当前位置:文档之家› 电阻、电感、电容的并联电路

电阻、电感、电容的并联电路

电阻、电感、电容的并联电路
电阻、电感、电容的并联电路

课前复习

1.RLC 串联电路的相量图。

2.RLC 串联电路中,端电压和电流之间的关系。

第六节 电阻、电感、电容的并联电路

一、RLC 并联电路:由电阻、电感和电容并联组成的电路 1.电路

设在AB 两端加正弦交流电压u = U m sin ωt ,则各支路上的电流分别为:

i R =I R m sin ωt I R =

R

U i L = I C m sin(ω

t -

2

π

) I L =L X U

i C = I C m sin(ωt +2π

) I C =C

X U

2.相量图

以电压为参考相量 、

(1)X L > X C (2)X L < X C (3)X L = X C

3.总电流和电压之间的关系 从分析相量图得出结论

(1)总电流和电压的大小关系

① 电流三角形:电路中总电流与各支路电流构成一个直角三角形,叫电流三角形。

I =22

)(C L R I I I -+

② 欧姆定律表达式

I =

Z

U

;|Z | = 22)11()1(1

C

L X X R -+→导纳三角形

(2)相位间的关系

① 当X L > X C 时,总电流超前端电压 ? 角,电路呈电容性。 ② 当X L < X C 时,总电流滞后端电压 ? 角,电路呈电感性。

③ 当X L = X C 时,则I L = I C ,端电压与总电流同相,电路呈电阻性,电路的这种状态叫并联谐振。

其中:总电流与端电压的相位差为:

? = ? i - ? u = - arctan R

C L I I I -= - arctan R U X U X U C

L ///-

= - arctan

G

B B C

L - < 0 感纳B L =

L X 1;容纳B C =C X 1

;电导G =R

1,单位:西门子(S )。 注意:

在 R-L -C 串联电路中,当感抗大于容抗时电路呈感性;而在 R-L-C 并联电路中,当感抗大于容抗时电路却呈容性。当感抗与容抗相等时(X C =X L )两种电路都处于谐振状态。

例:在R-L-C 并联电路中,R=40Ω,X L =15Ω,X C =30Ω,接到外加电压

V )30314sin(2120 +=t u 的电源上。求:(1)电路上的总电流; (2)电路的总阻抗;

(3)画出电压和个支路中电流的相量图。

解:(1)各支路中的电路分别为

I R =

R U =40120

A=3A I L =L X U =15120

A=8A

I L =C X U =30

120A=4A

所以,电路上的总电流为

I =22

)(C L R I I I -+=22)48(3-+=5A

(2)电路的总阻抗为

|Z | =

I U =5

120=24Ω (3)电压和各支路上电流的相量图如下图

小结: 1.填表

2

电阻电容电感的串联与并联

电阻电容电感的串联与 并联 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电阻、电容和电感的串联与并联 两电阻R 1和R 2串联及并联时的关系: 两电容C 1和C 2串联与并联时的关系: 无互感的线圈的串联与并联: 两线圈串联:L=L 1+L 2 两线圈并联:L=L 1L 2/(L 1+L 2) 有互感的线圈的串联与并联: 有互感两线圈顺串(异名端相接):L (顺)=L 1+L 2+2M 有互感两线圈反串(同名端相接):L (反)=L 1+L 2-2M L (顺)-L (反)=4M ,M=[L (顺)-L (反)]/4 有互感两线圈并联:L (并)=(L 1 L 2-M 2)/(L 1+L 22M ) (2M 项前的符号:同名端接在同一侧时取-,异名端接在同一侧时取+。) (L 1 L 2-M 2)≧0, M ≤ L L 2 1 串联 并联 1、等效电阻R=R 1+R 2 等效电阻R=R 1R 2/(R 1+R 2) (更多电阻并联的等效电阻: 1/R=1/R 1+1/R 2+1/R 3+···;N 个相同的电阻R 0并联的等效电阻R=R 0/N) 2、电流相等 电压相等 3、电压关系U=U 1+U 2 电流关系I=I 1+I 2 4、分压公式U 1=UR 1/(R 1+R 2) U 2=UR 2/(R 1+R 2) 分流公式I 1=IR 2/(R 1+R 2) I 2=IR 1/(R 1+R 2) 串联 并联 1、 等效电容C=C 1C 2/(C 1+C 2) (更多电容串联的等效电容: 1/C=1/C 1+1/C 2+1/C 3+···; N 个相同的电容C 0串联的等效电容C=C 0/N) 等效电容C=C 1+C 2 (更多电容并联的等效电容: C=C 1+C 2+C 3+···;N 个相同的电容C 0串联的等效电容C=NC 0) 2、电流相等 电压相等 3、电压关系U=U 1+U 2 电流关系I=I 1+I 2(对交流电而言) 4、分压公式U 1=UC 2/(C 1+C 2) U 2=UC 1/(C 1+C 2) 分流公式 I 1=IC 1/(C 1+C 2)(对交流电而言) I 2=IC 2/(C 1+C 2)(对交流电而言)

电阻、电容、电感的高频等效电路

电阻是PCB中最广泛使用的元件,常用的电阻有碳质、绕线和薄膜片状电阻等几种,绕线电阻由于引线电感过大不适于高速的高频电路应用,在高速的高频电路中多用薄膜片状电阻,但它同样存在隐藏的射频特性。如图所示为标称值为R 的电阻的高频等效电路。 在如图所示中,L为两个金属引脚的电感;电容Ca为电阻内部的寄生电容;Cb 为两个金属引脚间的寄生电容(可忽略)。电阻最容易忽视的两个方面就是封装尺寸和内部寄生电容,封装不同,其寄生参数也不同。一般说来,较小的“SMD”封装的寄生参数较小,比如0603的封装比1206的封装更适合于高速的高频电路。 由介质隔开的两导体构成电容。一个理想电容器的容抗为1/(j ω C), 电容器的容抗与频率的关系如图(b)虚线所示, 其中f 为工作频率,ω =2πf 。 一个实际电容 C 的高频等效电路如图(a) 所示, 其中Rc 为损耗电阻,Lc 为引线电感。容抗与频率的关系如图(b)实线所示, 其中f为工作频率,ω =2πf 。 图电容器的高频等效电路 (a) 电容器的等效电路; (b )电容器的阻抗特性 具有电感性质的元件称为电感器,简称电感,用L表示。电感在电路中也是一个储能元件,电感量的单位是享利(H)。常用单位有毫享(mH)和微享(μH)。 实际电感器由于线圈存在直流电阻,使电感器消耗一定的能量,这种能量损耗称为电感器的电阻损耗,此时电感器的等效电路如下图所示。其中R的下标P表示并联;S表示

串联;L表示电感的等效电阻。 实际电感器还存在分布电容,当电感器工作在低频时,分布电容可忽略。但工作在高频时就必须考虑其影响,高频时电感器的等效电路如下图所示。

电阻、电感和电容的等效电路

2. 电阻、电感和电容的等效电路   实际的电阻、电感和电容元件,不可能是理想的,存在着寄生电容、寄生电感和损耗。下图是考虑了各种因素后,实际电阻R、电感L、电容C元件的等效电路   图2-17 电阻R、电感L、电容C元件的等效电路 (1) 电阻   同一个电阻元件在通以直流和交流电时测得的电阻值是不相同的。在高频交流下,须考虑电阻元件的引线电感L0和分布电容C0的影响,其等效电路如图2-17(a)所示,图中R为理想电阻。由图可知此元件在频率f 下的等效阻抗为 (2-53) 上式中ω=2πf, Re和Xe分别为等效电阻分量和电抗分量,且 (2-54) 从上式可知Re除与f有关外,还与L0、C0有关。这表明当L0、C0不可忽略时,在交流下测此电阻元件的电阻值,得到的将是Re而非R值。(2) 电感   电感元件除电感L外,也总是有损耗电阻RL和分布电容CL。一般情况下RL和CL的影响很小。电感元件接于直流并达到稳态时,可视为电阻;若接于低频交流电路则可视为理想电感L和损耗电阻RL的串联;在高频时其等效电路如图2-17(b)所示。比较图2-17(a)和图2-17(b)可知二者实际上是相同的,电感元件的高频等效阻抗可参照式(2-53)来确定,

(2-55) 式中 Re和Le分别为电感元件的等效电阻和等效电感。 从上式知当CL甚小时或RL、CL和ω都不大时,Le才会等于L或接近等于L。   (3) 电容   在交流下电容元件总有一定介质损耗,此外其引线也有一定电阻Rn和分布电感Ln,因此电容元件等效电路如图2-17(c)所示。图中C是元件的固有电容,Rc是介质损耗的等效电阻。等效阻抗为 (2-56) 式中Re和Ce分别为电容元件的等效电阻和等效电容,由于一般介质损耗甚小可忽略(即Rc→∞),Ce可表示为 (2-57) 。 从上述讨论中可以看出,在交流下测量R、L、C,实际所测的都是等效值Re、Le、Ce;由于电阻、电容和电感的实际阻抗随环境以及工作频率的变化而变,因此,在阻抗测量中应尽量按实际工作条件(尤其是工作频率)进行,否则,测得的结果将会有很大的误差,甚至是错误的结果。

电容、电感以及复阻抗

电容、电感以及复阻抗 电容器的实质就是两个靠的很近但相互绝缘的导电面,其基本作用是存储电荷(电能)。如果电容器的电容量为C ,给它施加一个直流电压V ,则电容被充电,充入的电量为Q=CV ;当断开这个电压V 时,电容中的电荷Q 还将继续保存在电容中。 电感器实际上就是线圈,也具有储能作用。如果电感器的电感量为L ,使其间通以电流I ,则线圈中就会产生磁链Ψ(磁通Φ与匝数N 的乘积,即Ψ=ΦN ,参见有关教科书),且:Ψ=LI 。即电能转化成磁能的形式存储在电感中,当突然切断电流I 时,该能量将释放,产生很高的自感电动势ε,该自感电动势经常就是击穿电路中半导体元件的元凶。 但是,在电子电路中,电容和电感往往不是用作储存电能,而是作为交流电路中的“阻抗”元件,起到滤波、隔离直流(或交流)、调谐等作用。分析含有电容、电感的交流电路,需要涉及复数或向量的计算,请读者参阅有关的教科书。本书仅就与故障诊断直接相关的知识作必要的阐述。 (1) 电容的串联与并联 将几个电容器(C1、C2……、Ci )串联连接时,其等效电容C 、电量Q 、电压V 与各个电容上的电量Qi 、电压Vi 有如下关系: Ci C C C 121111+??++= Vi V V V +??++=21 Qi Q Q Q =??===21 结论:电容串联后总容量减少;耐压提高。 将几个电容(C1、C2……、Ci )并联连接时,其等效电容C 、电量Q 、电压V 与各个电容上的电量Qi 、电压Vi 有如下关系: Ci C C C +??++=21 Vi V V V =??===21 Qi Q Q Q +??++=21 结论:通过电容的并联可以增大电容量。 (2) 复阻抗、容抗、感抗 如果引入数学中复数的概念,就可以将电阻、电感、电容用相同的形式复阻抗来表示。既:电阻仍然是实数R (复阻抗的实部),电容、电感用虚数表示,分别为: c j jXc ω1=; L j jX L ω-=- 其中:ω=2πf 是交流信号的角频率,Xc 、X L 分别称为容抗和感抗,可见容抗和感抗

纯电阻电感电容电路

课题4-2纯电阻电路 课型 新课 授课班级授课时数 1 教学目标 1.掌握纯电阻电路中电流与电压的数量关系及相位关系; 2.理解纯电阻电路的功率; 3.会分析纯电阻电路的电流与电压的关系; 4.会分析计算纯电阻电路的相关物理量。 教学重点1.纯电阻电路的电压、电流的大小和相位关系。2.纯电阻电路瞬时功率、有功功率、无功功率的计算。 教学难点 纯电阻电路瞬时功率、有功功率、无功功率的计算。 教学后记 1.提出问题,引导学生思考电方面知识,引起兴趣。 2.结合前面学过的知识,让学生自主探究,让他们由“机械接受”向“主动探究”发展,从而落实了新课程理念:突出以学生为主体,让学生在活动中发展。 3.总结结论,引导学生自己得出结论,养成良好的自主学习能力。

引入 新课 【复习提问】 1、正弦交流电的三要素是什么? 2、正弦交流电有哪些方法表示? 【课题引入】: 我们在是日常生活中用到的白炽灯、电炉、电烙铁等都属于电阻性负载,它们与交流电源联接组成纯电阻电路,那么它们在交流电路中工作时,电压和电流间的 关系是否也符合欧姆定律呢?纯电阻电路的定义只有交流电源和纯电阻元件组成 的电路叫做纯电阻电路。 第一节纯电阻电路 一、电路 1.纯电阻电路:交流电路中若只有电阻,这种电路叫纯电阻电路。 如含有白炽灯、电炉、电烙铁等的电路。 2.电阻元件对交流电的阻碍作用,单位Ω 二、电流与电压间的关系 1.大小关系 电阻与电压、电流的瞬时值之间的关系服从欧姆定律。设在纯电阻电路中,加在电阻R上的交流电压u = U m sin ω t,则通过电阻R的电流的瞬时值为: i = R u = R t Uω sin m = I m sin ω t I m = R U m I = 2 m I = R U 2 m= R U I = R U :纯电阻电路中欧姆定律的表达式,式中:U、I为交流电路中电压、电流的有效值。 这说明,正弦交流电压和电流的最大值、有效值之间也满足欧姆定律。 2.相位关系 (1)在纯电阻电路中,电压、电流同相。 (2)表示:电阻的两端电压u 与通过它的电流i 同相,其波形图和相量图如图1所示。

电感电容电阻滤波电路

电感电容电阻滤波电路 在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。 电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。 电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。 电阻-电容组合起低通滤波作用,这时输入端是两个元件两端,输出端是电容两端,对于后级电路来说,低、高频信号可以过去,但高频信号被电容短路了。(电容通高频信号,阻低频信号,通交流信号,阻直流信号,对于高频信号,电容现在相当与一根导线,所以将高频信号短路了) 对于电容-电阻组合则起高通滤波作用,这时输入端是两个元件两端,输出端是电阻两端,对于后级电路来说,低频信号由于电容存在,过不去,到不了后级电路(电容通高频信号,阻低频信号,通交流信号,阻直流信号),而高频信号却可以通过,所以为高通滤波。 如上图所示为10MHz低通滤波电路。该电路利用带宽高达100MHz的高速电流反馈运算放大器OPA603组成二阶巴特沃斯低通滤波器。转折频率为f0=1/2πRC,按图中所示参数,f0=10MHz,电路增益为1.6。 如上图所示为有源高通滤波电路。该电路的截止频率fc=100Hz。电路中,R1与R2之比和C1与C2之比可以是各种值。该电路采用R1=R2和C1=2C2。采用C1=C2和R1=2R2也可以。

滤波电路分类详解 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量。 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数 S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R 值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 (A)电容滤波(B)C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S' (C)L-C电感滤波(D)π型滤波或叫C-L-C滤波

纯电阻、电感、电容电路

纯电阻、纯电感、纯电容电路 一、知识要求: 理解正弦交流电的瞬时功率、有功功率、无功功率的含义、数学式、单位及计算。掌握各种电路的特点,会画矢量图。 二、主要知识点:

三、例题: 1.已知电阻R=10Ω,其两端电压V t t u R )30314sin(100)(?+=,求电流i R(t ).、电路消耗的功率。 解:由于电压与电流同相位,所以 i R(t )= 10) (=R t u R )30314sin(?+t A 电路消耗的功率P=U R I= W X Um 5002 10 1002Im 2== ? 2、已知电感L=,其两端电压V t t u L )301000sin(100)(?+=,求电流i L(t ). 解:L X L ω===500Ω 由于纯电感电路中,电流滞后电压90°,所以: A t t X t i L L )601000sin(2.0)90301000sin(100 )(?-=?-?+= 3.已知电容C=10μF ,其两端电压V t t u c )301000sin(100)(?+=,求电流i c (t ).. 解: Ω=== -10010101000116 X X C X c ω 由于电流超前电压90°,所以: A t t Xc t i c )1201000sin()90301000sin(100 )(?+=?+?+= 四、练习题: (一)、填空题 1、平均功率是指( ),平均功率又称为( )。 2、纯电阻正弦交流电路中,电压有效值与电流有效值之间的关系为( ),电压与电流

在相位上的关系为( )。纯电感正弦交流电路中,电压有效值与电流有效值之间的关系为( ),电压与电流在相位上的关系为( )。纯电容正弦交流电路中,电压有效值与电流有效值之间的关系为( ),电压与电流在相位上的关系为( )。 3、在纯电阻电路中,已知端电压V t u )30314sin(311?+=,其中R=1000Ω,那么电流i=( ),电压与电流的相位差=( ),电阻上消耗的功率P=( )。 4、感抗是表示( )的物理量,感抗与频率成( )比,其值XL=( ),单位是( ),若线圈的电感为,把线圈接在频率为50HZ 的交流电路中,XL=( )。 5、容抗是表示( )的物理量,容抗与频率成( )比,其值Xc =( ),单位是( ),100PF 的电容器对频率是106 HZ 的高频电流和50HZ 的工频电流的容抗分别是( )和( )。 6、在纯电容正弦交流电路中,有功功率P=( )W ,无功功率Q C =( )=( )=( )。 7、在正弦交流电路中,已知流过电容元件的电流I=10A ,电压V t u )1000sin(220=,则电流i=( ),容抗Xc=( ),电容C=( ),无功功率Q C =( ) 8、电感在交流电路中有( )和( )的作用,它是一种( )元件。 (二)、选择题 1、正弦电流通过电阻元件时,下列关系式正确的是( )。 A 、Im=U/R B 、I=U/R C 、i=U/R D 、I=Um/R 2、已知一个电阻上的电压V t u )2 314sin(210π -=,测得电阻上消耗的功率为20W ,则这 个电阻为( )Ω。 A 、5 B 、10 C 、40 3、在纯电感电路中,已知电流的初相角为-60°,则电压的初相角为( )。 A 、30° B 、60° C 、90° D 、120° 4、在纯电感正弦交流电路中,当电流A t I i )314sin(2= 时,则电压( )V 。

电容、电感产生的相位差理解

电容、电感产生的相位差理解 对于正弦信号,流过一个元器件的电流和其两端的电压,它们的相位不一定是相同的。这种相位差是如何产生的呢?这种知识非常重要,因为不仅放大器、自激振荡器的反馈信号要考虑相位,而且在构造一个电路时也需要充分了解、利用或避免这种相位差。下面探讨这个问题。 首先,要了解一下一些元件是如何构建出来的;其次,要了解电路元器件的基本工作原理;第三,据此找到理解相位差产生的原因;第四,利用元件的相位差特性构造一些基本电路。 一、电阻、电感、电容的诞生过程 科学家经过长期的观察、试验,弄清楚了一些道理,也经常出现了一些预料之外的偶然发现,如伦琴发现X射线、居里夫人发现镭的辐射现象,这些偶然的发现居然成了伟大的科学成就。电子学领域也是如此。 科学家让电流流过导线的时候,偶然发现了导线发热、电磁感应现象,进而发明了电阻、电感。科学家还从摩擦起电现象得到灵感,发明了电容。发现整流现象而创造出二极管也是偶然。 二、元器件的基本工作原理 电阻——电能→热能 电感——电能→磁场能,&磁场能→电能 电容——电势能→电场能,&电场能→电流 由此可见,电阻、电感、电容就是能源转换的元件。电阻、电感实现不同种类能量间的转换,电容则实现电势能与电场能的转换。 1、电阻 电阻的原理是:电势能→电流→热能。 电源正负两端贮藏有电势能(正负电荷),当电势加在电阻两端,电荷在电势差作用下流动——形成了电流,其流动速度远比无电势差时的乱序自由运动快,在电阻或导体内碰撞产生的热量也就更多。 正电荷从电势高的一端进入电阻,负电荷从电势低的一端进入电阻,二者在电阻内部进行中和作用。中和作用使得正电荷数量在电阻内部呈现从高电势端到低电势端的梯度分布,负电荷数量在电阻内部呈现从低电势端到高电势端的梯度分布,从而在电阻两端产生了电势差,这就是电阻的电压降。同样电流下,电阻对中和作用的阻力越大,其两端电压降也越大。 因此,用R=V/I来衡量线性电阻(电压降与通过的电流成正比)的阻力大小。 对交流信号则表达为R=v(t)/i(t)。 注意,也有非线性电阻的概念,其非线性有电压影响型、电流影响型等。

数字电桥中串联和并联的选择使用

数字电桥中串联和并联的选择使用 日期:2011年2月17日 17:05 数字电桥操作面板都有“串联”和“并联”按键供用户选择,这串联和并联不是物理连结,而是内在计算模式的改变,改变计算模式得到理想的精度。 理论上电感正弦波激励响应电压超前电流90度,电容电压落后电流90度。实际测量中由于铜阻和各种损耗的存在,超前或落后都小于90度,这种损耗在测量中以副参数出现,电感损失角的正切值的倒数称品质因素Q值。同样电容损失角的正切值称损耗因子DF。 数字电桥进行高精度量化,要建立适当的数学模型,经过一些数学运算,得到各种参数值。在整个过程中,把损耗的影响用电阻等效和电感或电容串并联。见图1所示: 对于电阻根据实际应用,可以等效为电阻和小电感的串联或电阻和小电容的并联。 每种等效都可以通过数学运算得到主副参数值,运算过程中,如果中间数据保持的位数很多,上述等效运算的主副参数值是一样的。实际上计算机或单片机受资源的限制,只能在有限位数下运算,一种等效得到一定的计算精度。 大阻抗器件用并联模式计算精度高,小阻抗器件用串联模式计算精度高,被测件的阻抗决定数字电桥串并联的选择。 阻抗小于1K用串联,1K到几十K串并联都可以,还是建议用串联。阻抗大于几百K 或M的量级就用并联模式。 被测件是大电感(比如现在LCD背光电源变压器),或小电容用并联。 被测件是小电感或大电容用串联。 特别注意的是阻抗决定串并联模式,阻抗和测试頻率有关,电感是ωL 电容是,小电感小电容适当提高测试頻率可以提高测量精度。 实际运用中串联模式使用比较多。

电阻电容电感测量方法参考: 电阻低于1KΩ,选择串联120Hz(100Hz)通常称为直流电阻测量,选择低频减小交流影响,选串联模式减小被测件等效串联电感的影响. 电阻大于等于1KΩ,选择并联120Hz(100Hz),选择低频减少交流影响,选择“并联”,是因为测量过程中出现电抗部份,等效为被测件并联一个电容呈现的高电抗,用并联模式减小这种影响,如果Q<0.1,已存在小电容影响. 电容小于2nF,选择,选择串联1KHz,选用高的测试信号可提高测试精度,同样能测量大于1000μF以上电容. 电感小于2mH,用串联1KHz,选择高测试频率可提高测试精度.

电阻电容电感详细讲解

一、电阻 导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、 兆欧,分别用Ω、KΩ、MΩ表示。 1、电阻的型号命名方法: 国产电阻器的型号由四部分组成(不适用敏感电阻) 第一部分:主称,用字母表示,表示产品的名字。如R表示电阻,W表示电位器。 第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。 第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。 第四部分 : 序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等例如:R T 1 1 型普通碳膜电阻 2、电阻器的分类 (1)、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。 (2)、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。(3)、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。(4)、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。 3、主要特性参数 (1)、标称阻值:电阻器上面所标示的阻值。 (2)、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。允许误差与精度等级对应关系如下:±0.5%- 0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 (3)、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 (4)、额定电压:由阻值和额定功率换算出的电压。 (5)、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 (6)、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 (7)老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。

电阻、电感和电容的等效电路(新、选)

2. 电阻、电感和电容的等效电路 实际的电阻、电感和电容元件,不可能是理想的,存在着寄生电容、寄生电感和损耗。下图是考虑了各种因素后,实际电阻R 、电感L 、电容C 元件的等效电路 图2-17 电阻R 、电感L 、电容C 元件的等效电路 (1) 电阻 同一个电阻元件在通以直流和交流电时测得的电阻值是不相同的。在高频交流下,须考虑电阻元件的引线电感L0和分布电容C0的影响,其等效电路如图2-17(a)所示,图中R 为理想电阻。由图可知此元件在频率f 下的等效阻抗为 e e e jX R R C C L C R C L L j R C C L R C j L j R C j L j R Z +=+---++-=+++=2 020020200202020020000)()1()1()()1(11 ) (ωωωωωωωωωω (2-53) 上式中ω=2πf , Re 和Xe 分别为等效电阻分量和电抗分量,且 2 02002)()1(R C C L R R e ωω+-= (2-54) 从上式可知Re 除与f 有关外,还与L0、C0有关。这表明当L0、C0不可忽略时,在交流下测此电阻元件的电阻值,得到的将是Re 而非R 值。 (2) 电感 电感元件除电感L 外,也总是有损耗电阻RL 和分布电容CL 。一般情况下RL 和CL 的影响很小。电感元件接于直流并达到稳态时,可视为电阻;若接于低频交流电路则可视为理想电感L 和损耗电阻RL 的串联;在高频时其等效电路如图2-17(b)所示。比较图2-17(a)和图2-17(b)可知二者实际上是相同的,电感元件的高频等效阻抗可参照式(2-53)来确定,

电阻电感和电容的等效电路

2. 电阻、电感和电容的等效电路 实际的电阻、电感和电容元件,不可能是理想的,存在着寄生电容、寄生电感和损耗。下图是考虑了各种因素后,实际电阻R、电感L、电容C元件的等效电路 图2-17 电阻R、电感L、电容C元件的等效电路 (1) 电阻 同一个电阻元件在通以直流和交流电时测得的电阻值是不相同的。在高频交流下,须考虑电阻元件的引线电感L0和分布电容C0的影响,其等效电路如图2-17(a)所示,图中R为理想电阻。由图可知此元件在频率f下的等效阻抗为 (2-53) 上式中ω=2πf, Re和Xe分别为等效电阻分量和电抗分量,且 (2-54) 从上式可知Re除与f有关外,还与L0、C0有关。这表明当L0、C0不可忽略时,在交流下测此电阻元件的电阻值,得到的将是Re而非R值。 (2) 电感 电感元件除电感L外,也总是有损耗电阻RL和分布电容CL。一般情况下RL和CL的影响很小。电感元件接于直流并达到稳态时,可视为电阻;若接于低频交流电路则可视为理想电感L和损耗电阻RL的串联;在高频时其等效电路如图2-17(b)所示。比较图2-17(a)和图2-17(b)可知二者实际上是相同的,电感元件的高频等效阻抗可参照式(2-53)来确定, (2-55) 式中 Re和Le分别为电感元件的等效电阻和等效电感。 从上式知当CL甚小时或RL、CL和ω都不大时,Le才会等于L或接近等于L。 (3) 电容 在交流下电容元件总有一定介质损耗,此外其引线也有一定电阻Rn和分布电感Ln,因此电容元件等效电路如图2-17(c)所示。图中C是元件的固有电容,Rc是介质损耗的等效电阻。等效阻抗为

(2-56) 式中 Re和Ce分别为电容元件的等效电阻和等效电容, 由于一般介质损耗甚小可忽略(即Rc→∞),Ce可表示为 (2-57) 。 从上述讨论中可以看出,在交流下测量R、L、C,实际所测的都是等效值Re、Le、Ce;由于电阻、电容和电感的实际阻抗随环境以及工作频率的变化而变,因此,在阻抗测量中应尽量按实际工作条件(尤其是工作频率)进行,否则,测得的结果将会有很大的误差,甚至是错误的结果。 [back][next]

电阻、电感和电容的串联电路

RLC 串联交流电路》教 案 、教学目的 1、理解并掌握RLC串联交流电路中电压与电流的数值、相位关系 2、理解电压三角形和阻抗三角形的组成 3、熟练运用相量图计算RLC串联电路中的电流和电压 、教学重点 1、掌握RLC串联电路的相量图 2、理解并掌握RLC串联电路端电压与电流的大小关系三、教学难点 1、RLC串联电路电压与电流的大小和相位关系四、教学课时 五、教学过程 一)复习旧课,引入新课: 1 、复习单一参数交流电路

i i 2、引出问题 正弦交流电路一定是单一参数特性吗 分析: 1、实际电路往往由多种元件构成,不同元件性质不同。例如,荧光灯电路 2、交流电路中的实际元件往往有多重性质,如电感线圈存在一定的电阻, 匝与匝之间还有电容效应 因此,单一参数交流电路知识一种理想情况,具有多元件、多参数的 电路模型更接近于实际应用的电路。 3、新的学习任务 研究多元件、多参数的交流电路 (二)新课讲授 沌电客宏涼电路 U U = /R U —jXJ B

图1 RLC串联交流电路 1、电压与电流的关系 i =T. sin fttf 以电流作为参考,设表达式为 U R三f稱Rsinet Uf=I^X,sm(eut + 90') 叱血(曲 由基尔霍夫第二定律可知,U U R U L U C u l m Rsin t I m X L sin( t 90 ) I m X C sin( t 90 ) 同频率正弦量的和仍为同频率的正弦量,因此电路总电压U也是频率为的正弦量。 正弦量可以用矢量表示,则⑴式为: U U R U L U C 由单一元件交流电路中电压申.流的矢S关系; =iR - jXJ =[尺 +丿(X) = 二RZjXJ 負阻抗Z 这是RLC串联电路中总电压和总电流的关系,形式和欧姆定律类似,所以 也称相量形式的欧姆定律。 RLC串联电路中总电压和总电流的数值关系: U J u R (U L U C)2 U R j(X L X c) I (R jX)l IZ

电阻电容电感的串联与并联

电阻电容电感的串联与并 联 Final revision by standardization team on December 10, 2020.

电阻、电容和电感的串联与并联 两电阻R 1和R 2 串联及并联时的关系: 两电容 C 1 和C 2 串联与 并联时 的关 系:

无互感的线圈的串联与并 联: 两线圈串联:L= L 1+ L 2 两线圈并联:L= L 1L 2/(L 1+ L 2) 有互感的线圈的串联与并联: 有互感两线圈顺串(异名端相接):L (顺) = L 1+ L 2+2M 有互感两线圈反串(同名端相接):L (反) = L 1+ L 2 -2M L (顺)-L (反) =4M , M= [L (顺) -L (反)] /4 有互感两线圈并联:L (并)=(L 1 L 2-M 2)/(L 1+ L 2 2M ) (2M 项前的符号:同名端接在同一侧时取-,异名端接在同一侧时取+。) (L 1 L 2-M 2)≧0, M ≤ L L 2 1 M (最大)= L L 2 1 互感的耦合系数:K= M / L L 2 1 电桥 U 2= U C 1 /(C 1+ C 2) 言) I 2= IC 2 /(C 1+ C 2)(对交流电而言)

直流电桥由4个电阻首尾相接构成菱形,共4端,A、C端接电源,B、D端之间为零位检测(检流计)。上下两臂平衡时,B、D端电压差为零,检流计电流读数为0。 电桥平衡的条件:R 1/R 3 = R 2 /R N (或R 1 R N = R 2 R 3 ) R 1、R 2 、和R 3 为阻值已知标准电阻,被测电阻R N = R 2 R 3 / R 1 将4个电阻换为阻抗,即得到交流电桥。

电容、电阻、电感作用及滤波电路的简单分析

(一)电容: 1.一般是过滤作用,比如比如电解电容可以过滤低频,陶瓷电容可过滤高频。,原理就是电容的通交隔直特性,电容对交流信号通路,信号频率越高,阻抗越小,电容容量越大,阻抗越小,而对直流信号断路。比如直流电源正负极接一个电容,对交流信号来说相当于短路,于是波动信号就会通过这个电容而消耗掉,于是电压就更稳定,同理,如果在数字地接一电容,那么波动信号就会通过它与地短接,流入地端,而不流入下一级电路。 2.由于正常情况下,并联补偿电容是带电的,并用来补偿线路中的无功功率,提高功率因数,减少电的浪费。当设备或者线路需要维修时,虽然电线或者设备已经断电了,但是这时候的补偿电容由于是两端还有一定的电压,如果这时候人一旦碰到电容或者和电容相连的线路时,人就会有触电危险。但是如果我们在断电后,利用接地线把存储在补偿电容两端的电经过地线直接引入大地,这样使得电容不带电,从而保证维修人员的安全。 3.电容会充电放电的,接地也可以是放电过程,使电容器保持在一端了零电位。从而使电容容量达到最优。 4.耦合电容,又称电场耦合或静电耦合。耦合电容器是使得强电和弱电两个系统通过电容器耦合并隔离,提供高频信号通路,阻止工频电流进入弱电系统,保证人身安全。 电容耦合的作用是将交流信号从前一级传到下一级。耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级工作点的调整比较复杂,相互牵连。为了使后一级的工作点不受前一级的影响,就需要在直流方面把前一级和后一级分开,同时,又能使交流信号从前一级顺利的传递到后一级,同时能完成这一任务的方法就是采用电容传输或者变压器传输来实现。他们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成分要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或者强信号传输时,常用变压器作为耦合元件。 5.电容能抑制器件两端电压变化率,起缓冲作用。同理电感抑制器件两端电流变化率,如整流电路中电感使导通角增大,续流二极管使输出电压平均值增大。 (二)电阻: 上拉电阻、下拉电阻的作用 所谓上,就是指高电平;所谓下,是指低电平。上拉,就是通过一个电阻将信号接电源,一般用于时钟信号数据信号等。下拉,就是通过一个电阻将信号接地,一般用于保护信号。这是根据电路需要设计的,主要目的是为了防止干扰,增加电路的稳定性。一般就是刚上电的时候,端口电压不稳定,为了让他稳定为高或低,就会用到上拉或下拉电阻。有些芯片内部集成了上拉电阻,所以外部就不用上拉电阻了。但是有一些开漏的,外部必须加上拉电阻。 假如没有上拉,时钟和数据信号容易出错,毕竟,CPU的功率有限,带很多BUS线的时候,提供高电平信号有些吃力。而一旦这些信号被负载或者干扰拉下到某个电压下,CPU无法正确地接收信息和发出指令,只能不断地复位重启。 假如没有下拉,保护电路极易受到外界干扰,使CPU误以为被保护对象出问题而采取保护动作,导致误保护。 驱动CMOS时,如果TTL输出最低高电平低于CMOS最低高电平时,提高输出高电平 2 .OC门必须加上拉,提高电平值

电阻电容电感的串联与并联

电阻、电容和电感的串联与并联 两电阻R 1和R 2 串联及并联时的关系: 两电容 C 1 和C 2 串联与 并联时 的关 系:

无互感的线圈的串联与并 联: 两线圈串联:L= L 1+ L 2 两线圈并联:L= L 1L 2/(L 1+ L 2) 有互感的线圈的串联与并联: 有互感两线圈顺串(异名端相接):L (顺) = L 1+ L 2+2M 有互感两线圈反串(同名端相接):L (反) = L 1+ L 2 -2M L (顺)-L (反) =4M , M= [L (顺) -L (反)] /4 有互感两线圈并联:L (并)=(L 1 L 2-M 2)/(L 1+ L 2 2M ) (2M 项前的符号:同名端接在同一侧时取-,异名端接在同一侧时取+。) (L 1 L 2-M 2)≧0, M ≤ L L 2 1 M (最大)= L L 2 1 互感的耦合系数:K= M / L L 2 1 电桥 U 2= U C 1 /(C 1+ C 2) I 1 = IC 1 /(C 1+ C 2)(对交流电而言) I 2= IC 2 /(C 1+ C 2)(对交流电而言)

直流电桥由4个电阻首尾相接构成菱形,共4端,A、C端接电源,B、D端之间为零位检测(检流计)。上下两臂平衡时,B、D端电压差为零,检流计电流读数为0。 电桥平衡的条件:R 1/R 3 = R 2 /R N (或R 1 R N = R 2 R 3 ) R 1、R 2 、和R 3 为阻值已知标准电阻,被测电阻R N = R 2 R 3 / R 1 将4个电阻换为阻抗,即得到交流电桥。

电阻、电容、电感基础知识要点

电阻、电容、电感基础知识 (一)电阻 常用电阻有碳膜电阻、碳质电阻、金属膜电阻、线绕电阻和电位器等。表1是几种常用电阻的结构和特点。 图1 电阻的外形 电阻种类(电阻结构和特点): 碳膜电阻 气态碳氢化合物在高温和真空中分解,碳沉积在瓷棒或者瓷管上,形成一层结晶碳膜。改变碳膜厚度和用刻槽的方法变更碳膜的长度,可以得到不同的阻值。碳膜电阻成本较低,性能一般。 金属膜电阻 在真空中加热合金,合金蒸发,使瓷棒表面形成一层导电金属膜。刻槽和改变金属膜厚度可以控制阻值。这种电阻和碳膜电阻相比,体积小、噪声低、稳定性好,但成本较高。 碳质电阻 把碳黑、树脂、粘土等混合物压制后经过热处理制成。在电阻上用色环表示它的阻值。这种电阻成本低,阻值范围宽,但性能差,很小采用。

线绕电阻 用康铜或者镍铬合金电阻丝,在陶瓷骨架上绕制成。这种电阻分固定和可变两种。它的特点是工作稳定,耐热性能好,误差范围小,适用于大功率的场合,额定功率一般在1瓦以上。 碳膜电位器 它的电阻体是在马蹄形的纸胶板上涂上一层碳膜制成。它的阻值变化和中间触头位置的关系有直线式、对数式和指数式三种。碳膜电位器有大型、小型、微型几种,有的和开关一起组成带开关电位器。 还有一种直滑式碳膜电位器,它是靠滑动杆在碳膜上滑动来改变阻值的。这种电位器调节方便。 线绕电位器 用电阻丝在环状骨架上绕制成。它的特点是阻值范围小,功率较大。 大多数电阻上,都标有电阻的数值,这就是电阻的标称阻值。电阻的标称阻值,往往和它的实际阻值不完全相符。有的阻值大一些,有的阻值小一些。电阻的实际阻值和标称阻值的偏差,除以标称阻值所得的百分数,叫做电阻的误差。表2是常用电阻允许误差的等级。 表2 常用电阻允许误差的等级 国家规定出一系列的阻值作为产品的标准。不同误差等级的电阻有不同数目的标称值。误差越小的电阻,标称值越多。表2是普通电阻的标称阻值系列。表3中的标称值可以乘以10、100、1000、10k;100k;比如1.0这个标称值,就有1.0Ω、10.OΩ、100.OΩ、1.0kΩ、10.0kΩ、100.0kΩ、1.0MΩ;10.0MΩ;

电阻、电感和电容的串联电路

《RLC串联交流电路》教案 一、教学目的 1、理解并掌握RLC串联交流电路中电压与电流的数值、相位关系 2、理解电压三角形和阻抗三角形的组成 3、熟练运用相量图计算RLC串联电路中的电流和电压 二、教学重点 1、掌握RLC串联电路的相量图 2、理解并掌握RLC串联电路端电压与电流的大小关系 三、教学难点 1、RLC串联电路电压与电流的大小和相位关系 四、教学课时 五、教学过程 (一)复习旧课,引入新课: 1、复习单一参数交流电路

2、引出问题 正弦交流电路一定是单一参数特性吗 分析: 1、实际电路往往由多种元件构成,不同元件性质不同。例如,荧光灯电路 2、交流电路中的实际元件往往有多重性质,如电感线圈存在一定的电阻, 匝与匝之间还有电容效应 因此,单一参数交流电路知识一种理想情况,具有多元件、多参数的电路模型更接近于实际应用的电路。 3、新的学习任务 研究多元件、多参数的交流电路 (二)新课讲授 + u R - + u L - + u C- R L C B A + - u i i

图1 RLC 串联交流电路 1、电压与电流的关系 以电流作为参考,设表达式为 则 由基尔霍夫第二定律可知,C L R u u u u ++= )90sin()90sin(sin ??-+++=t X I t X I t R I u C m L m m ωωω 同频率正弦量的和仍为同频率的正弦量,因此电路总电压u 也是频率为 的正弦量。 正弦量可以用矢量表示,则(1)式为: C L R U U U U &&&&++= []Z I I jX R I X X j R U C L &&&&=+=-+=)()(

电感电容电阻串联的电路

8.4电阻、电感、电容的串联电路 教学目标: 1.会用矢量图分析和计算简单的交流电路(RL C 串联电路)。 2.掌握RLC 串联电路中端电压与电流的相位关系及端电压和电流的大小关系。 教学重点: 会用矢量图分析、计算RLC 串联电路。 教学难点: 1.画矢量图。 2.端电压与电流的相位关系。 授课时数:8课时 教学过程: 课前复习: 填表 电阻元件 电感元件 电容元件 对交流电的阻碍作用 电压、电流的大小关系 电压、电流的相位关系 矢量图(以电流为参考矢量) 8.4 电阻、电感、电容的串联电路 一、RLC 串联电路 由电阻、电感、和电容相串联所组成的电路称为RLC 串联电路。 1.电路 设在上述电路中通过的正弦交流电流为I = I m sin ωt 则: u R = I m R sin ωt u L = I m X L sin (ωt +2π)= I m ωL sin (ωt +2 π ) u C = I m X C sin (ωt -2π) = I m C ω1 sin (ωt -2 π ) u AB = u R + u L + u C 2.矢量图(以电流为参考矢量)

3.端电压与电流的关系 (1)大小关系 ①电压三角形:电路的端电压与各分电压构成一直角三角形,称为电压三角形。(图(1)) ②RLC 串联电路中欧姆定律的表达式:I = Z U ∣Z ∣=22)(C L X X R -+∣Z ∣—— 阻抗 单位:欧姆(Ω) U = 22)(C L R U U U -+ ③电抗:感抗与容抗之差称为电抗。用X 表示 X = X L -X C 单位:欧姆(Ω) ④阻抗三角形 (图(2)) 阻抗角:∣Z ∣与R 两边的夹角 ? = arctan R X X C L -= arctan R X 图(2) (2)相位关系 ①当X L > X C 时,端电压超前电流? 角,电路呈电感性,称为电感性电路。 ? = ? u - ? i = arctan ( U L -U C / U R > 0 ②当X L < X C 时,端电压滞后电流 ? 角,电路呈电容性,称为电容性电路。 ? = ? u - ? I = arctan (U L -U C ) / U R < 0 ③当X L = X C 时,端电压与电流同相,电路呈电阻性,电路的这种状态称为串联谐振。 ? = ? u -? i = arctan (U L - U C ) / U R = 0 例1:P140 例8—4 RLC 串联电路的二个特例 8.5 电阻、电感的串联电路 1.当X C = 0时,电路为R -L 串联电路 U =2 2 L R U U += I 2 2L X R +=I ∣Z ∣ 或 I =Z U ∣Z ∣=2 2 L X R + 例2:P136 例8—2 2.当X L = 0时,电路为RC 串联电路 U =22C R U U += I 2 2C X R +=I ∣Z ∣ 或

相关主题
相关文档 最新文档