当前位置:文档之家› 空气对流演示器的制作和使用.

空气对流演示器的制作和使用.

空气对流演示器的制作和使用.

空气对流演示器的制作和使用

(提示:人教自然第9册第17课《热对流》)

《热对流》一课的教学重点是指导学生初步认识热在水和空气中的传递方式。教学中,我发现学生由于缺乏感性认识,再加上空气又是看不见摸不着的,借助书中室内暖气片使屋子变暖的图片,学生很难理解热在空气中的传递方式。这部分内容的教学效果一直不理想,于是我萌发了制作空气对流演示器的愿望,经过反复实验,终于设计出一个简易的空气对流演示器(如图)。

一、制作材料

500ml点滴瓶2个(一个带金属盖,另一个不带),12号铁

丝1.5m,直径为2.4cm的玻璃管15cm,方座支架,三角架一个,

玻璃漏斗一个,石棉网一个,酒精灯一个,鸡、鸭、鹅的绒毛少许

(可染上颜色)。

二、制作方法

1.截取点滴瓶(取锥形上部),在450ml刻度处用绒线缠

1-2圈后,涂上酒精或汽油点燃,边燃烧边转动点滴瓶,当点滴瓶

均匀受热后,立刻竖直插入冷水中,瓶即可沿缠线处整齐断开,磨

光锥形部分的截面即可。

2.截取中心管:在直径为2.4cm的废试管上量出15cm用

上面方法截取。

3.制作铁丝圈:将12号铁丝制成直径为2cm的两个铁圈,直径为2.4cm的一个铁圈,铁丝留出焊

接卡子的长度为12cm(两个)、1lcm(一个)。

三、使用方法

如图所示组装好,铁线圈与玻璃瓶口、玻璃管可用万能胶固定,点燃酒精灯,将染好的绒毛从下罩沿上放入。通过演示,学生借助绒毛运动观察空气的对流观象,效果很好,操作也比较简单,适用于课堂教学。这一教具的设计,使我深深认识到小学自然教师应勤动脑多动手,不应被现行教科书的内容所束缚,可充分利用身边的废旧材料制作教具,丰富课堂教学,使课堂教学更有说服力也更有趣味性。

空气对流传热系数的测定

空气对流传热系数的测定 一、实验目的 1.测定空气在圆直管中强制对流时对流传热系数。 2.通过使实验掌握并确定对流传热系数准数关联式中的系数; 3.通过实验提高对准数的理解,并分析影响对流系数的因素,了解强化传热的措施; 4.掌握强制对流传热系数及传热系数的测定方法; 5.了解热电偶和电位差计的使用和仪表测温方法。 二、实验原理 1.本实验装置为套管式换热器,空气走管内水蒸汽走管间,两流体在换热器内进行热量交换,其传热基本方程式:Q=KA ?t m 其中:Q=Wc p (t 进-t 出) ?t m =(T-t 进)-(T-t 出)/Ln(T-t 进)/(T-t 出) 当测取Q 、A 后便可得到K 值。 i i m O O A 1A b A 1KA 1α+λ+α= 分析可知蒸汽的对流传热热阻、金属导热热阻都远小于空气对流热阻,则上式可近似写成 i i A 1KA 1α= 又 KA=O O i i A K A K = 当传热面积A i (内管内壁面积)时,由上述内容可得: m i i i t A Q K ?==α (1) 2.若从实验中通过热过热电偶,测取内管的外壁温度,由于金属管热阻很小可忽略其内外壁间的温差,于是αi 也可由牛顿冷却定律(对流传热速率方程)得出: m i i t A Q ?=α (2) (2)式与(1)式比较只是?'t m 与?t m 略有区别,?'t m 是以壁与空气之间的温度差的平均值。从热阻观点看(1)式忽略了蒸汽对流传热热阻和金属管壁导热热阻。而(2)式只忽略了金属导热热阻,因此用(2)得到的αi 应更好些。如用(1)计算αi 可认为用代替蒸汽温度,使

浅谈干式变压器雷电冲击试验故障判断及要点 黄永昶

浅谈干式变压器雷电冲击试验故障判断及要点黄永昶 发表时间:2018-03-13T10:41:23.687Z 来源:《电力设备》2017年第30期作者:黄永昶 [导读] 摘要:本文中介绍的产品质量问题是在试验过程中发现的,由于表现出来的现象比较典型,因此总结出来供读者参考。 (顺特电气设备有限公司广东顺德 528300) 摘要:本文中介绍的产品质量问题是在试验过程中发现的,由于表现出来的现象比较典型,因此总结出来供读者参考。 关键词:干式变压器;雷电冲击;产品试验;故障分析 变压器是电力系统中重要的设备之一,它的质量直接关系到电力系统的安全和经济效益,也影响到厂矿企业的经济效益和居民生活,为此在变压器制造过程中一定要严把产品的质量关。本文用变压器线圈内的电压暂态振荡的原理分析了干式变压器雷电冲击试验中所出现的一些异常问题,指出了变压器线圈内的电压暂态振荡过程是危害变压器绝缘的重要因素。 1.基本情况 对SC—1000/10联接组别为DYNn的千式变压器进行了雷电冲击试验,推荐的试验接线图如图1所示。 在C端进波、A端接地的试验中,比较50%试验电压和100%试验电压的电流示份映形可看到,在10μs左右100%试验电压的电流示伤波形出现严重的尖峰振荡,电压波形也有微小变化,而且在试验过程中观察到B相线圈有火花出现。 为了进一步研究B相线圈的缺陷,拆除了A、B、C三相绕组之间的连接线,单独对B相线圈进行雷电全波试验。对B线圈头部进彼、B 线圈尾部接地和B线圈尾部进波、B线圈头部接地等接线方式进行了试验,电流示伤波形中没有出现异常情况。在进行B相线圈的雷电冲击试验中,B相线圈没有发现缺陷,而在进行C相线圈试验时,与A相线圈串联的B相线圈发现缺陷。 二、故障诊断分析 分析单独一个线圈进波和两个线圈串联进波的波过程。为了简化计算,不考虑变压器的损耗和线圈之间的互感,同时假定线圈的电感、纵向电容和对地电容都是均匀分布参数。 设L0、K0、C0分别表示线圈单位长度的电感、纵向电容和对地电容,L是线圈的长度,如图3: 如果简单地从电位梯度的角度考虑问题,从式(4)可知,随着 L的增大,首端的电位梯度是下降的,单个线圈首端的电位梯度高于或起码等于两个线圈串联起来的首端的电位梯度。所以,简单地从电位梯度的角度分析问题解析不了试验中所出现的现象。 上面所分析的起始电压分布,线圈首端的电位梯度虽高,但其作用时间短,一般不会危及线圈的绝缘。而随之而来的线圈内的波振荡过程,才是危及变压器绝缘的主要原因。为了分析线圈上的电压振荡,先求出电压沿线圈的稳态电压分布。电压沿线圈的稳态分布由线圈的电阻决定,它是一条斜直线,如图4中的曲线2所示。 从上面的分析可看出:两个线圈串联时,两个线圈连接点附近的起始电压分布和稳态电压分布的差值比单个线圈时起始电压分布和稳态电压分布的差值要大得多,由此引起振荡强烈得多。如果变压器的绝缘强度较弱,则首先在这里出现缺陷。这种分析得出的结论与试验中出现的现象是一致的。 三、结论 在变压器雷电冲击试验中,电压梯度的大小是影响变压器绝缘的一个因素。但危害变压器绝缘的主要因素,是由于变压器绕组的起蛤电压分布和稳态电压分布不一致而引起的电压振荡过程。在三角形连接绕组的变压器雷电冲击试验中,如果试验接线方式为只有一个非被试相端子接地,则两个线圈串联的电压振荡过程有可能比单个线圈的电压波振荡过程更为严重,对变压器的绝缘考核也更为严重。 参考文献: [1]不同接线方式下直流电缆雷电冲击试验研究[J].乐彦杰,宣耀伟,俞恩科,郑新龙,陈国东,沈耀军.高电压技术.2015(08) [2]传递函数在变压器雷电冲击试验中的应用[J].刘杰.变压器.2015(04) [3]变压器雷电冲击试验的调波理论与计算[J].蒋将,汪春祥,郑军,张迪,周海京.变压器.2015(06) [4]变压器雷电冲击试验空间磁场对智能组件影响的计算分析[J].赵军,陈维江,高飞,张建功.中国电机工程学报.2016(14)

各材料的传热系数

玻璃结构膜层位置厚度 Mm 传热系数 W/m2K 遮阳系数Ht Gain W/m2 单层玻璃 6mmC 无 5.8 5.818 0.92 630 10mmC 无9.9 5.68 0.91 612 12mmC 无12.1 5.604 0.87 570 夹层玻璃 3mmC+0.38PVB+3mmC 无 6.1 5.727 0.91 610 5mmC+0.76PVB+5mmC 无10.1 5.58 0.86 579 5mmC+0.76PVB+6mmC 无11.3 3.54 0.74 489 普通中空 6mmC+6A+6mmC 无17.9 3.109 0.829 548 6mmC+6Ar+6mmC 无17.9 2.842 0.830 547 6mmC+9A+6mmC 无20.9 2.835 0.830 547 6mmC+9Ar+6mmC 无20.9 2.624 0.831 546 6mmC+12A+6mmC 无24.0 2.700 0.831 545 6mmC+16A+6mmC 无27.9 2.691 0.831 545 6mmC+12Ar+6mmC 无24.0 2.532 0.831 545 6mmC+16Ar+6mmC 无27.9 2.547 0.831 545 12mmC+12Ar+12mmc 无36.3 2.450 0.830 482 双中空玻璃 6mmC+6A+6mmC+6A+6mmC 无29.9 2.142 0.730 478 6mmC+6Ar+6mmC+6Ar+6mmC 无29.9 1.902 0.731 478 6mmC+9A+6mmC+9A+6mmC 无35.9 1.893 0.731 478 6mmC+9Ar+6mmC+9Ar+6mmC无35.9 1.7120.732477 6mmC+12Ar+6mmC+12Ar+6mmC无41.9 1.6130.732477单Low-E中空玻璃 6mmC+6A+6mmL0.16 3 17.9 2.516 0.771 506 6mmC+6Ar+6mmL0.16 3 17.9 2.082 0.777 507 6mmC+9A+6mmL0.16 3 20.9 2.084 0.777 507 6mmC+9Ar+6mmL0.16 3 20.9 1.731 0.782 507 6mmC+12A+6mmL0.16 3 24.0 1.890 0.780 507 6mmC+12Ar+6mmL0.16324.0 1.6160.785508 6mmC+12Ar+6mmL0.027 3 23.9 1.329 0.538 349 6mmC+12Ar+6mmL0.027 2 23.9 1.329 0.420 279 6mmC+12Ar+6mmL0.16 2 24.0 1.616 0.723 469 6mmC+16A+6mmL0.16 3 27.9 1.920 0.784 508 6mmC+16Ar+6mmL0.16 2 27.9 1.685 0.723 467 6mmC+16Ar+6mmL0.16327.9 1.6850.787508

空气 水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理 二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求 1、了解间壁式传热元件,掌握给热系数测定的实验方法。 2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 四.实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4-2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算,

()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4-3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算, ()() 1 221 1221m t T t T ln t T t T t -----= ? (4-4) 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数, ()()M W p t t A t t c m --= 212222α (4-5) 实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。 然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。 由式(4-1)得, ()m p t A t t c m K ?-= 1222 (4-6) 实验测定2m 、2121T T t t 、、、、并查取()212 1 t t t += 平均下冷流体对应的2p c 、换热面积

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系 数测定 一、实验目的 1、 了解间壁式传热元件,掌握给热系数测定的实验方法。 2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途 径。 二、基本原理 在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热 量交 换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()() ()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) T t 图4-1间壁式传热过程示意图

式中:Q - 传热量,J / s ; m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ?℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ?℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃; α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 1 - 热流体侧的对流传热面积,m 2; ()m W T T -- 热流体与固体壁面的对数平均温差,℃; α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 2 - 冷流体侧的对流传热面积,m 2; ()m W t t - - 固体壁面与冷流体的对数平均温差,℃; K - 以传热面积A 为基准的总给热系数,W / (m 2 ?℃); m t ?- 冷热流体的对数平均温差,℃; 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4 -2) 式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃; T W 2 - 热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算, ()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4 -3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃; t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。

一起 500kV电力变压器雷电冲击试验击穿故障分析

一起 500kV电力变压器雷电冲击试验击穿故障分析 发表时间:2019-11-15T09:12:45.267Z 来源:《中国电业》2019年14期作者:刘枝 [导读] 电力变压器是电力系统中最重要的电气设备之一,其运行状况直接影响着供电的安全性、可靠性。 摘要:电力变压器是电力系统中最重要的电气设备之一,其运行状况直接影响着供电的安全性、可靠性。在运行过程中,变压器不仅需要承受长期工作电压,还会遇到雷电过电压、操作过电压、工频过电压等情况,其绝缘强度会不断受到考验,近年来已发生数起500kV电力变压器绝缘故障,造成了重大的损失。究其原因,一个重要的方面是制造过程遗留的微小缺陷未能在出厂前及时发现,经过长时间运行后引起变压器内部局部放电,最终导致内部绝缘破坏等严重故障的发生。本文以一起500kV电力变压器雷电冲击试验击穿故障进行详细的分析。 关键词:电力变压器;雷电冲击;试验 1试验情况 1.1设备信息 实验变压器铁心采用单相四柱三框式结构,主柱绕组从内到外依次为低压绕组、中压绕组、高压绕组;激磁绕组和调压绕组位于旁柱上,采用线性调压的方式。调压绕组采用内外两层串联的结构。 1.2试验过程 按照试验方案,雷电冲击试验前完成了绕组对地绝缘电阻测量、绕组绝缘系统电容及介质损耗因数测量、套管试验、电压比测量及联结组别检定和绕组电阻测量等试验,试验结果均符合相关标准及技术协议要求。 雷电冲击试验首先在高压绕组线端进行,分别施加1次50%电压和3次100%电压下的雷电冲击。试验过程中无异常放电现象,电压波形波头、波尾时间、电压幅值、过冲等均符合标准要求,50%电压冲击波形与100%电压冲击波形相似,电流波形无截断,试验通过。 在中压进行试验时变压器位于1分接。施加50%冲击电压和首次施加100%冲击电压试验均顺利通过;第二次施加100%冲击电压试验时出现异常放电:试验人员听到清脆异响,电压异常降低,电流波形出现大幅振荡。试验未通过,初步判断变压器内部放生了绝缘击穿。 随后再次施加冲击电压,并利用局部放电超声波自动定位系统判断击穿位置。在油箱4个面的上部和下部分别布置2个传感器,施加70%电压试验,又发生击穿,听到内部放电声,冲击电压波形出现截断。此时,布置在变压器油箱侧面下部人孔附近的超声信号传感器测得的时域信号最超前,该处为铁心旁柱所在位置,怀疑调压绕组下部出线位置附近发生绝缘击穿。 冲击试验后对该变压器油样进行采集。三比值法编码为102,判断变压器内部发生了电弧放电。CO、CO2含量也发生突变,判断故障涉及固体绝缘材料。 1.3吊罩检查 首先工作人员对故障设备外观进行了全方位检查,油箱无变形,套管无裂纹,非电量保护装置正常无动作,无渗漏油。 外观检查后厂家组织吊罩检查。拆除套管等附件后将上节油箱吊起,发现油箱底部散落有瓦楞纸和绝缘纸碎片。进一步观察到内层调压绕组下部引线下部出头与托板槽口左侧、下侧贴合紧实,绝缘被击穿,引线出头沿托板对夹件腹板放电,有明显电弧灼烧痕迹,其他位置均无放电痕迹。 将绕组拔出,对主柱和旁柱主体进行检查:各组绕组排列整齐,间隙均匀;绕组间、绕组与铁心及铁心与轭铁间的绝缘垫,完整无松动;绝缘板绑扎紧固。绕组绑扎牢固,无移动变形现象,绝缘层完整,表面无变色、脆裂或击穿等缺陷。因此判断击穿仅发生在调压绕组下部引线位置。 剥除所有调压绕组下部引线外绝缘层发现放电点为调压绕组下部2分接出头,其余分接无放电痕迹,调压绕组其他位置无放电痕迹和损伤。调压绕组和励磁绕组之间的围屏以及内部励磁绕组未受损伤。 2原因分析 故障发生后,厂方与业主单位的专家及技术人员共同分析,从设计、制造工艺控制、关键点检查等方面归纳出故障原因。 2.1设计方面 针对击穿处的绝缘,未将绕组出头处沿垫板对地的爬距考虑在内。经实际测量发现,纸板沿面爬距为120mm。而变压器制造厂家均认可的设计绝缘距离为220kV等级引线表面包10mm绝缘时油中对地距离为190mm、沿纸板爬电距离为620mm。因此该部位绝缘裕度严重不足,是造成该变压器绝缘击穿及沿绝缘表面爬电的主要原因。 2.2制造工艺控制方面 与该变压器同批次生产的同类型变压器共三台,其中一台通过了全部出厂试验。为了与发生击穿的变压器进行对比,对通过所有出厂试验的变压器进行吊罩检查。发现该变压器调压绕组下部引线的挝弯位置明显高于故障变压器,且出线与槽口两边距离相当,其调压绕组下部出头与托板间有一定的油隙,该油隙可以提高引线出头与夹件间的耐电强度,使其顺利通过绝缘试验。但纸板沿面爬距仍不满足要求。因此制造过程中工艺控制不严谨、不规范也是造成变压器发生绝缘击穿的原因之一。 2.3关键点检查方面 在产品的生产过程中,厂方质量监督人员和业主驻厂监造人员均应当对绕组绕制、器身装配、绝缘包扎等关键环节,绕组出头放置、绝缘距离等关键尺寸进行现场核对。但双方在核对各部件接口时忽视了调压内层下部出线引线对铁心夹件的距离校核,没有及时发现该部位的绝缘距离不足,是造成变压器发生绝缘击穿的又一个原因。 3结果及建议 3.1整改措施 (1)改变外层调压绕组的下部出线方式,由原来的轴向出线方式改为辐向出线方式。进而有效提高外层调压绕组的出头位置,增加了与下夹件间的纸板沿面爬距,有效提升了绝缘强度。 (2)调整内层调压绕组的出头档位,使内层调压出线位置向远离夹件的方向转动1个档位,进一步拉开调压出线与下夹件的爬电距离。(3)改进内层调压绕组的出头包扎方式,首先在出线外包裹瓦楞纸板,再通过加包纸浆成型件,伸出托板辐向尺寸约200mm,并在调压绕组出线下部的两层托板间增加1层反角环。通过以上措施进一步分割油隙,增大爬距,进而起到增强绝缘的作用。通过更改设计方案和更换

对流传热系数

广州大学学生实验报告 开课学院及实验室: 年 月 日 学院 化学化工 年级 专业 化学112 姓名 韦高威 学号 1105100053 实验课程名称 化工基础实验 成绩 实验项目名称 对流传热系数测定实验 指导老师 一、 实验目的 二、 实验原理 三、 使用仪器与材料 四、 实验步骤 五、 实验数据记录与处理 六、 实验结果及分析 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4 .0Pr Re ??=a A Nu 中的参数A 、a 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,cp 设备特征尺寸:l 操作:u ,βgΔT 则:α=f (ρ,μ,λ,cp ,l ,u ,βgΔT ) 2)量纲分析 ρ[ML-3],μ[ML-1 T-1],λ[ML T -3 Q-1],cp [L2 T-2 Q-1],l[L] ,u[LT-1], βgΔT [L T -2], α[MT-3 Q-1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ cp: Pr =cp μ/λ βgΔT : Gr =βgΔT l3ρ2/μ2 5)原函数无量纲化 ???? ???=223,,μρβλμμρλαtl g c lu F l p 6)实验 Nu =ARea Prb Grc 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: m t A K t T t T t T t T A K Q ???=-----?=111 22112211 1ln ) ()( 热量衡算方程: )()(12322111t t c q T T c q Q p m p m -=-= 圆管传热牛顿冷却定律: 2 2112211 22211221121 1ln ) ()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----?=-----?=αα 圆筒壁传导热流量:)]/()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54 .02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃] 三、实验流程 1、蒸汽发生器 2、蒸汽管 3、补水漏斗 4、补水阀 5、排水阀 6、套管换热器 7、放气阀 8、冷凝水回流管 9、空气流量调节阀 10、压力传感器 11、孔板流量计 12、空气管 13、风机 图1、传热实验流程 套管换热器内管为φ27×3.5mm 黄铜管,长1.25m,走冷空气,外管为耐高温玻璃管,壳程走100℃的热蒸汽。进、出口温度由铂电阻(Pt100)测量,使用时测温点位于管道中心。壁温1、壁温2由热电偶测量,测温点通过锡焊嵌入管壁中心,测量值为壁中心温度。蒸汽发生器加热功率为1.5kW ,变频器为西门子420型,风机为XGB 型旋涡气泵,最大静风压17kPa ,最大流量100 m3/h 。此外,还用到了北京化工大学化工原理实验室开发的数据采集与控制软件。 四、实验操作 1、检查蒸汽发生器中的水位,约占液位计高度4/5左右,如不够需加水; 2、按下总电源、加热器、风机绿色按钮,开仪表开关,等待20分钟套管间充满水蒸汽; 3、约到15分钟时,观察壁温1、壁温2的变化以及水蒸汽的滴状冷凝情况; 4、当有蒸汽和不凝性气体从套管间排出时,全开流量调节阀,用鼠标点击上图中绿色按钮启动风机预热设备 5分钟; 5、通过计算机间隔3~4Hz 调节频率10→50→10Hz ,每个点稳定约1.5分钟记录数据,注意随时查看结果,

变压器冲击合闸

新安装的变压器在空载(二次侧不带负载)状态下,合闸投入线路,然后再分闸切除,再合闸,再分闸,一般要重复三到五次,这就叫冲击合闸。在高压开关柜上直接操作。 因为变压器在空载状态下投切时最大能产生两倍左右的过电压,这个过电压极易使变压器损坏,冲击合闸就是为了考核变压器能否经受这个过电压,检查变压器绝缘是否有薄弱点,以保证变压器今后运行更安全。 变压器的冲击合闸,是变压器安装完成后正式投入运行前的试验项目之一。所谓冲击合闸,就是断开低压侧出线总开关,合闸高压侧的开关,使变压器全压(额定电压)空载运行,并检查它的声音等和各部件有无异常,5分钟后停止运行。冲击试验的目的是检验冲击合闸时产生的励磁涌流是否会使变压器的差动保护误动作。规范规定,一般配电变压器因无差动保护,这样的冲击试验只做三次。大型变压器(有差动保护者)要求做5次。 1、检验变压器绝缘、机械强度能承受工作电压和励磁涌流的冲击。 2、检验变压器差动保护是否能躲过励磁涌流的影响。 “全电压”指正常工作电压全部投入。 是相对于“降电压”的一种说法。 变压器冲击合闸试验。 1,变压器的冲击合闸试验不一定必须从高压侧进行,这与变压器的应用场合相关。一般此项试验是结合变压器投运运行的。由于我们使用的大部分是降压变压器,来电一方自然是高压侧,就只能从高压侧冲击。若对发电厂的升压变压器,来电方是在低压侧,就要从低压冲击了。对于有倒送电能力主变可从高压侧做。一、变压器全压充电肯定会有励磁涌流,只是每一次的大小不相同而已。励磁涌流大小和剩磁、合闸角(非周期分量)因素有管!产生就是:电压最大达到一倍,磁通达到一倍,过饱和,电流骤增。 2,冲击试验的次数: 主变第一次投运前,应在额定电压下冲击合闸五次,第一次受电后持续时间应不小于10分钟,每次间隔大于5分钟。大修后主变应冲击三次;瓦斯下浮子在主变冲击合闸前就应投跳闸,冲击合闸正常,有条件时空载充电24小时;110千伏及以上变压器启动时,如有条件应采用零起升压;变压器的有载调压装置,应于变压器投运时进行切换试验正常,方可投入使用。 3,新变压器或大修后的变压器在正式投运前要做冲击试验的原因如下: 1)、检查变压器绝缘强度能否承受全电压或操作过电压的冲击。(为什么切空载变压器会产生过电压?一般采取什么措施来保护变压器? 理论上说,切除任何一个感性负载都会产生操作过电压; 因为感性负载存在电感L,通电的感性负载存在磁场Φ,也就有电磁能W,这是个不能跃变

对流换热系数的确定.doc

对流换热系数的确定 核心提示:1.自然对流时的对流换热系数炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。2.强制对流时的对流换热系数(1)气流沿 1.自然对流时的对流换热系数 炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。 2.强制对流时的对流换热系数 (1)气流沿平面强制流动时气流沿平面流动时,烧结炉其对流换热系数可按表1-1的近似公式计算。 表1-1对流换热系数计算 vo=C4.65(m/s) x;o>4.65(m/s) 光滑表面a=5.58+4.25z'o a^V.Slvg78 轧制表面a-=5.81+4.25vo a=7.53vin. 粗糙表面o=6.16+4.49vo a=T.94vi78 气流沿长形工件强制流动时当加热长形工件时,循环空气对工件表面的对流换热系数可用下述近似公式计算 气流在通道内层流流动时气流呈层流流动时,对流换热系数主要决定于炉气的热导率,而与炉气的流速无关。 绝对黑体的概念 当物体受热后一部分热能转变为辐射能并以电磁波的形式向外放射,其波长从lfmi到若干m。各种不同波长的射线具有不同性质,可见光和红外线能被物体吸收转化为热能,称它们为热射线。各种物体由于原子结构和表面状态的不同,其辐射和吸收热射线的能力有明显差别。 当能量为Q的一束热射线投射到物体表面时,也和可见光一样,一部分能量Qa将被吸收,一部分能量Qr被反射,还有一部分能量Qu透射过物体(如图1-5)。按能量守恒定律则有

图1-5辐射能的吸收、反射和透过 如果A=l,则R=D=0,即辐射能全部被吸收,这种物体称绝对黑体,简称黑体。 如果R=l,则A=D=0,即辐射能全部被反射,这种物体称绝对白体,简称白体。如果D= 1,则A=K=0,即辐射能全部被透过,这种物体称绝对透过体,简称透过体。 自然界中,黑体、白体和透过体是不存在的,它们都是假定的理想物体。对于一种实 际物体来说数值,不仅取决于物体的特性,还与表面状态、温度以及投射射线的波长等有关。为研究方便,人们用人工方法制成黑体模型。在温度均匀、不透过热射线的空心壁上开一小孔,此小孔即具有绝对黑体性质:所有进入小孔的辐射能,在多次反射过程中几乎全部被内壁吸收。小孔面积与空腔内壁面积之比越小,小孔越接近黑体。当它们的面积比小于0.6%,空腔内壁的吸收率为0.8时,则小孔的吸收率A大于0.998,非常接近黑体。

2014国家电网变压器试验标准

变压器试验项目清单10kV级 例行试验 绕组直流电阻互差: 线间小于2%,相间小于4%; 电压比误差: 主分接小于0.5%,其他分接小于1%; 绝缘电阻测试:2500V摇表高压绕组大于或等于1000MΩ,其他绕组大雨或等于500MΩ; 局部放电测量(适用于干式变压器) 工频耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 噪声测试 密封性试验(适用于油浸式变压器) 附件和主要材料的试验(或提供试验报告) 现场试验: 按GB50150相关规定执行 绝缘油试验 绕组连同套管的直流电阻

变压比测量 联结组标号检定 铁心绝缘电阻 绕组连同套管的绝缘电阻 绕组连同套管的交流工频耐压试验 额定电压下的合闸试验 抽检试验 绕组电阻测量 变压比测量 绝缘电阻测量 雷电全波冲击试验 外施耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 xx试验 油箱密封性试验(适用于油浸式变压器)容量测试 变压器过载试验 联结组标号检定

突发短路试验 长时间过载试验 35kV级 应提供变压器和附件相应的型式试验报告和例行试验报告 例行试验 绕组电阻测量 电压比测量和联结组标号检定 短路阻抗及负载损耗测量 1.短路阻抗测量: 主分接、最大、最小分接、主分接低电流(例如5A2负载损耗: 主分接、最大、最小分接 3短路阻抗及负载损耗均应换算到75℃ 空载损耗和空载电流测量 1.10%-115%额定电压下进行空载损耗和空载电流测量,并绘制出励磁曲线 2.空载损耗和空载电流进行校正 3.提供380V电压下的空载损耗和空载电流 绕组连同套管的绝缘电阻测量: 比值不小于1.3,或高于5000MΩ绕组的介质损耗因数(tanδ)和电容测量 1.油温10-40℃之间测量 2.报告中应有设备的详细说明

空气 蒸汽对流给热系数测定实验报告及数据 答案

空气—蒸汽对流给热系数测定 一、实验目的 ⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α 1的测定方法,加深对其概念和影响因素的理解。并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。 ⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。 二、实验装置 本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。饱和蒸汽由配套的电加热蒸汽发生器产生。该实验流程图如图1所示,其主要参数见表1。 表1 实验装置结构参数

图1? 空气-水蒸气传热综合实验装置流程图 1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀; 12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口; 孔板流量 空气压 蒸汽压 空气入 蒸汽温空气出口

三、实验内容 1、光滑管 ①测定6~8个不同流速下光滑管换热器的对流传热系数α1。 ②对 α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。 2、波纹管 ①测定6~8个不同流速下波纹管换热器的对流传热系数α1。 ②对 α1的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。 四、实验原理 1.准数关联 影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为: Nu=CRe m Pr n Gr l (1) 式中C 、m 、n 、l 为待定参数。 参加传热的流体、流态及温度等不同,待定参数不同。目前,只能通过 实验来确定特定范围的参数。本实验是测定空气在圆管内作强制对流时的对流传热系数。因此,可以忽略自然对流对传热膜系数的影响,则Gr 为常数。在温度变化不太大的情况下,Pr 可视为常数。所以,准数关联式(1)可写成 Nu =CRe m (2) Re 4 du V d ρ ρ π μ μ == 其中: , 500.02826W/(m.K)d Nu αλλ = =℃时,空气的导热系数

空气-蒸汽给热系数测定实验 实验报告

浙江科技学院 实验报告 化工原理课程名称: 学院: 专业班: 姓名: 学号: 同组人员: 实验时间:年月日 指导教师:

一、实验课程名称:化工原理 二、实验项目名称:空气-蒸汽对流给热系数测定 三、实验目的和要求: 1、 了解间壁式传热元件,掌握给热系数测定的实验方法。 2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途 径。 四、实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 2112211ln W W W W m W T T T T T T T T T T -----=- (4-2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算, ()()() 2 2112211ln t t t t t t t t t t W W W W m W -----=- (4-3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算, T t 图4-1间壁式传热过程示意图

对流传热实验

对流传热实验 一、实验目的 ⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数 A、m的值。 ⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。 二、实验装置 本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。饱和蒸汽由配套的电加热蒸汽发生器产生。该实验流程图如图1所示,其主要参数见表1。 表1 实验装置结构参数 实验内管内径d i(mm)16.00 实验内管外径d o(mm)17.92 实验外管内径D i(mm)50 实验外管外径D o(mm)52.5 总管长(紫铜内管)L(m) 1.30 测量段长度l(m) 1.10 1

2 图1 空气-水蒸气传热综合实验装置流程图 1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀; 12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口; 孔板流量计测量空气流量 空气压力 蒸汽压力 空气入口温度 蒸汽温度 空气出口温度

雷电冲击试验报告

绝缘液体雷电冲击击穿电压测定 一、试验目的 电力系统中的高压电气设备除承受长期工作电压(交流或直流)作用外,还受到大气感应造成的过电压的作用,为保证绝缘液体的绝缘质量,需对绝缘液体进行雷电冲击电压试验。变压器由多种材料组合而成,结构形状也极为复杂。绝缘结构任一局部范围内的破坏都会使整个设备丧失绝缘性能。因此,一般只能用可以耐受多高的试验电压(单位为KV)来表示设备的整体绝缘能力。绝缘耐压试验电压可表明设备耐受的电压水平,但并不等同于该设备所实际具有的绝缘强度。 二、试验原理 雷电击中架空线路导线或户外变电站将产生雷电过电压,其波形变化范围很大,人工模拟这种暂态电压,以研究和考验绝缘液体的绝缘强度。 三、试验仪器 试验容器欧姆表测微计或螺旋计或厚度规金相显微镜脉冲发生器电阻分压器峰值电压表 四、试验步骤 1.试验容器的准备:试验容器是一个带有垂直间隙的容器,其内可容纳液体的 体积约为300mL,限定只有两极和支撑的部分可以是金属材料,容器所用的绝缘材料必须具有高介电强度、在80o C下具有良好的热稳定性、能与被测绝缘液体相容,并耐溶剂、耐常用于被测液体的清洁剂;试验容器应易拆卸易清洗彻底,其尺寸应保证闪络电压至少为250kV。 2.试验容器的清洗:试验容器的所有零件包括球电极和唱针都应用试剂级的庚 烷脱脂,用洗涤剂洗涤,用热自来水彻底冲洗,然后用蒸馏水冲洗,用无油脱水的压缩空气干燥各零件。

3.液体取样:用待测液体彻底地清洗试样容器和电极,并慢慢地将试样注入试 验容器,切勿产生气泡,在试验前让液体静置至少5min。试验时试样的温度应与实验室温度相同,通常在15o C到30o C之间。 4.电极间隙的调整:轻轻使两电极接触,用欧姆表检测是否接触良好。然后用 一个测微计或螺旋计或厚度规使其中一个电极移开达期望的间隙值,其允许偏差为±0.1mm。 5.脉冲电压的校准:用一个精确标定的电阻分压器和一个峰值电压表,根据 GB/T 311.6-2005用球隙法校正测量系统,脉冲电压的峰值电压测量误差应已知且不超过3%。 6.试验过程: 6.1逐级试验:先使用15mm间隙,50kV其实电压和步进10kV升压1来 进行试验,每个电压等级下要加一个脉冲,在相邻两脉冲之间时间间 隔只是1min,直至击穿。按照所确定的起始电压、电压步进值和电 极间隙重复试验直至获得被试液体的五个击穿值2,取其平均值作为 被试液体的雷电脉冲击穿电压。 值及参数画出判定图,按照6.1的结论选择 6.2 连续试验:根据相应的P 一个脉冲电压峰值U 3并设定脉冲发生器,准备试验,施加第一个脉冲 到电极上,如果没有击穿,则在另一个脉冲前等待一分钟,然后继续加 脉冲直至发生击穿,在判定图上对脉冲和相应的击穿描点;重复试验, 至能进行判定为止4,当超85次脉冲数后还不能裁定时,则应在更低 水平上重复试验。 五、试验数据及处理

对流换热系数

对流换热系数 流体与固体表面之间的换热能力,即物体表面与附近空气温差1℃、单位时间单位面积上通过对流与附近空气交换的热量。单位为W/(m^2·℃)。表面对流换热系数的数值与换热过程中空气的物理性质、换热表面的形状、部位、表面与流体之间的温差以及空气的流速等都有密切关系。表面附近的气流速度愈大,其表面对流换热系数也愈大。如人处在风速较大的环境中,由于皮肤表面的对流换热系数较大,其散热(或吸热)量也较大。对流换热系数可用经验公式计算,通常用巴兹公式计算。 对流传热系数也称对流换热系数。对流换热系数的基本计算公式由牛顿于1701年提出,又称牛顿冷却定律。牛顿指出,流体与固体壁面之间对流传热的热流与它们的温度差成正比,即: q = h*(tw-t∞) Q = h*A*(tw-t∞) 式中: q为单位面积的固体表面与流体之间在单位时间内交换的热量,称作热流密度,单位W/m^2; tw、t∞分别为固体表面和流体的温度,单位K; A为壁面面积,单位m^2; Q为面积A上的传热热量,单位W; h称为表面对流传热系数,单位W/(m^2.K)。 对流换热系数h的物理意义是:当流体与固体表面之间的温度差为1K时,1m*1m壁面面积在每秒所能传递的热量。h的大小反映对流换热的强弱。 如上所述,h与影响换热过程的诸因素有关,并且可以在很大的范围内变化,所以牛顿公式只能看作是传热系数的一个定义式。它既没有揭示影响对流换热的诸因素与h之间的内在联系,也没有给工程计算带来任何实质性 的简化,只不过把问题的复杂性转移到传热系数的确定上去了。因此,在工程传热计算中,主要的任务是计算h。计算传热系数的方法主要有实验求解法、数学分析解法和数值分析解法。 影响对流传热强弱的主要因素有: 1. 对流运动成因和流动状态; 2. 流体的物理性质(随种类、温度和压力而变化); 3. 传热表面的形状、尺寸和相对位置; 4. 流体有无相变(如气态与液态之间的转化)。 在不同的情况下,传热强度会发生成倍直至成千倍的变化,所以对流换热是一个受许多因素影响且其强度变化幅度又很大的复杂过程。

实验三+蒸汽─空气对流传热传热系数的测定

实验三 蒸汽─空气对流传热传热系数的测定 一、实验目的 1. 测定套管式换热器的总传热系数K ; 2. 测定圆形直管内传热膜系数α,并学会用实验方法将流体在管内对流及强制对流 时的实验数据整理成包括传热膜系数α的准数方程式; 3. 了解并掌握热电偶和电位差计的使用及其温度测量。 二、基本原理 1.测定传热系数K 根据传热速率方程式:m T KA ?=φ (1) m T A K ?= φ (2) 式中: φ传热速率,W ; K 总传热系数,W/(m 2·℃); A 传热面积; m T ?两流体的平均温度差。 实验时,若能测定或确定φ、A 和,则可测定K 。 m T ?⑴ 实验是测定蒸汽加热空气时的对流传热总传热系数,其中蒸汽通加套管环隙加热内管的空气,具体的流程如下: 在不考虑热损失的条件下,有 )(122211T T c q r q p ?==m m φ (3) 式中: q m1— 蒸汽冷凝液的质量,kg/s ; r 1 — 蒸汽冷凝潜热,J/kg ; q m2— 空气的质量流量,kg/s ; c p2 — 空气的定压比热,J/(kg ·K);

T 1、T 2— 空气的进出口温度,℃; T W1、T W2— 内管外壁温度与内壁温度,℃。 实验中传热速率φ按空气的吸热速率计算。其中空气的质量流量由孔板流量计测量其 体积流量后转化为质量流量。即: q m =t ρq V (4) 式中: t ρ—为空气进出口平均温度下的密度,kg/m 3。 q V — 为空气的体积流量,m 3/s 。 本实验中,空气的体积流量由孔板流量计测量并通过压力传感器将其差压数字在显示仪表上显示出。20℃ 下空气流量由公式(5)计算。 6203.000)(p C q t ?×=V (5) 其中, — 20℃ 下的体积流量,m 0t q V 3/h ; C 0— 孔板流量系数,本实验装置中其值为22.696。 p ?—孔板两端压差,kPa 。 则实验条件下的空气流量q V (m 3/h)则需按下式计算: 2732730t T q q t t ++× =V V 式中:t q V —实验条件(管内平均温度)下的空气流量,m 3/h 。 T —换热器管内空气的平均温度,℃。 ⑵ 传热推动力m T ? 2 1111 2ln T T T T T T T w w m ???= ? (6) 2.测定传热膜系数 在蒸汽-空气换热系统中,若忽略管壁与污垢的热阻,则总传热系数K 与传热膜系数α的关系为: 2 1111αα+≈K (7)

相关主题
文本预览
相关文档 最新文档