当前位置:文档之家› 推理与证明(含答案)

推理与证明(含答案)

推理与证明(含答案)
推理与证明(含答案)

推理与证明

考情解读 1.以数表、数阵、图形为背景与数列、周期性等知识相结合考查归纳推理和类比推理,多以小题形式出现.2.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.

1.合情推理

(1)归纳推理

①归纳推理是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.

②归纳推理的思维过程如下:

实验、观察→概括、推广→猜测一般性结论

(2)类比推理

①类比推理是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.

②类比推理的思维过程如下:

观察、比较→联想、类推→猜测新的结论

2.演绎推理

(1)“三段论”是演绎推理的一般模式,包括:

①大前提——已知的一般原理;

②小前提——所研究的特殊情况;

③结论——根据一般原理,对特殊情况做出的判断.

(2)合情推理与演绎推理的区别

归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.

3.直接证明

(1)综合法

用P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论,则综合法可用框图表示为:

P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q

(2)分析法

用Q表示要证明的结论,则分析法可用框图表示为:

Q?P1→P1?P2→P2?P3→…→得到一个明显成立的条件

4.间接证明

反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导致逻辑矛

盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p,则q”的过程可以用如图所示的框图表示.

肯定条件p否定结论q→导致逻辑矛盾→“既p,又綈q”为假→“若p,则q”为真

5.数学归纳法

数学归纳法证明的步骤:

(1)证明当n取第一个值n0(n0∈N*)时命题成立.

(2)假设n=k(k∈N*,且k≥n0)时命题成立,证明n=k+1时命题也成立.

由(1)(2)可知,对任意n≥n0,且n∈N*时,命题都成立.

热点一归纳推理

例1(1)有菱形纹的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是()

A.26 B.31

C.32 D.36

(2)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位的排法如图所示,则下列座位号码符合要求的应当是()

A.48,49 B.62,63

C.75,76 D.84,85

思维启迪(1)根据三个图案中的正六边形个数寻求规律;(2)靠窗口的座位号码能被5整除或者被5除余1.

答案(1)B(2)D

解析(1)有菱形纹的正六边形个数如下表:

5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.

故选B.

(2)由已知图形中座位的排列顺序,可得:被5除余1的数和能被5整除的座位号临窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号,只有D符合条件.

思维升华归纳递推思想在解决问题时,从特殊情况入手,通过观察、分析、概括,猜想出一般性结论,然后予以证明,这一数学思想方法在解决探索性问题、存在性问题或与正整数有关的命题时有着广泛的应用.其思维模式是“观察——归纳——猜想——证明”,解题的关键在于正确的归纳猜想.

(1)四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…这样交替进行下去,那么第202次互换座位后,小兔坐在第______号座位上.

A.1 B.2

C.3 D.4

(2)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>7

2,则有

________________.

答案 (1)B (2)f (2n )>n +2

2

(n ≥2,n ∈N *)

解析 (1)考虑小兔所坐的座位号,第一次坐在1号位上,第二次坐在2号位上,第三次坐在4号位上,第四次坐在3号位上,第五次坐在1号位上,因此小兔的座位数更换次数以4为周期,因为202=50×4+2,因此第202次互换后,小兔所在的座位号与小兔第二次互换座位号所在的座位号相同,因此小兔坐在2号位上,故选B. (2)由题意得f (22)>42,f (23)>52,f (24)>6

2,

f (25)>7

2,所以当n ≥2时,有f (2n )>n +22.

故填f (2n )>n +22(n ≥2,n ∈N *).

热点二 类比推理

例2 (1)在平面几何中有如下结论:若正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=1

4.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球体积为V 1,外接球体积为V 2,则V 1

V 2

=________.

(2)已知双曲正弦函数sh x =e x -e -

x 2和双曲余弦函数ch x =e x +e -

x

2

与我们学过的正弦函数和余弦

函数有许多类似的性质,请类比正弦函数和余弦函数的和角或差角.....公式,写出双曲正弦或双曲余弦函数的一个..

类似的正确结论________. 思维启迪 (1)平面几何中的面积可类比到空间几何中的体积;(2)可利用和角或差角公式猜想,然后验证.

答案 (1)1

27

(2)ch(x -y )=ch x ch y -sh x sh y

解析 (1)平面几何中,圆的面积与圆的半径的平方成正比,而在空间几何中,球的体积与半径的立方成正比,所以V 1V 2=1

27

.

(2)ch x ch y -sh x shy =e x +e -

x 2·e y +e -

y 2-e x -e -

x 2·e y -e -

y

2

=14(e x +y +e x -y +e -x +y +e -x -y -e x +y +e x -y +e -x +y -e -x -

y ) =14(2e x -y +2e -(x -y )

)=e x -

y +e -(x -y )

2

=ch(x -y ),故知ch(x +y )=ch x ch y +sh x sh y ,

或sh(x -y )=sh x ch y -ch x sh y ,

或sh(x +y )=sh x ch y +ch x sh y .

思维升华 类比推理是合情推理中的一类重要推理,强调的是两类事物之间的相似性,有共同要素是产生类比迁移的客观因素,类比可以由概念性质上的相似性引起,如等差数列与等比数列的类比,也可以由解题方法上的类似引起.当然首先是在某些方面有一定的共性,才能有方法上的类比,例2即属于此类题型.一般来说,高考中的类比问题多发生在横向与纵向类比上,如圆锥曲线中椭圆与双曲线等的横向类比以及平面与空间中三角形与三棱锥的纵向类比等.

(1)若数列{a n }是等差数列,b n =a 1+a 2+…+a n

n

,则数列{b n }也为等差数列.类比

这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A .d n =c 1+c 2+…+c n

n

B .d n =c 1·c 2·…·c n

n

C .d n =

D .d n =n

c 1·c 2·…·c n

(2)椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)

的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2

a 2.那么对于双曲线则有

如下命题:AB 是双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的

中点,则k OM ·k AB =________. 答案 (1)D (2)b 2a

2

解析 (1)由{a n }为等差数列,设公差为d , 则b n =a 1+a 2+…+a n n =a 1+n -1

2d ,

又正项数列{c n }为等比数列,设公比为q ,

则d n =n

c 1·c 2·…·c n c 112

n q

-,故选D.

(2)设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则有???

x 0

=x 1

+x 2

2

,y 0

=y 1

+y

2

2

.

将A ,B 代入双曲线x 2a 2-y 2

b

2=1中得

x 21a 2-y 21b 2=1,x 22

a 2-y 2

2b 2=1, 两式相减,得x 21-x 22a 2=y 21-y 2

2

b

2,

(x 1-x 2)(x 1+x 2)a 2=(y 1-y 2)(y 1+y 2)b 2

即(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=b 2

a 2, 即k OM ·k AB =

b 2

a

2.

热点三 直接证明和间接证明

例3 已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )

1-a n +1

,a n a n +1<0 (n ≥1);数列{b n }满足:

b n =a 2n +1-a 2

n (n ≥1).

(1)求数列{a n },{b n }的通项公式;

(2)证明:数列{b n }中的任意三项不可能成等差数列.

思维启迪 (1)利用已知递推式中的特点构造数列{1-a 2n };(2)否定性结论的证明可用反证法. (1)解 已知3(1+a n +1)1-a n =2(1+a n )1-a n +1化为1-a 2n +11-a 2n =23,

而1-a 2

1=34

所以数列{1-a 2n }是首项为34,公比为2

3的等比数列, 则1-a 2n =34×????23n -1,则a 2n

=1-34×????23n -1, 由a n a n +1<0,知数列{a n }的项正负相间出现, 因此a n =(-1)n +

1

1-34×???

?23n -1

, b n =a 2n +1-a 2

n

=-34×????23n +34×????23n -1 =14×???

?23n -1. (2)证明 假设存在某三项成等差数列,不妨设为b m 、b n 、b p ,其中m 、n 、p 是互不相等的正整数,可设m

而b n =14×????23n -1

随n 的增大而减小,

那么只能有2b n =b m +b p ,

可得2×14×????23n -1=14×????23m -1+14×????23p -1

则2×????23n -m

=1+???

?23p -m .(*) 当n -m ≥2时,2×????23n -m ≤2×????232=89,(*)式不可能成立,则只能有n -m =1, 此时等式为4

3

=1+????23p -m , 即13=????23p -m ,那么p -m =log 2313,左边为正整数,右边为无理数,不可能相等. 所以假设不成立,那么数列{b n }中的任意三项不可能成等差数列.

思维升华 (1)有关否定性结论的证明常用反证法或举出一个结论不成立的例子即可. (2)综合法和分析法是直接证明常用的两种方法,我们常用分析法寻找解决问题的突破口,然后用综合法来写出证明过程,有时候,分析法和综合法交替使用.

等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.

(1)求数列{a n }的通项a n 与前n 项和S n ;

(2)设b n =S n

n

(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.

(1)解 由已知得???

a 1=2+1,

3a 1+3d =9+32,

所以d =2,

故a n =2n -1+2,S n =n (n +2),n ∈N *. (2)证明 由(1)得b n =S n

n

=n + 2.

假设数列{b n }中存在三项b p ,b q ,b r (p ≠q ≠r )成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+(2q -p -r )2=0.

∵p ,q ,r ∈N *

,∴?

????

q 2

-pr =0,

2q -p -r =0,

∵(p +r 2)2

=pr ,(p -r )2=0,∴p =r 与p ≠r 矛盾.

所以数列{b n }中任意不同的三项都不可能成等比数列. 热点四 数学归纳法

例4 已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足S 2n -1=12a 2

n ,n ∈N *,

数列{b n }满足b n =????

?

2n -1

,n 为奇数,12a n -1,n 为偶数,T n 为数列{b n }的前n 项和.

(1)求a n ,b n ;

(2)试比较T 2n 与2n 2+n

3

的大小.

思维启迪 (1)利用{a n }的前n 项确定通项公式(公差、首项),{b n }的通项公式可分段给出; (2)先求T n ,归纳猜想T n 与2n 2+n

3的关系,再用数学归纳法证明.

解 (1)设{a n }首项为a 1,公差为d ,在S 2n -1=1

2a 2n

中,

令n =1,2得????? a 21=2S 1,a 22=2S 3,即?????

a 21=2a 1,

(a 1+d )2

=2(3a 1

+3d ), 解得a 1=2,d =4,所以a n =4n -2.

所以b n =?

????

2n -

1,n 为奇数,

2n -3,n 为偶数.

(2)T 2n =1+2×2-3+22+2×4-3+24+…+22n -

2+2×2n -3

=1+22+24+…+22n -

2+4(1+2+…+n )-3n

=1-4n 1-4+4·n (n +1)2-3n =4n 3-1

3+2n 2-n .

所以T 2n -(2n 2+n 3)=1

3(4n -4n -1).

当n =1时,13(4n -4n -1)=-1

3<0,

当n =2时,13(4n -4n -1)=7

3>0,

当n =3时,13(4n -4n -1)=51

3>0,…

猜想当n ≥2时,T 2n >2n 2+n

3,

即n ≥2时,4n >4n +1. 下面用数学归纳法证明:

①当n =2时,42=16,4×2+1=9,16>9,成立; ②假设当n =k (k ≥2)时成立,即4k >4k +1. 则当n =k +1时,4k +

1=4·4k >4·(4k +1)

=16k +4>4k +5=4(k +1)+1, 所以n =k +1时成立.

由①②得,当n ≥2时,4n >4n +1成立. 综上,当n =1时,T 2n <2n 2+n 3,

当n ≥2时,T 2n >2n 2+n

3

.

思维升华 在使用数学归纳法证明问题时,在归纳假设后,归纳假设就是证明n =k +1时的已

知条件,把归纳假设当已知条件证明后续结论时,可以使用综合法、分析法、反证法.

已知f (n )=1+123+133+143+…+1n 3,g (n )=32-1

2n

2,n ∈N *.

(1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明. 解 (1)当n =1时,f (1)=1,g (1)=1, 所以f (1)=g (1),

当n =2时,f (2)=98,g (2)=11

8,所以f (2)

当n =3时,f (3)=251216,g (3)=312

216,

所以f (3)

(2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明 ①当n =1,2,3时,不等式显然成立 ②假设当n =k (k ≥3)时不等式成立, 即1+123+133+143+…+1k 3<32-1

2k 2,

那么,当n =k +1时,

f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3, 因为12(k +1)2-(12k 2-1(k +1)3) =k +32(k +1)3-1

2k 2 =

-3k -12(k +1)3k 2

<0.

所以f (k +1)<32-1

2(k +1)2=g (k +1),

即当n =k +1时,不等式成立.

由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.

1.合情推理的精髓是“合情”,即得到的结论符合“情理”,其中主要是归纳推理与类比推理.归纳推理是由部分得到整体的一种推理模式.类比推理是由此及彼的推理模式;演绎推理是一种严格的证明方式.

2.直接证明的最基本的两种证明方法是综合法和分析法,这两种方法也是解决数学问题时常见的思维方式.在实际解题时,通常先用分析法寻求解题思路,再用综合法有条理地表述解题过程.

3.数学归纳法是证明与正整数有关的数学命题的一种方法,在遇到与正整数有关的数学命题时,要考虑是否可以使用数学归纳法进行证明.

(1)在证明过程中突出两个“凑”字,即一“凑”假设,二“凑”结论,关键是在证明n=k+1时要用上n=k时的假设,其次要明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时,命题形式之间的区别和联系,化异为同,中间的计算过程千万不能省略.

(2)注意“两个步骤、一个结论”一个也不能少,切忌忘记归纳结论.

真题感悟

1.(2014·福建)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:

①a=1;②b≠1;③c=2;④d≠4.有且只有一个是正确的,则符合条件的有序数组(a,b,c,

d)的个数是________.

答案 6

解析由题意知①②③④中有且只有一个正确,其余三个均不正确,下面分类讨论满足条件的有序数组(a,b,c,d)的个数:(1)若①正确,即a=1,则②③④都错误,即b=1,c≠2,d =4.其中a=1与b=1矛盾,显然此种情况不存在;

(2)若②正确,即b≠1,则①③④都错误,即a≠1,c≠2,d=4,则当b=2时,有a=3,c =1;当b=3时,有a=2,c=1,此时有2种有序数组.

(3)若③正确,即c=2,则①②④都错误,即a≠1,b=1,d=4,则a=3,即此种情况有1种有序数组.

(4)若④正确,即d≠4,则①②③都错误,即a≠1,b=1,c≠2,则当d=2时,有a=3,c =4或a=4,c=3,有2种有序数组;当d=3时,有c=4,a=2,仅1种有序数组.

综上可得,共有2+1+2+1=6(种)有序数组.

2.(2014·陕西)观察分析下表中的数据:

答案F+V-E=2

解析观察F,V,E的变化得F+V-E=2.

押题精练

1.圆周上2个点可连成1条弦,这条弦可将圆面划分成2部分;圆周上3个点可连成3条弦,

这3条弦可将圆面划分成4部分;圆周上4个点可连成6条弦,这6条弦最多可将圆面划分成8部分.则n 个点连成的弦最多可把圆面分成________部分.( ) A .2n -

1

B .2n

C .2n +

1

D .2n +

2

答案 A

解析 由已知条件得:

由此可以归纳出,当点数为n 时,连成的弦数为n (n -1)2;弦把圆面分成的部分数为2n -

1,故

选A.

2.在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项,k (k +1)=1

3[k (k +1)(k +2)-(k -1)k (k +1)],

由此得1×2=1

3(1×2×3-0×1×2),

2×3=1

3(2×3×4-1×2×3),

n (n +1)=1

3

[n (n +1)(n +2)-(n -1)n (n +1)].

相加,得1×2+2×3+…+n (n +1)=1

3

n (n +1)(n +2).

类比上述方法,计算“1×2×3+2×3×4+…+n (n +1)(n +2)”的结果为____________. 答案 1

4

n (n +1)(n +2)(n +3)

解析 类比k (k +1)=1

3

[k (k +1)(k +2)-(k -1)k (k +1)],

可得到k (k +1)(k +2)=1

4[k (k +1)(k +2)(k +3)-(k -1)k (k +1)(k +2)],

先逐项裂项,然后累加即得1

4

n (n +1)(n +2)(n +3).

(推荐时间:50分钟)

一、选择题

1.下列推理是归纳推理的是( )

A .A ,

B 为定点,动点P 满足|P A |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式

C .由圆x 2

+y 2

=r 2

的面积πr 2

,猜想出椭圆x 2a 2+y 2

b

2=1的面积S =πab

D .以上均不正确 答案 B

解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理. 2.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76 C .123 D .199

答案 C

解析 观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.

继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a 10+b 10=123. 3.已知x >0,观察不等式x +1x

≥2

x ·1x =2,x +4x 2=x 2+x 2+4

x 2≥33x 2·x 2·4x 2

=3,…,由此可得一般结论:x +a

x n ≥n +1(n ∈N *),则a 的值为( )

A .n n

B .n 2

C .3n

D .2n

答案 A

解析 根据已知,续写一个不等式:

x +33x 3=x 3+x 3+x 3+33

x 3≥44x 3·x 3·x 3·33x

3=4,由此可得a =n n .故选A. 4.已知函数f (x )是R 上的单调增函数且为奇函数,数列{a n }是等差数列,a 3>0,则f (a 1)+f (a 3)+f (a 5)的值( ) A .恒为正数 B .恒为负数 C .恒为0

D .可正可负

答案 A

解析 由已知得f (0)=0,a 1+a 5=2a 3>0, 所以a 1>-a 5.

由于f (x )单调递增且为奇函数, 所以f (a 1)+f (a 5)>f (-a 5)+f (a 5)=0, 又f (a 3)>0,所以f (a 1)+f (a 3)+f (a 5)>0. 故选A.

5.在平面内点O 是直线AB 外一点,点C 在直线AB 上,若OC →=λOA →+μOB →

,则λ+μ=1;类似地,如果点O 是空间内任一点,点A ,B ,C ,D 中任意三点均不共线,并且这四点在同一平面内,若DO →=xOA →+yOB →+zOC →

,则x +y +z 等于( ) A .0 B .-1 C .1 D .±1

答案 B

解析 在平面内,由三角形法则, 得AB →=OB →-OA →,BC →=OC →-OB →. 因为A ,B ,C 三点共线,

所以存在实数t ,使AB →=tBC →,即OB →-OA →=t (OC →-OB →

), 所以OC →=-1t OA →+(1t

+1)OB →

.

因为OC →=λOA →+μOB →

,所以λ=-1t ,μ=1t +1,

所以λ+μ=1.

类似地,在空间内可得OD →=λOA →+μOB →+ηOC →

,λ+μ+η=1. 因为DO →=-OD →

,所以x +y +z =-1.故选B.

6.已知f (n )=32n +

2-8n -9,存在正整数m ,使n ∈N *时,能使m 整除f (n ),则m 的最大值为

( ) A .24 B .32 C .48 D .64

答案 D

解析 由f (1)=64,f (2)=704=11×64,f (3)=6 528=102×64, 所以f (1),f (2),f (3)均能被64整除,猜想f (n )能被64整除. 下面用数学归纳法证明: ①当n =1时,由上得证;

②假设当n =k (k ∈N *)时,f (k )=32k +

2-8k -9=9k +

1-8k -9能被64整除,

则当n =k +1时,f (k +1)=9(k

+1)+1

-8(k +1)-9=9×9k +

1-8k -17=9f (k )+64(k +1).

由归纳假设,f (k )是64的倍数,又64(k +1)是64的倍数,所以f (k +1)能被64整除,所以当n =k +1时,猜想也成立. 因为f (1)不能被大于64的数整除, 所以所求m 的最大值等于64.故选D. 二、填空题

7.如图所示的是由火柴棒拼成的一列图形,第n 个图形由n 个正方形组成,

通过观察可以发现第4个图形中,火柴棒有________根;第n 个图形中,火柴棒有________根.

答案 13,3n +1

解析 易得第四个图形中有13根火柴棒,通过观察可得,每增加一个正方形,需增加三根火柴棒,所以第n 个图形中的火柴棒为4+3(n -1)=3n +1.

8.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为________. 答案 n 2+n +22

解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +2

2

个区域.

9.(2014·课标全国Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此判断乙去过的城市为________. 答案 A

解析 由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过城市A ,由此可知,乙去过的城市为A.

10.对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23???

3

5,33??

???

7

9

11

43

?????

13

15

1719

,….仿此,若m 3的“分裂数”中有一个是59,则m =________.

答案 8

解析 由已知可观察出m 3可分裂为m 个连续奇数,最小的一个为(m -1)m +1.当m =8时,最小的数为57,第二个便是59.所以m =8. 三、解答题

11.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4

b 2+1-2m =0.

(1)求证:1a 2+4b 2≥9

a 2+

b 2;

(2)求证:m ≥7

2

.

证明 (1)(分析法)要证1a 2+4b 2≥9

a 2+

b 2成立,

只需证(1a 2+4

b 2)(a 2+b 2)≥9,

即证1+4+b 2a 2+4a 2

b 2≥9,

即证b 2a 2+4a 2

b

2≥4.

根据基本不等式,有b 2a 2+4a 2

b 2≥2

b 2a 2·4a 2

b 2

=4成立, 所以原不等式成立.

(2)(综合法)因为a 2+b 2=m -2,1a 2+4

b 2=2m -1,

由(1),知(m -2)(2m -1)≥9, 即2m 2-5m -7≥0, 解得m ≤-1或m ≥7

2.

又∵a 2+b 2=m -2>0 ∴m >2,故m ≤-1舍去, ∴m ≥72

.

12.若不等式1n +1+1n +2+…+13n +1>a

24

对一切正整数n 都成立,求正整数a 的最大值,并

证明结论.

解 方法一 当n =1时,11+1+11+2+13+1>a

24,

即2624>a

24

,所以a <26. 而a 是正整数,所以取a =25, 下面用数学归纳法证明 1n +1+1n +2+…+13n +1>2524. ①当n =1时,已证得不等式成立. ②假设当n =k (k ∈N *)时,不等式成立, 即

1k +1+1k +2+…+13k +1>25

24

. 则当n =k +1时, 有1(k +1)+1+1(k +1)+2+…+1

3(k +1)+1

1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+[13k +2+13k +4-2

3(k +1)

]. 因为13k +2+13k +4-23(k +1)

6(k +1)(3k +2)(3k +4)-2

3(k +1)

=18(k +1)2-2(9k 2+18k +8)(3k +2)(3k +4)(3k +3)

2

(3k +2)(3k +4)(3k +3)

>0,

所以当n =k +1时不等式也成立.

由①②知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>25

24,

所以正整数a 的最大值为25.

方法二 设f (n )=1n +1+1n +2+…+1

3n +1

则f (n +1)-f (n )=13n +2+13n +3+13n +4-1

n +1

13n +2+13n +4-23n +3=2

(3n +2)(3n +4)(3n +3)

>0, ∴数列{f (n )}为递增数列, ∴f (n )min =f (1)=12+13+14=26

24

1

n+1

1

n+2

1

n+3

+…+

1

3n+1

>

a

24对一切正整数n都成立可转化为

a

24

a

24<

26

24,

∴a<26.

故正整数a的最大值为25.

高考推理与证明真题汇编理科数学(解析版)

2012高考真题分类汇编:推理与证明 1. 【 2012 高 考 真 题 江 西 理 6 】 观 察 下 列 各 式 : 221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=L 则1010a b += A .28 B .76 C .123 D .199 【答案】C 【命题立意】本题考查合情推理中的归纳推理以及递推数列的通项公式。 【解析】等式右面的数构成一个数列1,3,4,7,11,数列的前两项相加后面的项,即 21++=+n n n a a a ,所以可推出12310=a ,选C. 2.【2012高考真题全国卷理12】正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF = 7 3 .动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10 【答案】B 【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 3.【2012高考真题湖北理10】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数, 以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ . 人们还用过一些类似的近似公式. 根据π =3.14159L 判断,下列近似公式中最精确的一个是 11.d ≈ B .d C .d D .d ≈ 【答案】D 【解析】 346b 69()d ,===3.37532b 16 616157611 ==3==3.14,==3.142857230021 d a V A a B D πππππππ?==???由,得设选项中常数为则;中代入得, 中代入得,C 中代入得中代入得,由于D 中值最接近的真实值,故选择D 。 4.【2012高考真题陕西理11】 观察下列不等式 213122+ < 231151233++<,

高考推理与证明专项训练题

高考推理与证明专项训练题 1.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理() A.结论正确B.大前提错误 C.小前提错误D.推理形式错误 答案C 解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x的函数才是对数函数.故选C. 2.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班; 丙说:我们三人各自值班的日期之和相等. 据此可判断丙必定值班的日期是() A.10日和12日B.2日和7日 C.4日和5日D.6日和11日 答案D 解析这12天的日期之和,S12=12×(12+1) =78,甲、乙、丙 2 各自的值班日期之和是26,对于甲,剩余2天的值班日期之和是22,因此这两天是10日和12日,故甲在1日,3日,10日,12日值班;

对于乙,剩余2天的值班日期之和是9,故乙可能在2日,7日,或者是4日,5日值班,因此丙必定值班的日期是6日和11日.故选D. 3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 答案 A 解析 由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,又假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,不符合题意;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.故选A. 4.已知a ,b ,c 是△ABC 的内角A ,B ,C 对应的三边,若满足a 2 +b 2 =c 2 ,即? ????a c 2+? ?? ??b c 2 =1,则△ABC 为直角三角形,类比此结论可

高二数学 归纳推理演绎推理

3月5日 高二理科数学测试题 1.由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是 ( ) A .归纳推理 B .演绎推理 C .类比推理 D .传递性推理 2.下列正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是由特殊到一般的推理 C .归纳推理是由个别到一般的推理 D .合情推理可以作为证明的步骤 3.下面几种推理中是演绎推理.... 的序号为( ) A .半径为r 圆的面积2S r π=,则单位圆的面积S π=; B .由金、银、铜、铁可导电,猜想:金属都可导电; C .由平面三角形的性质,推测空间四面体性质; D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= . 4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等”,补充以上推理的大前提是 ( ) A .正方形都是对角线相等的四边形 B .矩形都是对角线相等的四边形 C .等腰梯形都是对角线相等的四边形 D .矩形都是对边平行且相等的四边形 5.设 f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x)=f ′1(x ),…,f n (x )=f ′n -1(x ),n ∈N ,则f 2009(x )=( ) A .sin x B .-sin x C .cos x D .-cos x 6.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命 题,推理错误的原因是( ) A .使用了归纳推理 B .使用了类比推理 C .使用了“三段论”,但大前提使用错误 D .使用了“三段论”,但小前提使用错误 7.观察下列等式: 1- ; 1- ;1- ...... 据此规律,第n 个等式可为______________________. 8.观察下列等式:,……,根据上述规律, 第五个等式为 ______________________. 1122=1111123434+-=+1111111123456456+-+-=++332123,+=3332 1236,++=33332123410+++=

高考真题分类汇编——推理与证明 (5)

高考真题分类汇编——推理与证明 合情推理与演绎推理 1.[2014·北京卷] 学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有() A.2人B.3人C.4人D.5人 答案:B 2.[2014·北京卷] 对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记 T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n), 其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数. (1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值; (2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小; (3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论) 解:(1)T1(P)=2+5=7, T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8. (2)T2(P)=max{a+b+d,a+c+d}, T2(P′)=max{c+d+b,c+a+b}. 当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b. 因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′). 当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b. 因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′). 所以无论m=a还是m=d,T2(P)≤T2(P′)都成立. (3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小, T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52. 3.[2014·福建卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系: ①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________. 答案:6 解析:若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确; 若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4. 若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4; 若④正确,则①②③不正确,由②不正确,得b=1,由a≠1,c≠2,d≠4,得满足条件的有序数组为a=2,b=1,c=4,d=3或a=3,b=1,c=4,d=2或a=4,b=1,c=3,d=2; 综上所述,满足条件的有序数组的个数为6. 3.[2014·广东卷] 设数列{a n}的前n项和为S n,满足S n=2na n+1-3n2-4n,n∈N*,且S3

历年高考数学真题精选46 推理与证明

历年高考数学真题精选(按考点分类) 专题46 推理与证明(学生版) 一.选择题(共9小题) 1.(2019?新课标Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为() A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙2.(2019?新课标Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的 长度之比是5151 (0.618 -- ≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此 外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51 - .若某人满足上述两 个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是( ) A.165cm B.175cm C.185cm D.190cm 3.(2017?新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A.乙可以知道四人的成绩B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩4.(2016?新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15C ?,B点表示

四月的平均最低气温约为5C ?,下面叙述不正确的是( ) A .各月的平均最低气温都在0C ?以上 B .七月的平均温差比一月的平均温差大 C .三月和十一月的平均最高气温基本相同 D .平均最高气温高于20C ?的月份有5个 5.(2016?北京)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每 次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A .乙盒中黑球不多于丙盒中黑球 B .乙盒中红球与丙盒中黑球一样多 C .乙盒中红球不多于丙盒中红球 D .乙盒中黑球与丙盒中红球一样多 6.(2014?北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不 合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有( ) A .2人 B .3人 C .4人 D .5人 7.(2013?广东)设整数4n ,集合{1X =,2,3,?,}n .令集合{(S x =,y ,)|z x ,y , z X ∈,且三条件x y z <<,y z x <<,z x y <<恰有一个成立}.若(x ,y ,)z 和(z ,w ,)x 都在S 中,则下列选项正确的是( )

推理与证明经典练习题资料

推理与证明经典练习 题

仅供学习与交流,如有侵权请联系网站删除 谢谢2 高二数学《推理与证明》练习题 一、选择题 1.在等差数列{}n a 中,有4857a a a a +=+,类比上述性质,在等比数列{}n b 中,有( ) A .4857b b b b +=+ B .4857b b b b ?=? C .4578b b b b ?=? D .4758b b b b ?=? 2.已知数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== *N n ∈,试归纳猜想 出n S 的表达式为( ) A 、12+n n B 、112+-n n C 、112++n n D 、2 2+n n 3.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x =???'1()()n n f x f x +=,n ∈N ,则 2015()f x =( ) A.sin x B.-sin x C.cos x D.-cos x 4.平面内有n 个点(没有任何三点共线),连接两点所成的线段的条数为 ( ) A.()112n n + B.()112 n n - C.()1n n + D.()1n n - 5.已知2()(1),(1)1()2 f x f x f f x +==+,*x N ∈(),猜想(f x )的表达式为 ( ) A .4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21 f x x =+ 6.观察数列的特点1,2,2,3,3,3,4,4,4,4,…的特点中, 其中第100项是( ) A .10 B .13 C .14 D .100 7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ?/平面α,直线a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 8. 分析法证明不等式的推理过程是寻求使不等式成立的( ) A .必要条件 B .充分条件 C .充要条件 D .必要条件或充分条件 9. 2+7与3+6的大小关系是( ) A.2+7≥3+6 B.2+7≤3+6 C.2+7>3+6 D.2+7<3+ 6 10.[2014·山东卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

选修2-2推理与证明单元测试题(好经典)

《推理与证明》单元测试题 考试时间120分钟 总分150分 一.选择题(共50分) 1.下面几种推理过程是演绎推理的是 ( ) A .在数列{a n }中,a 1=1,a n =12(a n -1+1 an -1 )(n ≥2),由此归纳出{a n }的通项公式 B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人 C .由平面三角形的性质,推测空间四面体的性质 D .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180° 2.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y | =2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( ) A .76 B .80 C .86 D .92 3. 观察下列各式:72=49,73=343,74=2401,…,则72012的末两位数字为( ) A .01 B .43 C .07 D .49 4. 以下不等式(其中..0a b >>)正确的个数是( ) 1> ② ③lg 2>A .0 B .1 C .2 D .3 5.如图,椭圆的中心在坐标原点, F 为左焦点,当AB FB ⊥时,有 ()()() 2 2 2 2 2 c b b a c a +++=+ ,从而得其离心率为 ,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,可推出“黄金双曲线”的离心率为( ) A . 12 B .12+ C 6.如图,在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰 是由6颗珠宝构成的正六边形, 第三件首饰是由15颗珠宝构成的正六边形, 第四件首饰是由28颗珠宝构成的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,依此推断第8件首饰上应有( )颗珠宝。 第2件 第3件 第1件

2020年高考理科数学《推理与证明》题型归纳与训练

1 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n 【解析】 根据题意得a 1+a 2+…+a n n ≥n a 1a 2…a n (n ∈N *,n ≥2). 3 与数列有关的推理 例3观察下列等式:

12道经典推理题

12道经典推理题,据说谁能全做出来谁就是天才 1、水平思考法 有一家人决定搬进城里,于是去找房子。 全家三口,夫妻两个和一个5岁的孩子。他们跑了一天,直到傍晚,才好不容易看到一张公寓出租的广告。 他们赶紧跑去,房子出乎意料的好。于是,就前去敲门询问。 这时,温和的房东出来,对这三位客人从上到下地打量了一番。 丈夫豉起勇气问道:"这房屋出租吗" 房东遗憾地说:"啊,实在对不起,我们公寓不招有孩子的住户。" 丈夫和妻子听了,一时不知如何是好,于是,他们默默地走开了。 那5岁的孩子,把事情的经过从头至尾都看在眼里。那可爱的心灵在想:真的就没办法了他那红叶般的小手,又去敲房东的大门。 这时,丈夫和妻子已走出5米来远,都回头望着。 门开了,房东又出来了。这孩子精神抖擞地说:...... 房东听了之后,高声笑了起来,决定把房子租给他们住。 问:这位5岁的小孩子说了什么话,终于说服了房东 我的想法(首先我保证自己事先没有看过任何答案,朋奕是比较诚实的,但错了也希望大家能礼貌指出)是:小孩以自己身份去租,那么就符合房东条件了。 2、篮球赛 在某次篮球比赛中,A组的甲队与乙队正在进行一场关键性比赛。对甲队来说,需要嬴乙队6分,才能在小组出线。现在离终场只有6秒钟了,但甲队只蠃了2分。要想在6秒钟内再赢乙队4分,显然是不可能的了。 这时,如果你是教练,你肯定不会甘心认输,如果允许你有一次叫停机会,你将给场上的队员出个什么主意,才有可能蠃乙队6分 我的想法:让对方进球,然后加时再打。 3、分油问题 有24斤油,今只有盛5斤、11斤和13斤的容器各一个,如何才能将油分成三等份 我的想法:先把13斤的倒满,然后用13斤的倒满5斤,这时13斤中就有8斤,也就是1/3了,将这些到如11斤容器中。 再用5斤和剩余的倒满13斤的,重新来一次,就完成了。 4、第十三号大街 史密斯住在第十三号大街,这条大街上的房子的编号是从13号到1300号。琼斯想知道史密斯所住的房子的号码。 琼斯问道:它小于500吗史密斯作了答复,但他讲了谎话。 琼斯问道:它是个平方数吗史密斯作了答复,但没有说真话。 琼斯问道:它是个立方数吗史密斯回答了并讲了真话。 琼斯说道:如果我知道第二位数是否是1,我就能告诉你那所房子的号码。 史密斯告诉了他第二位数是否是1,琼斯也讲了他所认为的号码。 但是,琼斯说错了。 史密斯住的房子是几号 我的想法是:64号,首先想最简单的处理办法,这里一共有5个条件,能作为初步判断的只有前三个,那么前三个中最简单的就是第三个立方数的条件,假设为真,得出1~10的立方数,其中既符合平方数的也符合立方数的只有64和512,若大于500则只有512,小于500则64,但512中有1,若

推理与证明综合测试题

一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数 列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 6.观察式子:213122+ <,221151233++<,222111712344+++<,L ,则可归纳出式子为( ) A.22211111(2)2321n n n + +++<-L ≥ B.22211111(2)2321n n n + +++<+L ≥ C.222111211(2)23n n n n -+ +++,,∥.若 EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出: ma mb EF m m +=+.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB △, OCD △的面积分别为12S S ,,EF AB ∥且EF 到CD 与AB 的距离之 比为:m n ,则OEF △的面积0S 与12S S ,的关系是( ) A.120mS nS S m n +=+ B.120nS mS S m n +=+

苏教版数学高二- 选修2-2试题 《合情推理—归纳推理》(1)

2.1.1 合情推理—归纳推理 同步检测 一、基础过关 1.数列5,9,17,33,x ,…中的x 等于________ 2.f(n)=1+12+13+…+1n (n ∈N *),计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>7 2, 推测当n≥2时,有________. 3.已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=3 2. 通过观察上述两等 式的规律,请你写出一个一般性的命题:____________________. 4.已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33=________. 5.数列-3,7,-11,15,…的通项公式是________. 二、能力提升 6.设x ∈R ,且x≠0,若x +x - 1=3,猜想x2n +x -2n (n ∈N *)的个位数字是________. 7.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________. 8.如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________. 9.如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题. (1)按照要求填表:

n 1 2 3 4 … S n 1 3 6 … (2)S 10=________.(3)S n 10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数: 将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测: (1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=________.(用k 表示) 11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1 S n +2=0(n≥2),计算S 1,S 2,S 3,S 4, 并猜想S n 的表达式. 12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分. (1)3条直线最多将平面分成多少部分? (2)设n 条直线最多将平面分成f(n)部分,归纳出f(n +1)与f(n)的关系; (3)求出f(n). 三、探究与拓展 13.在一容器内装有浓度r%的溶液a 升,注入浓度为p%的溶液1 4a 升,搅匀后再倒出溶 液1 4a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式.

高中数学-推理与证明单元测试卷

绝密★启用前 高中数学-推理与证明单元测试卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.【题文】用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是() A.假设三个内角都不大于60度 B.假设三个内角至多有一个大于60度 C.假设三个内角都大于60度 D.假设三个内角至多有两个大于60度 2.【题文】菱形的对角线相等,正方形是菱形,所以正方形的对角线相等.在以上三段论的推理中() A .大前提错误B .小前提错误 C .推理形式错误D .结论错误 3.【题文】由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面( ) A .各正三角形内一点 B .各正三角形的某高线上的点 C .各正三角形的中心 D .各正三角形外的某点 4.71115>,只需证() A .22)511()17(->- B .22)511()17(+>+ C .22)111()57(+>+ D .22)111()57(->-

5.【题文】命题“对于任意角θ,θθθ2cos sin cos 44=-”的证 明:4cos θ-“4sin θ=θθθθθθθ2cos sin cos )sin )(cos sin (cos 222222=-=+-.”该过程应用了() A .分析法 B .综合法 C .间接证明法 D .反证法 6.【题文】观察式子:232112<+,353121122<++,47 4131211222<+++,…,可归纳出式子为() A .121 1 3121 1222-< + +++ n n B .121 1 3121 12 22 +< ++++n n C .n n n 1 21 3121 12 22 -<++++ D .1221 312 1 12 22 +< ++++n n n 7.【题文】已知圆()x y r r 222+=>0的面积为πS r 2=?,由此推理椭圆 ()x y a b a b 22 22+=1>>0的面积最有可能是() A .πa 2?B .πb 2?C .πab ? D .π()ab 2 8.【题文】分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0<”索的因应是() A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0 9.【题文】对于数25,规定第1次操作为3325133+=,第2次操作为 3313+3355+=,如此反复操作,则第2017次操作后得到的数是() A.25 B.250 C.55 D.133

2020年高考理科数学《推理与证明》题型归纳与训练

福利:本教程由捡漏优惠券(https://www.doczj.com/doc/d316078180.html, )整理提供 领红包:支付宝首页搜索“527608834”即可领取支付宝红包哟 领下面余额宝红包才是大红包,一般都是5-10元 支付的时候把选择余额宝就行呢 每天都可以领取早餐钱哟! 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n

归纳推理-高中数学知识点讲解

归纳推理 1.归纳推理 【知识点的认识】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别 事实概括出一般结论的推理. 推理形式:设S={A1,A2,A3,…,A n,…}, ?1具有属性? 具有属性?} ? ? ??类事物中的每一个对象都可能具有属性? ? 2.特点: (1)归纳推理的前提是几个已知的特殊现象,归纳得出的结论是尚属未知的一般现象,该结论超越了前提所包容 的范围; (2)归纳推理得到的结论具有猜测性质,结论是否真实,需要通过逻辑证明和实践检验,不能作为数学证明的工具; (3)归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现 问题和提出问题. 3.作用: (1)获取新知,发现真理; (2)说明和论证问题. 【解题技巧点拨】 归纳推理一般步骤: (1)对有限的资料进行观察、分析、归纳、整理; (2)提出带有规律性的结论,即猜想; (3)检验猜想. 【命题方向】 归纳推理主要以填空、选择题的形式出现,比较基础,考查对归纳推理的理解,会运用归纳推理得出一般性结论. 1/ 4

(1)考查对归纳推理理解 掌握归纳推理的定义与特点,注意区分与类比推理、演绎推理的不同. 例 1:下列表述正确的是() ①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A.①②③B.②③④C.②④⑤D.①③⑤ 分析:本题考查的知识点是归纳推理、类比推理和演绎推理的定义,根据定义对 5 个命题逐一判断即可得到答案.解答:归纳推理是由部分到整体的推理, 演绎推理是由一般到特殊的推理, 类比推理是由特殊到特殊的推理. 故①③⑤是正确的 故选D 点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一 个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到 特殊的推理过程. 例 2:下列推理是归纳推理的是() A.A,B 为定点,动点P 满足||PA|﹣|PB||=2a<|AB|(a>0),则动点P 的轨迹是以A,B 为焦点的双曲线 B.由a1=2,a n=3n﹣1 求出S1,S2,S3,猜想出数列{a n}的前n 项和S n 的表达式 ?2 ?2 C.由圆x2+y2=r2 的面积S=πr2,猜想出椭圆+ ?2 ?2 =1的面积 S=πab D.科学家利用鱼的沉浮原理制造潜水艇 分析:根据归纳推理的定义,对各个选项进行判断. 2/ 4

推理与证明练习题汇编

合情推理与演绎推理 1.下列说法正确的是 ( ) A.类比推理是由特殊到一般的推理 B.演绎推理是特殊到一般的推理 C.归纳推理是个别到一般的推理 D.合情推理可以作为证明的步骤 2.下面使用类比推理结论正确的是 ( ) A .“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =”; B .“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?”; C .“若()a b c ac bc +=+” 类推出“a b a b c c c +=+ (c ≠0)”; D .“n n a a b =n (b )” 类推出“n n a a b +=+n (b )” 3、下面几种推理是合情推理的是( ) (1)由正三角形的性质,推测正四面体的性质; (2)由平行四边形、梯形内角和是360?,归纳出所有四边形的内角和都是360?; (3)某次考试金卫同学成绩是90分,由此推出全班同学成绩都是90分; (4)三角形内角和是180?,四边形内角和是360?,五边形内角和是540?, 由此得凸多边形内角和是()2180n -? A .(1)(2) B .(1)(3) C .(1)(2)(4) D .(2)(4) 4.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→ 明文(解密).已知加密规则为:明文,,,a b c d 对应密文2,2,23,4a b b c c d d +++, 例如,明文1,2,3,4,对应密文5,7,18,16,当接收方收到密文14,9,23,28时,则解密 得到的明文为( ) A .4,6,1,7 B .7,6,1,4 C .6,4,1,7 D .1,6,4,7 5.观察以下各式:???=++++++=++++=++=;710987654;576543,3432;112 222, 你得到的一般性结论是______________________________________________________. 6、在十进制中01232004410010010210=?+?+?+?,那么在5进制中数码2004 折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 7、黑白两种颜色的正六形地面砖块按 如图的规律拼成若干个图案,则第五 个图案中有白色地面砖( )块. A.21 B.22 C.20 D.23

逻辑推理经典题

逻辑推理题练习 真假推理属于显性结论类的一种,其具体表现是在题目中给出若干个前提,前题有真有假,要求通过判断命题的真假情况,进而推理出指定的结论。 一、题型分析 经过对近年真题的比较与研究,我们不难发现,真假推理题型的难度在不断增加,答题的重点从矛盾关系扩大到反对、推出等多种关系,提问方式也从“只有一真”,“只有一假”扩大到“两真两假”。对于公务员考试,绝大多数考生没有必要也不需要去学习专业的逻辑学知识,只要掌握如下解题方法即可。 二、解题思路 首先,判断题型是“只有一真”,“只有一假” 还是“两真两假”;其次,在题干当中寻找一组矛盾关系,反对关系和推出关系,判断这两个条件是一真一假、不能同真、不能同假,还是必须同真、必须同假;最后,进行推导,得出结论。 三、真题示例 (一)只有一真 1.桌上有四个杯子,每个杯子都写着一句话,第一个:“所有的杯子里都有啤酒”;第二个:“本杯中有可乐”;第三杯“本杯中没有咖啡”;第四个“有些杯子中没有啤酒”。 假如只有一个为真话,那么()为真。 A.所有的杯子中有啤酒 B.所有的杯子中都没有可乐 C.第三个杯子中有咖啡 D.第二个杯子中有可乐 2.在一次对全市中学假期加课情况的检查后,甲乙丙三人有如下结论: 甲:有学校存在加课问题。 乙:有学校不存在加课问题。 丙:一中和二中没有暑期加课情况。 如果上述三个结论中只有一个正确,则以下哪项一定为真() A.一中和二中都存在暑期加课情况 B.一中和二中都不存在暑期加课情况 C.一中存在加课情况,但二中不存在 D.一中不存在加课情况,但二中存在 (二)只有一假 3.某珠宝店失窃,甲、乙、丙、丁四人涉嫌被拘审。四人的口供如下:甲:案犯是丙。乙:丁是罪犯。丙:如果我作案,那么丁是主犯。丁:作案的不是我。四个口供中只有一个是假的。 如果以上断定为真,则以下哪项是真的?()。 A.说假话的是甲,作案的是乙 B.说假话的是丁,作案的是丙和丁

高中数学《合情推理—归纳推理》公开课优秀教学设计

《合情推理—归纳推理》教学设计 (人教A版高中课标教材数学选修1—2第二章2.1第一课时) 2016年10月

《归纳推理》教学设计 一、教学内容分析 本节课内容是《普通高中课程标准实验教科书数学》人教A版选修1—2第二章《推理与证明》2.1《合情推理与演绎推理》的第一课时《归纳推理》,归纳推理为合情推理的一个类型.本课作为本章节的起始课要了解推理的含义,通过实例进一步了解归纳推理的含义,通过对归纳推理过程的感知,了解推理过程,进而能利用归纳进行简单的推理. 归纳推理是合情推理的一个重要类型,数学发现的过程往往包含有归纳推理的成分,在人类文明、创造活动中,归纳推理也扮演了重要的角色.归纳推理是作为一种思维活动存在的,教学的内容不是学习某一具体知识,而是感悟一系列的思维过程,逐步形成一种“思维习惯”,作为起始课形成习惯是困难的,但体验“过程”是相对容易的,“体验之旅”将成为本节课的主线.归纳推理的过程我们概括为“观察—分析—归纳—猜想”,对于“证明”我们暂不做要求,因此重点感悟归纳推理的过程,证明做适当引导. 归纳推理是由部分到整体、由特殊到一般的推理,这本身就体现了特殊与一般的数学思想,由于猜想结果超出了前提界定的范围,前提与结论之间的联系不是必然的,这又体现了必然与或然的数学思想.本课中的实例在数学史中都是赫赫有名的,“四色猜想”、费马数、哥德巴赫猜想、问题4中的毕达哥拉斯平方数等,这些实例展现了一代代数学家对于数学的好奇心和想象力体现了他们不畏困难,坚持不懈的探索精神,抓住这些内容可以培养学生“勇于探究”的精神,这一精神正是新一轮课程改革强调的学生核心素养中“科学精神”的重要体现。新一轮的课程改革即将到来,作为普通教师也有必要在教学中未雨绸缪,避免大寒索裘.数学思想和数学文化将作为本课的一条暗线穿插于教学内容之中. 本节课的教学重点:了解归纳推理的含义,通过实例,掌握“观察—分析—归纳—猜想”的推理过程. 二、教学目标设置

相关主题
文本预览
相关文档 最新文档