两根导轨较为分开,锥体在此处下陷,重心实际上 降低了。实验现象仍然符合能量最低原理。 【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚; 2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.不要将锥体搬离轨道。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。 【实验目的】:了解扫描成像原理及视觉暂留现象。 【实验仪器】:扫描成像原理演示仪。 【实验原理】:本仪器中的铝盘上沿螺旋线均匀排布小孔,目的是使盘旋转时小孔能够从上到下依次扫过画面,有如电视机中的逐行扫描.画面虽然是被依次扫过, 只要扫过整个画面的时间短于人眼的视觉暂留时间,人眼看到的就是一幅完整的画面. 【实验步骤】: 1、接上电源,打开仪器电源开关; 2、观察窗口处铝盘小孔及其后面的图画,此时看不到完整的的画面; 3、顺时针旋转仪器正面板右下角的调速旋钮,使铝盘转起来.先使旋钮上的箭头旋至“起动”位置,待铝盘转动平稳后再将旋钮上的箭头旋至“运行”位置; 4、透过铝盘上的小孔观察其后面的图画,发现可看到一幅完整的画面; 5、注意在铝盘转速由慢变快的过程中,其后面的图画由看不见,到断续看见,到连续看见一幅完整画面的过程. 【注意事项】: 1、因铝盘的转动惯量较大,起动时需加较大电压,一旦启动就要把电压调到正常值,以免转速过大,仪器不稳.

相关主题
文本预览
相关文档 最新文档