当前位置:文档之家› 中心极限定理及其意义

中心极限定理及其意义

中心极限定理及其意义
中心极限定理及其意义

题目:中心极限定理及意义

课程名称:概率论与数理统计

专业班级:

成员组成:

联系方式:

2012年5月25日

摘要:

本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词:

随机变量,独立随机变量,特征函数,中心极限定理

引言:

在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合

影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。

中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。

一、三个重要的中心极限定理 1.独立同分布的中心极限定理

设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差

()()),2,1(0,2???=>==k X D X E k k σμ,则随机变量之和∑=n

k k

X 1

的标准化变量,

σ

μ

n n X

X D X E X Y n

k k

n k k n k k n

k k n -=??

? ?????

??-=∑∑∑∑====1

111

的分布函数)(x F n 对于任意x 满足,

()x dt e x n n X P x F t x n k k n n n Φ==?????????

??

???

≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ

2.李雅普诺夫定理

设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差

()()),2,1(0,2

???=>==k X D X E k k k k σμ,

∑==n

k k n

B 12

2σ.

若存在正数δ,使得当∞→n 时,

}{0

1122→-∑=++n

k k

n

X

E B

δ

δ

μ

则随机变量之和

∑=n

k k

X

1

的标准化量化,

n

n

k k

n k k

n k k n k k n

k k

n B X X D X E X Z ∑∑∑∑∑=====-=??

? ?????

??-=1

1

111

μ

的分布函数)(x F n 对于任意x 满足,

()x dt e x B X P x F t x n n

k k n k k n n n Φ==?????????

?????

≤-=-∞-==∞→∞→?∑∑2/1

1221lim )(lim πμ

3.棣莫弗—拉普拉斯定理

设随机变量),2,1(???=n n η服从参数为)10(,<

()x dt e x p np np P t x n n Φ==????????

??≤---∞-∞→?2/221)1(lim πη

二、中心极限定理的意义: 首先,中心极限定理的核心内容是只要n 足够大,便可以把独立同分布的随机变量和的标准化当作正态变量,所以可以利用它解决很多实际问题,同时这还有助于解释为什么很多自然群体的经验频率呈现出钟形曲线这一值得注意的事实,从而正态分布成为概率论中最重要的分布,这就奠定了中心极限定理的首要功绩。其次,中心极限定理对于其他学科都有着重要作用。例如数理统计中的参数(区间)估计、假设检验、抽样调查等;进一步,中心极限定理为数理统计在统计学中的应用铺平了道路,用样本推断总体的关键在于掌握样本特征值的抽样分布,而中心极限定理表明只要样本容量足够地大,得知未知总体的样本特征值就近似服从正态分布。从而,只要采用大量观察法获得足够多的随机样本数据,几乎就可以把数理统计的全部处理问题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地位.

三、中心极限定理的应用: 1.1保险学的概率论数学原理

保险体现了“人人为我,我为人人”的互助思想,它以数理统计为依据。保险中的风险单位是发生一次风险事故可能造成标的物损失的范围,也就是遭受损失的人、场所或事物。风险单位是保险公司确定其能够承担的最高保险责任的计算基础。理想状态下的风险单位应独立同分布,这种现象的意义在于保险人可以

据此向每个潜在的被保险人收取同样的保费。同时根据中心极限定理,含有n

个风险单位的随机样本的平均损失符合正态分布,这个结论对保险费率的厘定极为重要。保险公司各险种的交费标准是经过精算后以同期银行利率比照制定的,所以在此基础上应尽可能地多承保风险单位,也就越可能有足够的资金赔付保险期内发生的所有索赔,从而使保险公司的运营更加平稳,也就越有利于投保人或被保险人.

既然可利用中心极限定理能合理地厘定保险费率,为何老年人投保一再被提高门槛呢?京江晚报3月28日就有报道“对保险公司来说,老年人属于高风险人群,存在的不确定因素较多,老年人发生医疗费用支出和意外事故的风险要比年轻人大。所以,从赔付率的角度考虑,保险产品在推出前会经过精密测算,设置相应的年龄门槛和不同的缴费标准”.

我们以最简单的一年定期寿险为例说明保险公司为何对中老年人保险总提高门槛,老年人投保寿险与年轻人有何区别。如表1所示是台湾远雄人寿千喜男性一年定期寿险的部分费率及死亡率(见附录三、四)。为说明问题,我们选取25-29岁作为年轻人的代表,61-65岁为老年人的代表,将这两个年龄段进行比较。

远雄人寿千喜男性一年定期寿险的部分费率及死亡率表1

总保费=1000 ?单个人的保费(元)=0.1 ?单个人的保费(万元),

赔付额=

4

101000

i i i

E E E i

ξξξ

?=

(元)(万元),为个年龄为岁的个体在一年内死亡的期望。

不同年龄的总保费及赔付额表2

导致赔付额的基数较大,所以还不能很好的解释问题,这里再引入赔付率(赔付率=赔付额/总保费),得出表3。

呈上升趋势且赔付率处于较高水平。那么对于一个保险公司,她的经营主要是以

盈利为目的,老年人身体状况较差,是疾病、死亡的多发群体,面临的风险大,所以为老年承保寿险时保险公司的赔付率相对较高。因此老年人投保寿险一再被提高门槛。同时,老年人寿险的保费若定价较高,但老年人收入相对偏低,可能买不起,而定价过低,保险公司也承受不起,从而更加影响公司的盈利。因此,寿险公司更愿意把目光投向年轻人群体。 1.2 定期寿险保险金的给付模型

在上述比较中,我们知道了保险公司更青睐于年轻群体,但是在保险公司追求利益的同时还应考虑到他们的偿还能力。我国《保险法》规定“保险公司应该具有与其业务相适应的最低偿付能力。”下面我们就将建立定期寿险保险金给付模型。

首先,根据国际精算协会的惯例,采用下列符号: (x ):一个新生儿生存至x 岁,记为个体(x );

t

x p :(x )活过年龄x+t 岁的概率,即(x )至少再活t 年的概率;()t μ:(x )活

到t 岁的个体恰好在此年龄死亡的可能性,称为死亡力。且当()t μ为常数时有

t

x p =t e μ-

δ:是衡量在某个确切时点上利率水平的指标,称为利息力,简称息力;

v :称为贴现因子,表示1年后得到1元在年初时刻的现值;

T (x ): 个体(x )的未来生存时间[9]

现假定利率为常数i ,则有:

1

ln(1),,11i i d v i i δ=+=

=++

再记n 年定期寿险的保险人给付额的现值为Z ,则Z 的精算现值为

1

:x n

A =1

()t t x v

p x dt

μ?

Z 的j 阶矩为

1:j

x n

A

=1

:@x n A j δ(其中@j j δδ表示计算时采用利息力)

=

()n

jt t x v

p x dt

μ?

现假定1000个x 岁独立的个体投保一年定期寿险,死亡保险金为1万元,在死亡后立即给付。死亡力为常数μ=0.06。死亡给付是由某投资基金提供,投资基金的利息力为δ=0.04。若要能够支付未来死亡保险金的概率不低于0.975,现在所需资金最低额度是多少?

记1000个个体的未来生存时间分别为121000(),(),...,()T x T x T x ,总给付金额的现

值为1000

()

1

j T x i v

=∑,则精算现值为

1

1

1()0.1:1

()(1)0.6(1)0.0571

t

t t x t x A

v p x dt e e dt e e δμμδμμμμδ

---+-===

-=-=+??,

二阶矩为

1

2

112(2)0.14:1:1

3

@2(1)(1)0.056027

t t x x A A e e dt e e δμμδμδμμδ---+-===

-=-=+?

因此方差21

1

()

2:1:1()()j T x x x D v

A A =-=0.0527。设W 为满足要求所需的最低资金额

度,利用中心极限定理,我们可以得到:

1000

1

()

:1

1

1000:1()

1

10001

()

:1

1000()100052.7

)7.26

52.7

(

)7.26

j j j T x x T x j T x x v

A P v

W P v

A W P W =-≤=≤--=≤-=Φ∑∑∑

再利用正态分布0.975的分为点1.96,得

52.7

1.967.26

W -≈ 即W ≈67万元。所以,若需要能够支付未来死亡保险金的概率不低于0.975,现在所需资金的最低额度是67万元。 1.3 定期寿险业的盈亏

我们已经知道寿险公司的经营是为了盈利,而一个保险公司的盈亏,是否破产,我们也可以运用中心极限定理的知识做到估算和预测。例如设某寿险公司在一段时间内有n 个同一年龄的人投保一年定期寿险,他们是相互独立彼此互不影响的,且在一年内没有新的投保人加入该项保险业务,也没有人退保。那么就可以利用中心极限定理估计该公司接下这些保单的盈亏概率。设每份保单的保费为M ,保额为Q ,该年龄的死亡率为p ,令

i X =10i i ??

?,第个人死亡,第个人仍活着

,i=1,2,…,n ,

则有

1

(,)n

i

i X

N n p =∑,

再结合中心极限定理有该保险公司的亏本概率为

()()n M

np

n M P n M x Q P x P Q ?-??

1n M

np β?-=-Φ= (7) 若计算出的β较小,则对公司的盈利有好处,若β偏大,则为了盈利着想,寿险公司可通过增加保费等手段来降低亏本率。 1.4 实例分析

例1 :某保险公司的老年人寿保险有10000人参加,每人每年交200元。若老人在该年内死亡,公司付给其家属1万元。设老年人的死亡率为0.017,问:(1)保险公司在一年内的这项保险中亏本的概率多大? (2)保险公司一年的利润不少于20万元的概率多大? 解:设ξ表示一年内参保人的死亡数。则由题可知ξ(10000,0.017)B 。

(1)要使保险公司亏本,必须满足 200?10000-10000ξ<0

∴ξ>200

则P (ξ>200)=1- P (0≤ξ ≤200)

1-[ Φ-Φ]

=1- (2.3256)Φ-(13.1783)Φ-=0.01 即保险公司亏本的概率为1%。

(2)要使保险公司一年的利润不少于20万元,必须满足

200 ?10000-10000ξ≥200000

∴ξ≤180

则P (0≤ξ ≤180)

≈Φ-Φ

=(0.78)Φ-(13.1783)Φ-=0.7823

即保险公司一年的利润不少于20万元的概率为78.23%。 2.1中心极限定理在决策问题中的应用

决策是为了达到某种预定的目标,在若干可供选择方案中决定一个合适方案的过程。那么在就某事的可行性进行决策时,单个人认为是否可行称为个体决策,几个人(至少3个人)按照少数服从多数的方法决定是否可行称为集体决策。俗话说,人多力量大,那么我们习惯上认为的集体正确决策的概率大于每个单个个体正确决策的概率是否正确呢?下面将应用中心极限定理来讨论分析这个问题。

首先,我们给出一些简单的数据,利用特殊法看看该说法是否正确。见表4。记n 为参与集体决策的人数,假定每个个体做出正确决策的概率相同,且均为p ,决策方式也是根据少数服从多数原则,则在空格中所填数据为集体决策正确的概

率,记为P 集正(其中n=30、40时应用中心极限定理计算P 集正

)。

情况一:10.25(0,)210.5210.75(1)2p n P p P n p n P ?

=∈??

?=≡??

?

=∈??

集正集正

集正当时,随着的增加,逐渐下降当时,,与无关当,时,随着

的增加,逐渐增加,

由此我们得出第一个猜测,

猜测一:1(0,)211

221(1)2p n P p P n p n P ?

∈??

?=≡??

?∈??

集正集正集正当时,随着的增加,逐渐下降当时,,与无关

当,时,随着的增加,逐渐增加。 情况二:10.25(0,)2

0.510.75(1)2

p P p p P p p P p ?=∈

?=∈>?集正集正集正当时,当时,当,时,,

显然由这一情况可知,集体正确决策的概率大于每个单个个体正确决策的概率这

一说法是不一定正确的,同时我们也得出了第二个猜测,

猜测二:1(0,)2121(1)2p P p p P p

p P p ?

?==??

?∈>??

集正集正集正当时,当时,当,时,。 现在就利用一般法检验两个猜测是否正确,下面将结合中心极限定理来做出判

断。设X 为n 个人中做出正确决策的人数,令

1,1,2,...,0,i i X i n i ?==??第个人的决策正确第个人的决策错误

记(1,(01i i P X p P X p ====-)),则

1,,(1)n

i i X X EX np DX np p ====-∑。

将X标准化,并由中心极限定理可得

N(0,1)。当n成分大时,

()1

2

n n

np np

n

P X P

--

>=>=-Φ (8)

为下面讨论方便,令

1

()

n

np

f n

-

==

()1(())

2

n

P X f n

∴>=-Φ (9) 那么对于猜测一:(1)当1

2

p

<<时,f(n)是大于0的单调增函数,

1212

,0()()

n n f n f n

<<<

12

(())(())

f n f n

∴Φ<Φ

12

((

22

n n

P X P X

∴>>

)>)。

同理可证明(2),(3)。

所以猜测一是正确的。

对于猜测二:当n充分大时,我们可以得到

1

0,(),()0;

22

11

,()0,();

222

1

1,(),()1

22

n

p f n P X

n

p f n P X

n

p f n P X

?

<<→+∞>→

?

?

?

==>=

?

?

?

<<→-∞>→

??

若则此时

若则此时

若则此时。

由此可知,当n充分大时,若11

2

p

<<则()

2

n

P X>无限趋近于1,而p是一个大于

1/2小于1的常数,所以必定有()

2

n

P X p

>>,即

1

1

2

p

<<是()

2

n

P X p

>>的必要条件;

相反当()

2

n

P X p

>>时,是否也有

1

1

2

p

<<呢?不妨采用反证法说明。若p=1

2

,则

()

2

n

P X

>1

n

np

-

=-Φ=

1

2

>p,

矛盾。若0

1

2

,则当n充分大时,

()

2

n

P X

>1

n

np

-

=-Φ趋于0,

而p 是一个大于0小于

12的常数, 所以()2

n

P X >也不可能大于p,矛盾。即p 只能属于(12,1)。因此,当n 充分大时,112

P p p ><<集正的充要条件为[6]

在验证猜测一与二的基础上,我们可以得出这样的结论:当且仅当0.5

3.0 中心极限定理在生产供应、需求上的应用

现实生活中,当厂家的生产量大于需求量时,会导致商品的积压以及商品价值难以体现;而当厂家的生产量小于需求量时,供给又难以满足社会需求。为了尽量防止“供”过于大于“求”及尽可能的满足社会需求度,我们就要利用中心极限定理来估算一些值,具体如下。

3.1 根据现有生产能力及用户需求状态,估算能满足社会需求的可靠程度

某工厂负责供应某地区n 个人的商品供应,在一段时间内每人需用一件该商品的概率为p ,假定在这段时间内每个人购买与否彼此独立,现该工厂仅生产M

件商品,试估计能满足该地区人们需求的概率β。 若记

10i i X i ?=?

?,第个人购买该商品

,第个人不购买该商品

,i=1,…,n 则

1()n

i

n

i i X

np

P X M P β=-≤=≤

=Φ=∑∑,

通过查正态分布表可求得β。

3.2 根据社会需求状态来确定生产任务

某工厂负责供应某地区n 个人的商品供应,在一段时间内每人需用一件该商品的概率为p ,假定在这段时间内每个人购买与否彼此独立,现该工厂至少有β的把握满足社会需求,试问该工厂需要生产商品的件数M 。 若记

10i i X i ?=?

?,第个人购买该商品,第个人不购买该商品

,i=1,…,n 则

),(~1

p n N X

N

i i

∑=

∴1

()n

i

n

i i X

np

P X M P β=-≤==Φ≥∑∑,

()x ββΦ=,

M np x ≥+ (11)

所以该工厂至少需要生产np x +

3.3 根据需求及产品质量情况来确定生产量

某工厂负责供应某地区的商品供应,该商品的次品率为p,而在一段时间内共需M 件该商品且要求至少有β的可靠程度来保证居民购买到的是正品,求该工厂的生产量N 。若记

10i i Y i ?=?

?,第件商品是次品

,第件商品不是次品

,i=1,…,N , 则

),(~1p N Y N

i i ∑=

所以由

1()N

i i P N Y M β=-≥≥∑

可知

1()N

i N

i i Y Np

P Y N M P β

=-≤-=≥∑∑

()y ββΦ=,

再通过解不等式

≥y β

由上式可解出生产量N 的范围。 3.4 例题分析

设某电视机厂生产液晶电视机以满足某地区100家客户的需求,若由以往的统计资料表明:每一用户对该电视机的年需求量服从λ=2的泊松分布,现在该厂这种电视机的年产量为220台,能以多大的把握满足客户的需求量呢?若该厂要有97.5%的把握满足客户的需求,则该厂至少生产多少台这种液晶电视机?现在该厂引进先进技术,将液晶电视机的出厂正品率提高到95%,现估计一年内该地区的社会总需求量为500台,则为了有99.7%的把握保证客户购买到的是正品

液晶电视机,则该厂该年至少生产多少台液晶电视机[11]

解:设这100户客户对这种液晶电视机的年需求量依次为12100,,...,ξξξ。则由统计资料表明:

)2(~)(=λξλP k

2

2()(0,1,2...;1,2,...,100)!

j

k P j e j k j ξ-====,

那么根据泊松分布的知识知

2k k E D ξξλ===,

再设100η为这100家客户对这种液晶电视机的年需求总量,则

100η=100

1k k ξ=∑,

由于n=100较大,根据中心极限定理我们有:100η近似服从正态分布N (,n n λλ),即N(200,200)。

现在该厂的年产量为220台,则能满足客户需求的把握为

P (100η≤200)=P

≤=Φ=0.91924,

即能满足客户需求的把握为91.924%。

又若该厂要有97.5%的把握满足需求,则设该厂安排年产量为M 台,则M 应满足下式:

P(100η≤M)≥97.5%

从而有

≤)=Φ≥0.975

由正态表查得(1.96)0.975Φ=,而()x Φ是x 的增函数,所以有

≥1.96,M ≥227.7,

即取M=228(台)。

最后我们设N 为当液晶电视机正品率为95%时的生产量,设i η为第i 台电视机含次品的个数,即i η=1表示次品;i η=0表示正品。则

N η=1

N

i i η=∑

为N 台液晶电视机中的次品总数,而N-N η为N 台电视机中的正品总数,它应满足

P(N-N η≥500) ≥0.997,

P(N η≤N-500) ≥0.997,

由题意知

N η~B (N ,0.05)

, 从而

E N η=0.05N,D N η=0.95*0.05N=0.0475 N ,

结合中心极限定理知N η近似服从N (0.05N, 0.0475 N ),所以

P(N η≤

0.997Φ≥

再通过查正态分布表知

(2.75)Φ=0.997,

就有

≥2.75 解此不等式得

N ≥541.16,

取N=542(台)所以在这种情况下应生产出542台液晶电视机才能有99.7%的把握客户买到的是正品。

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

(完整版)大数定律及中心极限定理

第五章大数定律及中心极限定理 【基本要求】1、了解切比雪夫不等式; 2、了解切比雪夫大数定律,Bernoulli大数定律和辛钦大数定律成立的条件及结论; 3、了解独立同分布的中心极限定理(列维—林德伯格定理)和德莫佛—拉普拉斯 中心极限定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用 相关定理近似计算有关随机事件的概率。 【本章重点】切比雪夫不等式,切比雪夫大数定理及Bernoulli大数定理。 【本章难点】对切比雪夫大数定理及独立同分布的中心极限定理的理解。 【学时分配】2学时 【授课内容】 §5.1 大数定律 0.前言 在第一章我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。 下面介绍三个定理,它们分别反映了算术平均值及频率的稳定性。 一、切比雪夫大数定律 1

2 事件的频率稳定于概率,能否有p n lim n n =μ∞→,答案是否定的。而是用)(0}{ ∞→→ε≥-μn p n P n [依概率收敛]来刻划 (弱)。或者用{}1n n P p n →∞ μ???→=[a.e.收敛] 来刻划(强)。 1.定义:设ΛΛ,,,,21n X X X 是一个随机变量序列,a 是一个常数,若对于任意正数ε,有 ()1lim =<-∞ →εa X P n n , 则称序列ΛΛ,,,,21n X X X 依概率收敛于a .记为a X P n ?→? . 2.切比雪夫不等式 设随机变量ξ具有有限的期望与方差,则对0>?ε,有 2 ) ())((ε ξεξξD E P ≤ ≥-或2 ) (1))((ε ξεξξD E P - ≥<- 证明:我们就连续性随机变量的情况来证明。设~()p x ξ,则有 2 2 ()()(())(())()()x E x E x E P E p x dx p x dx ξ ε ξ ε ξξξεε -≥-≥--≥= ≤ ?? 22 2 1 () (())()D x E p x dx ξξεε+∞ -∞ ≤ -= ? 该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件 {}E ξξε-≥概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。 3.定理1(切比雪夫大数定律) 设}{n ξ是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在 常数C ,使Λ,2,1)(=≤i C D i ξ,则对任意的0>ε,有01111 =ε≥ξ-ξ∑∑==∞→})(E n n {P lim n i n i i i n [即

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

中心极限定理与大数定理的关系

渤海大学学士学位论文 题目: 中心极限定理与大数定理的关系 系别: 渤海大学 专业: 数学系 班级: 2002级1班 姓名:于丹 指导教师:金铁英 完成日期:2006年5月19日 中心极限定理与大数定理的关系 于丹 (渤海大学数学系辽宁锦州 121000 中国) 摘要:中心极限定理是概率与数理统计的一个重要分支,大数定理和中心极限定理都是讨论的随机变量序列的极限问题,它们是概率论中比较深入的理论结果。 本篇论文从研究大数定理开始,然后由大数定理以及收敛性引出了中心极限定理,最后通过对定理在实际应用中的举例和定理的一些反例的研究使我们弄清中心极限定理的内涵与外延,进一步弄清了大数定理与中心极限定理之间的关系。 关键词:大数定理中心极限定理收敛性 The relation of the central limit theorem and large numbers law Yu Dan (Department of Mathematics Bohai University Liaoning jinzhou 121000 China) Abstract:The Central limit theorem is an important branch of probability and mathematical statistic. The large numbers law and the central limit theorem is limit question of random variable sequence .They are the quite thorough theory result in the theory of probability. This paper commences from large numbers law,then the central limit theorem is cited by large numbers law and convergence.Eventually,we can understand connotation and extension of the central limit theorem by its examples and relationship between large numbers law and the central limit theorem . Key words:large numbers law ; the central limit theorem ; convergence. 引言

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

中心极限定理证明

中心极限定理证明 目录 第一篇:中心极限定理证明 第二篇:大数定理中心极限定理证明 第三篇:中心极限定理 第四篇:中心极限定理应用 第五篇:中心极限定理 更多相关范文 正文 第一篇:中心极限定理证明 中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史

上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

大数定理与中心极限定理的关系及应用

本科生毕业论文(设计) 题目大数定律与中心极限定理的 关系及应用 姓名学号 院系数学科学学院 专业数学与应用数学 指导教师职称 2013年4 月16 日 曲阜师范大学教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Key words (3) 引言 (3) 1 大数定律与中心极限定理的关系 (4) 1.1预备知识 (4) 1.1.1大数定律 (4) 1.1.2中心极限定理 (5) 1.2大数定律与中心极限定理的关系 (6) 1.2.1服从大数定律不服从中心极限定理的例子 (7) 1.2.2服从中心极限定理不服从大数定律的例子 (8) 1.2.3大数定律与中心极限定理均不服从的例子 (9) 2 大数定律与中心极限定理在实际生活中的应用 (10) 2.1 在误差分析中的应用 (10) 2.2 在数学分析中的应用 (11) 2.3 在近似计算中的应用 (13) 2.4 在保险业中的应用 (14) 2.5 在企业管理方面的应用 (15) 结论 (16) 致谢 (16) 参考文献 (17)

大数定律与中心极限定理的 关系及应用 摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。 关键词:大数定律中心极限定理随机变量应用 Relationship and Applications between the Law of Large Number and Central Limit Theorem Student majoring in mathematics and applied mathematics Bai Yanfei Tutor Liu Li Abstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value. Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带。大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。在现实生活中经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然。 而中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分

中心极限定理的应用

毕业论文 题目中心极限定理的应用 学生姓名张世军学号1109014148 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业(统计类)11级2班指导教师程小静 2015 年 5 月 25 日

中心极限定理的应用 张世军 (陕西理工学院数学与计算机科学学院数学与应用数学专业2011级数应2班,陕西汉中 723000) 指导教师:程小静 [摘要]中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类重要定理。本文首先从中心极限定理的内容出发,给出几种常见的中心极限定理并对其进行了证明;其次讨论了中心极限定理在供应电力、器件价格、商场管理、烟卷制造业、社会生活、军事问题等这几个方面的实际应用;最后总结分析了中心极限定理在应用上的优缺点。 [关键词]随机变量;中心极限定理;正态分布;概率论;近似计算 Central Limit Theorem of Application Zhang Shijun (Grade11,Class02,Major Mathematics and Applied Mathematics Specialty,Mathematics and computer scienceDept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Cheng Xiaojing Abstract:The central limit theorem is an important limit theorem in probability theory to discuss a set of random variables and the distribution of the normal distribution. Firstly starting from the content of the central limit theorem, given several common central limit theorems and its proofs; Second central limit theorem is discussed in the electric power supply, prices, market management, cigarette manufacturing, social life, the practical application of this a few aspects such as military questions; Summarized and analyzed the advantages and disadvantages of central limit theorem on the application. Keywords:Random variables; Central limit theorem; Normal distribution; Probability theory;Approximate calculation

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

中心极限定理应用

中心极限定理及其应用 【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。它们表明了当n 充分大时,方差存在的n 个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。本文讨论了中心极限定理的内容、应用与意义。 【关键词】:中心极限定理 正态分布 随机变量 一、概述 概率论与数理统计是研究随机现象、统计规律性的学科。随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。中心极限定理主要描述了在一定条件下,相互独立的随机变量序列X1、X2、…Xn 、…的部分和的分布律:当n →∞时的极限符合正态分布。因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。 二、定理及应用 1、定理一(林德贝格—勒维定理) 若 ξ 1 ,ξ 2 ,…是一列独立同分布的随机变量,且 E k ξ=a, D k ξ = σ 2 ( σ 2 >0) ,k=1,2,…则有 dt e x n na p x t n k k n ? ∑∞ -- =∞ →= ≤-2 1 221)(lim π σξ 。 当n 充分大时, n na n k k σξ ∑=-1 ~N (0,1),∑=n k k 1 ξ ~N (2 ,σn na ) 2、定理二(棣莫弗—拉普拉斯中心极限定理) 在n 重伯努利试验中,事件A 在每次试验中出现的概率为错误!未找到引用源。, 错误!未 找到引用源。为n 次试验中事件A 出现的次数,则dt e x npq np p x t n n ?∞ -- ∞ →= ≤-2 2 21 )( lim π μ 其中1q p =-。这个定理可以简单地说成二项分布渐近正态分布,因此当n 充分大时,可

中心极限定理证明

中心极限定理证明)题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地 位。参考文献 [1]邓永录著应用概率及其理论基础.清华大学出版社。 [2]魏振军著概率论与数理统计三十三讲.中国统计出版社。 [3]程依明等著概率论与数理统计习题与解答.高等数学出版社。 第五篇:中心极限定理 中心极限定理 中心极限定理(central limit theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a 和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

(二)德莫佛——拉普拉斯中心极限定理 设μn是n次独立试验中事件a发生的次数,事件a在每次试验中发生的概率为p,则当n无限大时,频率设μn / n 趋于服从参数为的正态分布。即: 该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设 差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方 。 记,如果能选择这一个正数δ>0,使当n→∞ 时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x ,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

中心极限定理论文:中心极限定理及其简单应用.

中心极限定理论文:中心极限定理及其简单应用 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极pH定理的内容并简单介绍了它在实际中的应用。关键词:中心极限定理正态分布随机变量一、概述概率论与数理统计是研究随机现象、统计规律性的学科。随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。中心极限定理主要描述了在一定条件下,相互独立的随机变量序列X1、X2、…Xn、…的部分和的分布律:当n→∞时的极限符合正态分布。因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。二、定理及应用中心极限定理有多种形式:1、独立同分布下的中心极限定理定理 1[1],设x1,X2,…,Xn,…是独立同分布随机变量,EXi=μDXi=σ2(i=1,2,…,n)则它表明当n充分大时,n个具有期望和方差的独立同分布的 随机变量之和近似服从正态分布。定理1也称为林德伯格定理或列维——林德伯格定理。其中上下同除n,分子中有xi,其在数理统计中可表示样本的均值,可见独立同分布的样本均值近似地服从正态分布。这使得中心极限定理在数理统计中有着广泛而重要的作用。而上述定理应用到伯努利实验序列的情形,我们可以得到如下定理。定理2[1](拉普拉斯定理),在n重伯 努利试验中,事件A在每次实验中出现的概率P(0 2、同分布下中心极限定理的简单应用独立同分布的中心极限定理可应用于求随机变量之和Sn落在某区间的概率和已知随机变量之和Sn取值的概率,求随机变量的个数。 例1[3],设各零件的重量都是随机变量,它们相互独立且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是多少? 解:设Xi(i=1,2,…,5000)表示第i个零件的重量X1, X2,…,X5000独立同分布且E(Xi)=0.5,D(Xi)=0.12。由独立同分布的中心极限定理可知=I-φ(1.414)=1-0.9215 =0.0785 例 2[3],一生产线生产的产品成箱包装,每箱的重量是随机的且同分布,设每箱平均重50kg,标准差为5kg,若用最大载重为50吨的汽车承运,每辆车最多可以装多少箱才能保证不超载的概率大于0.977?解:设Xi(i=1,2,…,n)是装运第i箱的重量,n为所求箱数。由条件可把X1,X2,…,Xn看作独立同分布的随机变量,而n箱的总重量为Tn=X1+X2+…+Xn,是独立同分布的随机变量之和。由E(Xi)=50、D(Xi)=52得:E(Tn)=50n,D(Tn)=52n 根据独立同分布的中心极限定理:即最多可以装98箱。例3[2],报名听 心理学课程的学生人数K是服从均值为100的泊松分布的随机变量,负责这门课的教授决定,如果报名人数不少于120,就分成两班,否则就一班讲授。问 该教授讲授两个班的概率是多少? 分析:该教授讲授两个班的情况出现当且仅当报名人数x不少于120,精确解为P(x≥120)=e-100100i/i!很难求解,如果利用泊松分布的可加性,想到均值为100的泊松分布随机变量等于 100个均值为1的独立泊松分布随机变量之和,即X=Xi,其中每个Xi具有参数1的泊松分布,则我们可利用中心极限定理求近似解。解:可知 E(X)=100,D(X)=100 ∴P(X≥120)=1-φ()=1-φ(2)=0.023 即教授讲授两个班的概率是0.023。例4[1],火炮向目标不断地射击,若每

相关主题
文本预览
相关文档 最新文档