当前位置:文档之家› 几何证明——中点模型(中级)

几何证明——中点模型(中级)

几何证明——中点模型(中级)
几何证明——中点模型(中级)

几何证明——中点模型(中级)

【知识要点】

1、中位线定理:如图,在ABC ?中,若AD BD =,AE CE =,则//DE BC 且1

2

DE BC =

2、中线倍长(倍长中线): 如图(左图),在ABC ?中,D 为BC 中点,延长AD 到E 使AD DE =,连接BE ,则有:ADC ?≌EDB ?。 作用:转移线段和角。

B

A

注意:

①在实际运用中,与某个中点相连的线段,都可以将其看作“中线”,从而都可以考虑将它倍长(需要的话)。 ②如上右图,如果出现“两条平行线夹中点”的情形,一定会出现“X 全等”或“叉叉全等”或“8字型全等”, 有时这个“叉叉”需要我们自己画出来(辅助线). 3、直角三角形斜边中线定理:

如图,在Rt ABC ?中,90ACB ∠=?,D 为AB 中点,则有:1

2

CD AD BD AB ===

A

4、三线合一:

在ABC ?中:(1)AC BC =;(2)CD 平分ACB ∠;(3)AD BD =,(4)CD AB ⊥.

“知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出剩下两条。

A

请牢记:当你发现有某一条线同时具备了“垂线”、“角平分线”、“中线”三种功能当中的任意两种功能时,那么这条线就一定是某个等腰三角形的对称轴,换句话说,以这条线为对称轴必定有等腰三角形出现.

【经典例题】

例1、如图所示,已知D 为BC 中点,点A 在DE 上,且CE AB =,求证:CED BAD ∠=∠.

D

B

例2、如图,已知在ABC ?中,AD 是BC 边上的中线,E 是AD 上一点,且AC BE =,延长BE 交AC 于F ,求证:EF AF =。

B

例3、如图,在ABC ?中,AD 为A ∠的平分线,M 为BC 的中点,ME AD //, 求证:()AC AB CF BE +=

=2

1

D M

B

C

例4、如图,已知ABC ?中,CE BD ,为高线,点M 是DE 的中点,点N 是BC 的中点.求证: DE MN ⊥。

B

C

例5、如图所示,在ABC ?中,AB AC >,M 为BC 的中点,AD 是BAC ∠的平分线,若AD CF ⊥且交

AD 的延长线于F ,求证:)(2

1

AB AC MF -=

B

例6、如图所示,在ABC ?中,AD 是BAC ∠的平分线,M 是BC 的中点,AD ME ⊥且交AC 的延长线

于E ,CE CD 2=,求证:B ACB ∠=∠2。

B

【提升训练】

1、已知如图,ABC ?中,AD 是BC 边上的中线 ,求证:2

AC

AB AD +<

.

B

2、已知:如图,在矩形ABCD 中,E 为AD 的中点,EC EF ⊥交AB 于F 连结()AE AB FC >。求证:

ECF AEF ∠=∠.

F

D

A

3、已知如图,ABC ?中,D 是BC 边的中点,E 是AD 边的中点,连结BE 并延长交AC 于点F . 求证:AF FC 2=。

D

B

4、在梯形ABCD 中,BC AD //,BC AD AB +=,E 为CD 的中点,求证:BE AE ⊥。

B

5、已知:在正方形ABCD 中,对角线AC 、BD 交于O ,AF 为BAC ∠的平分线,交BD 于E ,BC 于F . 求证:FC OE 2

1

=.

A

B

6、如图,ABC ?中,B ∠的平分线BE 与BC 边的中线AD 垂直,垂足为F ,且4==AD BE ,求ABC ?的三边长。

A

C

7、如图,在ABC ?中,5==AC AB ,6=BC ,点M 为BC 中点,AC MN ⊥于点N ,求MN 的长。

8、如图,已知ABC ?中,AD 是BAC ∠的平分线,AD 又是BC 边上的中线,求证AC AB =。

B

C

9、如图,已知ABC ?中,BC AC AB ,3,5==上的中线2=AD ,求BC 的长.

B

C

10、如图,在ABC ?中,D 是AB 的中点,CD AC ⊥,3

tan =∠BCD ,求A ∠的正切值.

A

B

11、已知:如图,ABC ?中,BC AB =,在AB 上取点D ,在AC 延长线上取点E ,连结DE 交BC 于点F ,若F 是DE 中点,求证:CE BD =.

B

12、如图,M 是ABC ?的边BC 的中点,AN 平分BAC ∠,AN BN ⊥于点N ,且10=AB ,15=BC ,

3=MN ,求ABC ?的周长。

C

13、如图,已知:ABC ?中,D A ,90 =∠是BC 的中点,DF DE ⊥。求证:2

22EF CF BE =+。

D

B

C

14、如图,已知ABC ?中,D 是BC 的中点,DF DE ⊥。求证:EF CF BE >+。

B

C

15、如图,D 是ABC ?中BC 边上的一点,且AB CD =,BAD BDA ∠=∠,AE 是ABD ?的中线, 求证:AE AC 2=。

E

B

C

16、如图,已知等腰三角形ABC 中,BD AC AB A ,,90==∠ 平分BD CE ABC ⊥∠,,垂足为点E ,

求证:CE BD 2=。

B

17、已知:如图,AD CD AC AB CAD BAD ⊥>∠=∠,,于点H D ,是BC 中点,

求证:()AC AB DH -=

2

1

C

B

18、如图,在正方形ABCD 中,F 是AB 中点,连接CF ,作CF DE ⊥交BC 于点E ,交CF 于点M ,求证:AD AM =。

F

19、已知:ABD ?和ACE ?都是直角三角形,点C 在AB 上,且

90=∠=∠ACE ABD ,如图,连接DE ,

设M 为DE 的中点,连接MC MB ,。求证:MC MB =。

D

E

20、如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AD BD 2=,E 、F 、G 分别是OC 、

OD 、AB 的中点。求证:(1)AC BE ⊥(2)EF EG =.

B

21、请阅读下列材料:问题:如图,在菱形ABCD 和菱形BEFG 中,点E B A ,,在同一条直线上,P 线段DF 的中点,连结PC PG ,.若

60==∠BEF ABC ,探究PG 与PC 的位置关系.

D

B

E

22、如图,ABC ?中,D 是边BC 的中点,AC BE ⊥于点E ,若

30=∠DAC ,求证:BE AD =。

A

B

23、如图,梯形ABCD 中,AD ∥BC ,E 是AB 中点,CD EF ⊥于F ,4,6==EF CD ,求ABCD S 梯形。

B

24、如图,三角形ABC ,D 为BC 上的点,过B 作AE BE ⊥,交AD 延长线于E ,作AD CF ⊥交AD 于F ,G 为BC 中点,连接FG 与GE ,求证:GE FG =

F

E D

C

B A

26、如图,正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上(CG >BC ),M 是线段AE 的中点,DM 的延长线交CE 于N .

(1)求证:AD=NE (2)求证:①DM=MF ;②DM ⊥MF .

27、如图,等腰梯形ABCD 中,AB CD //,对角线ABCD 相交于

O ,?=∠60ACD ,点S ,P ,Q 分别是OD ,OA ,BC 的中点,求证:PQS ?是等边三角形.

28、已知如图,ABC ?的中线BD 、CE 相交于点O ,F 、G 分别是OB 、OC 的中点, (1)判断EF 和DG 有何关系并证明;(2)求证:ABC OGD S S △△12

1

=。

B

C

29、如图,在梯形ABCD 中,BC AD //,DC AD AB ==,?=∠60C ,BD AE ⊥于点E ,F 是CD 的中点,DG 是梯形的高。

(1)求证:四边形AEFD 是平行四边形; (2)设AE x =,四边形DEFG 的面积为y ,求y 关于x 的函数关系式。

B

C

G

30、已知如图,在四边形ABCD 中,EF 分别为AB 、CD 的中点; (1)求证:)(2

1

BD AC EF +<

; (2)EF 交BD 、AC 分别于P 、Q ,若BD AC =,求证:OPQ ?为等腰三角形。

B

31、点O 是ABC ?所在平面内一动点,连结OB 、OC ,并把AB 、OB 、OC 、CA 的中点D 、E 、F 、

G 顺次连结起来,设DEFG 能构成四边形。

(1)如图,当点O 在ABC ?内时,求证:四边形DEFG 是平行四边形;

(2)当O 点移动到ABC ?外时,(1)的结论是否成立?画出图形,说明理由; (3)若四边形DEFG 是矩形,则O 点所在的位置满足什么条件?试说明理由。

A

B

C

(完整版)初中几何基本图形归纳(基本图形常考图形)86168

初中几何常见基本图形

C

F E D C B A F E D C B A D C A 几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: 为 a 2 5; ②当BD 是角平分线时,BD 长为a 224-。 ①当D 是AC 中点时,BD 长 C B A 300

D C A 45 A B C 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠AED=450: ①△ABE ∽ECD ②设BE=x ,则CD=a x ax 22-。 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则: 2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE=2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有 ()22234x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点: ①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : ①△AOE ≌△BOF ; ②AE ⊥BF 。 14、如图,E 是正方形ABCD 对角线上一点,EF ⊥CD ,EG ⊥BC : ①AE=FG ;②AE ⊥FG 。 15、如图,将矩形ABCD 顶点B 沿某直线翻折可与D 点重合: ①EF 是BD 中垂线; ②BE=DE ,若AB=3,AD=5,设DE=x ,则()2 2 253x x =-+。 16、将矩形ABCD 顶点A 沿BD 翻折,A 落在E 处,如图: ①BD 是AE 中垂线,AB=BE ;②△BEF ≌△DCF ;③BF=DF 。 A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

(word完整版)初中数学几何证明题技巧

初中数学几何证明题技巧 几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中几何常见基本图形

F E D C B A F E D B A D C A 几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: BD 长为 a 2 5 ; ②当BD 是角平分线时,BD 长为①当D 是AC 中点时, a 224-。 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的 点,且∠AED=450 :①△ABE ∽ECD ②设BE=x ,则CD=a x ax 2 2-。 C B A 300

E D C B A 45 A B C 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则:2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠ 时,∠ DAE=400; ②当∠ BAC=1000 BAC=x 0 时, ∠ DAE= 2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有()222 34x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

初中几何常见的基本图形及证明

初中几何基本图形及证明 说明:本资料中所有虚线为证明用的辅助线一:与角平分线有关的基本图形基本图形1 结论:如图,若P点是B和C 的平分线的交点,则P和A的数量关系 1为: P 90 A 2 基本图形2 结论:如图,若P点是FBC的平分线和ECB 的平分线的交点,则P与 A 的数量关系为:P 1 90 A 2 基本图形3 如图,若P是ABC 的角平分线和ACB的外角平分线的交点,则P与A 的数量关系为:P 1 A 2

二:等腰直角三角形与其共斜边的直角三角形 基本图形 4 如图,在等腰直角三角形 ABC 中,D 点与C 点分别在 AB 两侧,且 AD BD , 基本图形 5 如图,在等腰直角三角形 ABC 中,点 D 与C 在 AB 同侧,且 AD BD ,形 三:线段和最短与轴对称 基本图形 6 两定点一动点 如图,A ,B 为直线l 同侧两定点, P 为直线l 上一动点, A 和A 1关于l 成轴对 形成共斜边的两个直角三角形。结论: AD BD 2CD 延长 DA 使 EA BD ) AD BD 2CD B (截取 AE BD ) E B 成共斜边的两个直角三角形。结 论:

称,连接A1B交直线l于P点。结论:PA PB最短 A1 基本图形7 一定点两动点 如图P为AOB内一点,点P1与P关于OB成轴对称,P2与P关于OA成轴 对称,连接P1P2交OB于E点,交OA于F 点。结论:△ PEF 的周长最短 P2 基本图形8 两定点两动点 如图,A ,B为直角坐标系中的两定点,A1与A关于y轴对称,B1与B关于x 轴对称,连接A1B1分别交x轴、y轴于C、D两点,连A,B,C,D 结论:

初中几何基本图形归纳基本图形常考图形资料全

初中几何常见基本图形 AOC=BOD AOD=BOC OD OE ①BAD= C CAD= B ②AD2=BD·CD ③AB2=BD·BC ④AC2=CD·BC P=A+B+C A+B=C+D B=D P=90+A/2 P=A/2

P=90-A/2 AP平分BAC PB=PC

几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点:

①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: ①当D 是AC 中点时,BD 长为 a 2 5 ; ②当BD 是角平分线时,BD 长为a 224-。 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠ AED=450:①△ABE ∽ECD ②设BE=x ,则CD=a x ax 2 2-。 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则: 2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE= 2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x , 有()2 22 34x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : ①△AOE ≌△BOF ; ②AE ⊥BF 。

初中几何证明知识

四边形 (一)、平行四边形的定义、性质及判定. 1:两组对边平行的四边形是平行四边形. 2.性质: (1)平行四边形的对边相等且平行; (2)平行四边形的对角相等,邻角互补; (3)平行四边形的对角线互相平分. 3.判定: (1)两组对边分别平行的四边形是平行四边形: (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形; (4)两组对角分别相等的四边形是平行四边形: (5)对角线互相平分的四边形是平行四边形. 4·对称性:平行四边形是中心对称图形. (二)、矩形的定义、性质及判定. 1-定义:有一个角是直角的平行四边形叫做矩形. 2·性质:矩形的四个角都是直角,矩形的对角线相等 3.判定: (1)有一个角是直角的平行四边形叫做矩形; (2)有三个角是直角的四边形是矩形: (3)两条对角线相等的平行四边形是矩形. 4·对称性:矩形是轴对称图形也是中心对称图形. (三)、菱形的定义、性质及判定. 1·定义:有一组邻边相等的平行四边形叫做菱形. (1)菱形的四条边都相等;。 (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角 (3)菱形被两条对角线分成四个全等的直角三角形. (4)菱形的面积等于两条对角线长的积的一半: 3.判定:(1)有一组邻边相等的平行四边形叫做菱形 (2)四条边都相等的四边形是菱形; (3)对角线互相垂直的平行四边形是菱形. 4.对称性:菱形是轴对称图形也是中心对称图形. (四)、正方形定义、性质及判定.' 1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

2.性质:(1)正方形四个角都是直角,四条边都相等; (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角; (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形; (4)正方形的对角线与边的夹角是45。; (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形. 3.判定: (1)先判定一个四边形是矩形,再判定出有一组邻边相等; (2)先判定一个四边形是菱形,再判定出有一个角是直角. 4.对称性:正方形是轴对称图形也是中心对称图形. (五)、梯形的定义、等腰梯形的性质及判定. 1.定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形.一腰垂直于底的梯形是直角梯形. 2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等.3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形. 4.对称性:等腰梯形是轴对称图形. (六)、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半. (七)、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点.. (八)、依次连接任意一个四边形各边中点所得的四边形叫中点四边形 考点一、线段垂直平分线,角的平分线,垂线 1、线段垂直平分线的性质定理及逆定理 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。 线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 2、角的平分线及其性质 一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角的平分线有下面的性质定理: (1)角平分线上的点到这个角的两边的距离相等。 (2)到一个角的两边距离相等的点在这个角的平分线上。 3垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。考点二、平行线 1、平行线的概念 在同一个平面内,不相交的两条直线叫做平行线。同一平面内,两条直线的位置关系只有两种:相交或平行。 4、平行线的性质 (1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补。 考点三、三角形 1、三角形的分类 三角形按边的关系分类如下:

初中几何基本图形归纳(基本图形+常考图形)

初中几何常见基本图形 AOC=BOD AOD=BOC OD OE ①BAD=C CAD= B ②AD2=BD·CD ③AB2=BD·BC ④AC2=CD·BC P=A+B+C A+B=C+D B=D P=90+A/2 P=A/2

P=90-A/2 ①AC平分BAD ②AB=CB ③BC∥AD AP平分BAC PB=PC ①AB=AC ②BD=CD ③AD BC

几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、B E交于F : ①△AE B≌△A DC ②∠B FD =600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a: ①AF :DF:AD =2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF =a 3 3 3、如图Rt △ABC 中,∠C =900 ,∠B=300 ,AC=a,D 是AC 上的点: ①内切圆半径为 a 2 1 3 ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900 ,AB=AC =a ,D 是AC 上的点:

F E D B A F E D C B A D C B A D C A 45 A B C a 2 5 ; ②当BD 是角平分线时,BD 长为a 224-。 ①当D 是AC 中点时,BD 长为 5、如图,如图R t△ABC 中,∠B AC=900,A B=A C=a ,E、D是BC 、AC上的点,且∠ AE D=450:①△ABE ∽ECD ②设BE=x,则C D=a x ax 2 2-。 6、如图A B=AC,∠A =360 ,则:BC = 2 1 5-AB 。 7、如图AB=A C,D 是BC 上一点,AE=AD,则: 2 1 ∠BAD=∠ED C。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD,B E=BA,则当:①∠BA C=1000时,∠DAE =400;②当∠BAC=x 0时,∠D AE=2 180x -0 。 9、如图,△BC A中,D是三角形内一点, ①当点D 是外心时,∠B DC= 21 ∠A;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠AC B=900 ,DE 是AB 中垂线,则①AE=B E,若AC=3,BC=4,设AE=x, 有()2 22 34x x =+-; ②△BED ∽△BAC 。 11、如图,E是正方形A BCD 对角线BD 上一点,AE 交BC 延长线于点F ,H是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽EC F; ③EC ⊥C H; ④EC 是以BG 为直径的圆的切线。 12、如图,AB CD 、CGFE 是正方形:①△DCG ≌CBCE; ②BE ⊥DG 。 ? C B A 300 A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

初中几何基本图形归纳(基本图形+常考图形)

9 2 初 中 几 何 常 见 基 本 图 形 序号 1 基 本 图 形 A C D B 基 本 结 论 2 3 子母型 ① ② 2· C B 4 ③ 2· ④ 2· 5 C C A 6 D B D 7 D 8 90 + 2 A P B C D

16()/2 ∥∥18 AD D E ∥ 20AD AE DE == AB AC BC 1090-2 11①平分 ② ③∥ “二推一” ⊕⊕→⊕ 12 13为中线 1:3:2 平分 14 A 12 B D C A ① “二推二” ② ③⊕⊕→⊕⊕ ④1= 15D E D、E为中点2 ∥ B C A D E、F为中点E F 17 B H D C E、F、G、H A为中点 G E B F C 四边形为平行四边形 A型A AE AD AE DE === BD CD AB AC BC 19 B C X型E D A ∥AD AE AD AE DE === BD CD AB AC BC B C 假A型 A E D B C

d B ④ O∠90° 25 AD P A PD == BC PC PB O 26 P A PD AD PC PB BC P 29 ∠∠ ∠∠180°假子母型A 21D2· B B C 221:1:2 A C C ①过圆心二推三 23 A O R E a/2 ②垂直于弦 ③平分弦 平分弦所对的优弧 ⑤平分弦所对的劣弧 ⊕⊕→⊕⊕⊕ R22+(2)2 24A D C为直径 B 蝶型 D A P B C 规型 A B == O D C 27A型 A O B D P · PB PD BD == PC P A AC C A 28O D B AB BC AC == BD AB AD 2· C D A O 30 B C E ①过圆心“二推一” O②过切点 ③垂直于切线 A C B

初中数学几何证明题小妙招

初中数学几何证明题小妙招几何证明题入门难,证明题难做,是很多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不但要标记,还要记在脑海中,做到不看题,就能够把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还能够得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在

图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。 五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。 以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。 (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举能够做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。使用逆向思维解题,能使学生从不同角度,不同方向思考问题,

八年级数学几何图形证明之令狐采学创编

八年级数学(上)几何证明练习题 令狐采学 1、已知:在⊿ABC中,∠A=90度,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。 2、已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证: ∠ADB=∠FDC。 3、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。 4、已知:如图(1),在△ABC中,BP、CP分别平分∠A BC和∠ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC. 5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平

分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 例1(6分题):如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC。 (1)若连接AM,则AM是否平分∠BAD?请你证明你的结论。 (2)DM与AM有怎样的位置关系?请说明理由。 (3)求证:AD=AB+CD 练2(6分题):如图,AB∥CD,DE平分∠ADC,AE平分∠BAD,求证:AD=AB+CD 例3(6分题):如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC。求证:AD=AB+CD

几何证明Ⅰ:基本图形专题C(教师版)

学科教师辅导讲义 年级:科目:数学课时数: 课题几何证明 教学目的能够结合基本图形及常见图形解决问题 教学内容 【例题讲解】 题型一:基本图形 【例1】证明:三角形的内角和180°. 【证明】略 基本图形一: (在初三学习三角形一边平行线定理时用于构造“X”型,此处让学生知道有“过顶点作对边的平行线”这一添加辅助线的方法即可.) 题型二:基本图形 【说明】此处设计的题目主要是让学生熟悉基本图形及其变形.在之后学完四边形和中位线后,经常会运用此基本图形进行证明.

【例2】已知:如图,AC、BD相交于点O,AC BD =∠DBC=∠ACB.求证:OA OD =. 【答案】略 【提示】证明△ABC≌△DCB 题型三: A B C E D A B C D E F G 【例3】已知:等边△ABC和等边△CDE,联接AE、BD.求证AE=BD A B C E D 【答案】略 A B C D D

题型四: “角平分线+平行”图中通常会出现等腰三角形 【例6】已知:如图,在△ABC中,AD平分∠BAC,GE∥AD.求证:△AFG是等腰三角形. 【提示】图中标出的四个角相等. 【借题发挥】 .求证:△AEF是1.已知:如图,E是正方形ABCD的边CD上的一点,F是CB延长线上的一点,DE BF 等腰直角三角形. 【提示】证明全等即可. 2.已知:如图,AD是△ABC的角平分线,E是AB边上的一点,AE=AC,EF∥BC交AC于点F.求证:∠DEC=∠FEC.

【提示】AD 是等腰△AEC 的“三线”,通过全等证得△DEC 是等腰三角形,根据平行证得∠DEC =∠DCE =∠FEC 3.已知:如图,AB AD =,CB CD =.求证:∠ABC =∠ADC . 【答案】略 【提示】联接AC 证全等. 4.已知:如图,在△ABC 中,,AB AC BD =⊥AC 于点D ,CE ⊥AB 于点E ,BD 、CE 相交于点O . 求证:OA 平分∠BAC

初中数学几何证明思路及常用原理

初中几何证明思路及常用原理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。 对于证明题,有三种思考方式: 1.正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细 讲述了。 2.逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 3.正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们两条直线的中点,我们就要想到是否要构建三角形,连出中位线。 证明题要用到哪些原理 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

人教版几何模型基本图形

A B C D E A C D B E A B C D E A B C D O A B C D E F G D A B C E A D C B E E A C D B N O M D A E C B F A B C D E F E D B A A B C O A B C D O E A B C D A B C D E A 1. EC FC ?⊥ 正方形ABCD 中,BD ⊥CE ?BD =CE 平移后也成立 2. B D E ∠+∠=∠ 6. △ABD ,△ACE 为等边△?BE =CD BE 、CD 相交所成锐角为60° //360AB CD B D E ?∠+∠+∠=? ABDE 与ACFG 为正方形?EC =BG ,BG ⊥CE 注:条件可换成△BAE ,△CAG 为等腰Rt △ 3. B D ?∠=∠ 7. ①AD 平分∠CAB ;②DE//AC ;③AE =DE 中,知二推一 4. 1 902 BOC A ?∠=?+∠ 8. △ABC 为等腰Rt △, AE 平分∠CAB , ∠D =90? ?AE =2BD 1 2 BOC A ?∠=∠ DE//BC ? C △ADE =AB+AC 1 902 BOC A ?∠=?-∠ 9. 5. AC =BC ,则CE ⊥BD ?CE =BD △ACD 、△BCE 为等边△,A 、C 、B 共线? △ACE ≌△DCB; △ACM ≌△DCN △MCE ≌△NCB; AE =BD ,AM =DN ,EM =BN ,CM =CN ,AE 、BD 相交成锐角60°,AO =DO+CO ,BO =EO+CO ,OM+ON =CO ,OC 平分∠AOB ,注:△BCE 绕C 旋转时,结论有些变化. 10. AC =BC ?△DEF 为等腰Rt △ 15. ?OD =OE BE+CD =BC

几何图形的基本模型

几何图形的基本模型 【典型例题】 模型一:双子型(手拉手模型)——全等 (1)等边三角形 条件:ΔOAB, ΔOCD均为等边三角形。 结论:①ΔOAC≌ΔOBD ②AC=BD ③∠AEB=600④OE平分∠AED ⑤点E在ΔOAB的外接圆上 (2)等腰直角三角形 条件:ΔOAB, ΔOC D均为等腰直角三角形。 结论:①ΔOAC≌ΔOBD ②AC=BD ③∠AEB=900 ④OE平分∠AED ⑤点E在ΔOAB的外接圆上 (3)任意等腰三角形 条件:ΔOAB, ΔOCD均为等腰三角形。 结论:①ΔOAC≌ΔOBD ②AC=BD ③∠AEB=∠A0B ④OE平分∠AED(或∠AED的外角)⑤点E在ΔOAB的外接圆上 例题:(1)如图①,△ABC中,AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰三角形

ABD,ACE,分别取BD,CE,BC的中点M、N、G,连接GM、GN,线段GM与GN数量关系是;位置关系是 (2)如图②,把等腰三角形ABC换为一般的锐角三角形,AB﹥AC,其中,其它条件不变,上述结论还成立吗?请说明理由。 (3)如图③,在(2)的基础上,又作了进一步的探究,向△ABC的内侧分别作等腰直角三角形ABD、ACE,其它条件不变,试判断△GMN的形状,并给与证明。 模型二:双子型(手拉手模型)——相似 (1)一般情况

条件:CD ∥AB(ΔOCD ∽ΔOAB ),将ΔOCD 旋转至右图位置 结论:右图中①ΔOCD ∽ΔOAB?ΔOAC ∽ΔOBD ②延长AC 交BD 于点E ,必有∠AEB=∠AOB ③点E 在ΔOAB 的外接圆上。 (2) 特殊情况 条件:CD ∥AB (ΔOCD ∽ΔOAB ), ∠AOB=∠COD=900将ΔOCD 旋转至右图位置 结论:右图中①ΔOCD ∽ΔOAB ?ΔOAC ∽ΔOBD ②延长AC 交BD 于点E ,必有∠AEB=900(BD ⊥AC ) ③连接AD,BC ,则S ABCD =12AC ×BD ④OD OC =OB OA =tan ∠OCD ⑤点E 在ΔOAB 的外接圆上 (A,O,E,B 四点共圆) ⑥必有AD 2+BC 2=AB 2+CD 2 例题:以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD ,其中∠ABO= ∠DCO=300 (1)点E 、F 、M 分别是AC 、CD 、DB 的中点,连接FM 、EM. ① 如图1,当点D 、C 分别在AO 、BO 的延长线上时,FM EM = ② 如图2,将图1中△AOB 的绕点O 沿顺时针方向旋转α角(00<α<600),其他条件不变,判断 FM EM 的值是否发生变化,并对你的结论进行证明 (3) 如图3,若B0=3√3,点N 在线段OD 上,且NO=2.点P 是线段AB 上的一个动点,在将 ΔOAB 绕点0旋转过程中,线段PN 长度的最小值为 ,最大值为 。

初中八年级数学图形与证明

数学测试(5) 一、选择题: 1.如图1所示,AB ∥CD,EG ⊥AB,若∠1=58°,则∠E 的度数等于( ) A.122° B.58° C.32° D.29° 2.如图2所示,DE ∥BC,EF ∥AB,图中与∠BFE 互补的角共有( ) A.3个 B.2个 C.5个 D.4个 3.在△ABC 中,若∠A:∠B:∠C=1:2:3,则a:b:c=( ) A.1:2:3 B.1:2: C.1: 4.等腰三角形一腰上的高等于腰长的一半,则顶角的度数是( ) A.30° B.60°; C.30°或150° D.不能确定 5.如图3所示,某同学把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那最省事的办法是( ) A.带①去 B.带②去; C.带③去 D.带①和②去 6.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为( ) A.10cm,12cm; B.11cm,11cm; C.11cm,11cm 或10cm,12cm D.不能确定 7.若直角三角形斜边上的中线等于最短的直角边长,那么它的最小内角为( ) A.10° B.20° C.30° D.60° 8.如图4所示,在等腰梯形ABCD 中,AD ∥BC,AC,BD 相交于点O, 则图中全等三角形共有( ) A.1对 B.2对 C.3对 D.4对 9.矩形ABCD 中,E 在AD 上,AE=ED,F 在BC 上,若EF 把矩形ABCD 的面积分为1:2,则BF:FC=( )(BF

初中几何基本图形归纳基本图形常考图形

精心整理初中几何常见基本图形

A 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为 a 2 1 3-②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: BD 长为 a 2 5 ;②当BD 是角平分线时,BD 长为a 224-。 ①当D 是AC 中点时,

5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠AED=450: ①△ABE ∽ECD ②设BE=x ,则CD=a x ax 22-。 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则:2 1∠BAD=∠EDC 。 80时, 9 D 是外 ,∠ ,有 (FG 中 ∥BC : : ①AE=FG ;②AE ⊥FG 。 15、如图,将矩形ABCD 顶点B 沿某直线翻折可与D 点重合: ①EF 是BD 中垂线;②BE=DE ,若AB=3,AD=5,设DE=x ,则()22253x x =-+。 C

16、将矩形ABCD顶点A沿BD翻折,A落在E处,如图: ①BD是AE中垂线,AB=BE;②△BEF≌△DCF;③BF=DF。 17、如图,B是直线DF上一点,∠ABC=Rt∠,过A、C做直线的垂线,D、E是垂足: ①△ABD∽△BCE;②当AB=BC时,△ABD≌△BCE。 18、如图,以△ABC两边向形外作正方形ABED,ACFG,H是BC中点: ① 19 20H 作 21 可) 22 23 ①AF 24CF=3:5③S 25、如图:梯形ABCD中,AD∥BC,AC=BD,则AB=CD,可利用①平移——过D作DM∥AC交BC延长线于M;②分割——过A、D作BC垂线。 26、如图为对角线相等的四边形ABCD(例如矩形),则连结四边中点形成的四边形是菱形。 27、如图为对角线互相垂直的四边形ABCD(例如菱形),则该四边形中点围成的四

相关主题
相关文档 最新文档