当前位置:文档之家› 水泥砂浆固化土三轴试验研究

水泥砂浆固化土三轴试验研究

水泥砂浆固化土三轴试验研究
水泥砂浆固化土三轴试验研究

岩土力学实验室主要仪器设备

岩土力学实验室 岩土力学实验室是研究土的物理、化学以及力学性质和岩体在荷载作用下的应力、变形规律的专业实验室,拥有比较先进的教学和科研实验条件,是高速铁路建造技术国家工程实验室的一个重要组成部分。实验室以面向国民经济建设和社会发展需要,服务重大工程建设为宗旨,承担了大量的应用基础和工程研究项目。 该实验室由以下三个主要部分组成:细颗粒土试验部分,粗颗粒土试验部分,岩石试验部分。 细颗粒土试验部分包括DDS —70微机控制动三轴试验仪和GDS 全自动三轴及非饱和土试验仪,可进行细颗粒土的标准静三轴试验,非饱和土强度试验,渗透试验、应力路径试验以及细颗粒土的动强度、动弹模、阻尼比、疲劳和砂土液化试验等。 粗粒土试验部分包括SZ304型粗粒土三轴剪切仪、TAJ —2000大型动、静三轴试验仪、TA W —800大型直接剪切仪以及TGJ —500微机控制电液式粗粒土工固结仪,可进行粗颗粒土的三轴试验、直接剪切试验、蠕变试验、动强度、动弹模、阻尼比、加筋土强度试验、加筋土动力特性试验以及土与结构物的剪切试验等。 岩石试验部分主要包括;TA W —3000电液伺服岩石三轴试验仪,该试验仪可进行岩石的单轴抗压强度试验,岩石弹性模量、柏松比试验,岩石三轴抗剪强度试验,岩石蠕变试验等。 附各个仪器设备的图片 一、DDS —70微机控制动三轴试验系统 主要技术参数: 试样尺寸:mm 801.39?φ 最大轴压:1370N 最大围压:0.6Mpa 反压:0.3Mpa 频率范围:1~10Hz 最大轴向位移:20mm 二、GDS 全自动三轴及非饱和土试验系统 主要技术参数: 试样尺寸:mm 10050?φ,mm 200100?φ 最大轴压:50KN 最大围压:1.7Mpa 孔隙水压力:1.0Mpa

土力学实验

问答题 1.三轴试验中周围压力大小与工程实际荷载相适应,对吗? 答:对的,并尽可能使最大周围压力与土体的最大实际荷重大致相等,也可按100kpa ,200kpa ,300kpa ,400kpa 施加。 2.在h-w 图中,怎么判断液限和塑限? 答:h=2mm 时,对应含水率为塑限;h=17mm 时,对应含水率为液限。 3.在液限,塑限实验中,锥体弄脏了,怎么办? 答:抹干净,涂少许凡士林即可再用。 4.环刀内壁涂一薄层凡士林,主要为了什么? 答:主要为了取出土样时避免弄脏手,使内壁更干净。次要是为了容易取出。 5.击实试验中,怎么控制喷水的质量? 答:将盛好土的盛土盘放在天平上,记录盘和土的质量,然后在天平上一边称量一边均匀喷水,直至加完所需水量。 6.实验室只有称量2000g 的天平,但现要称量3000g 的试样,怎么办? 答:将盛土盘放在两个天平上,记录盘的质量 m 0,往盘上加土,直至两个天平上读数加起来等于 m 0 +3000g 简述题 1.三轴试验的结束条件是什么? 答:当轴向量力环读数出现峰值,再剪3%~5%的垂直应变(或没有峰值时,轴向应变达到20%)后,试验结束。 2.三轴不固结不排水剪试验中怎样施加周围压力? 答:开周围压力阀,施加所需的周围压力,周围压力大小应与工程实际荷重相适应,并尽可能使最大围压与土体最大实际荷重大致相等。也可按100kpa ,200kpa ,300kpa ,400kpa 施加。 3.UU 试验中怎么施加轴向压力? 答:剪切应变速率宜每分钟应变0.5%~1.0%启动电动机,合上离合器,开始剪切。每产生0.2%或0.5%轴向应变时,测计测力环变形和孔隙水压力,直至土样破坏或应变量进行到20%为止。 4.简述含水率试验的过程。 答:1)取代表性试样15~30g ,对于砾类土,取100g 以上试样。放入铝盒内,迅速盖好盒盖,称量m 1,准确至0.01g 。称量结果减去铝盒质量m 0,得湿土质量m m m 0 1-=

动三轴实验步骤(带拉伸帽)

动三轴基本操作步骤 一、仪器介绍 基本配置: (1)驱动装置:2/5/10HZ;5/10/20/40KN (2)压力室 (3)水下荷重传感器 (4)DCS数字控制系统 颜色/通道传感器固定DTI 增益(DTI 传感器满量程) ?黑色(Ch 0) - 荷重传感器x333.33 (30mV) ?棕色(Ch 1) - 轴向霍尔效应传感器1 x10 (1000mV) ?红色(Ch 2) - 轴向霍尔效应传感器2 x10 (1000mV) ?橙色(Ch 3) - 径向霍尔效应传感器x10 (1000mV) ?黄色(Ch 4) - 孔隙水压力1 x100 (100mV) ?绿色(Ch 5) - 孔隙水压力2 x100 (100mV) ?灰色(Ch 6) - 备用A/D 通道1 x1 (10000mV) ?白色(Ch 7) - 备用A/D 通道2 x1 (10000mV)

(5)围压和反压控制器 控制器基本操作主要是充水、排水和施加目标压力。其操作可以通过软件控制,也可采用智能键盘操作。控制器打开电源之后,按命令键CMD ,会出现上图所示的快捷菜单,点击相应按键即可操作。 Tareget Pressure=7:设置目标压力,按“7”之后按照提示输入目标压力值并按绿色确认键开始加载; Fast Fill=6:快速填充,按“6”之后控制器将开始吸水; Fast Empty=3:快速排空,按“3”之后控制器将开始排水; (6)平衡锤:平衡锤的主要功能就是在加载过程中保持围压的恒定。 平衡锤配置图

二、安装试样 1.控制器充排水:试验之前先将控制器中的水排出一部分然后再吸水,确保控 制器中水装满2/3且无气泡,在排控制器水时将控制器管路这端抬升以便气泡充分被排除; 2.排气泡:通过控制器排除顶帽、底座以及设备管路中的气泡; 3.安装试样:安装试样时小心土颗粒,特别是砂子掉入压力时内部,试样两端 都需要垫放浸湿的透水石和滤纸,安装试样尽量采用三半模以减小对试样的扰动,安装顶帽之前用软毛刷轻轻刷橡皮膜以排除橡皮膜与土样之间的气泡,两端用O型圈或者橡皮筋扎紧; 4.安装喇叭口:将喇叭口内壁涂一层硅脂,切记不可涂太多,将平口那端安装 到试样帽上; 5.安装外压力室:安装压力室之前确保轴向力传感器处于最上位置,安放压力 室时观察拉伸帽是否压住试样,螺栓需要对称拧紧; 6.荷重传感器清零:通过软件对力传感器清零; 点击左侧Object Diisplay,出现右侧的的硬件显示窗口。 点击力传感器上部的眼睛,然后点击Advanced选项,单击右下角Set Zero 清零。

(完整版)岩土力学参数大全

基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值 东向南向西向北向γφ C BC DE CD EF FA AB 填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220

常用岩土材料力学参数 (E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K

) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要 5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

《土工试验规程》(SL237-1999)土力学简版要点

土力学实验指导书 目录 土力学实验的目的 (1) 一、颗粒分析试验 (1) [附1-1]筛析法 (1) [附1-2]密度计法(比重计法) (2) 二、密度试验(环刀法) (5) 三、含水率试验(烘干法) (5) 四、比重试验(比重瓶法) (6) 五、界限含水率试验 (8) 液限、塑限联合测定 (8) 六、击实试验 (10) 七、渗透试验 (11) [附7-1]常水头试验(70型渗透仪) (11) [附7-2]变水头试验(南55型渗透仪) (12) 八、固结试验(快速法) (13) 九、直接剪切试验 (15) 十、相对密度试验 (16) 十一、无侧限抗压强度试验 (18) 十二、无粘性土休止角试验 (19) 十三、三轴压缩试验 (20)

土力学实验指导书 《土力学实验》的目的 土力学试验是在学习了土力学理论的基础上进行的,是配合土力学课程的学习而开设的一门实践性较强的技能训练课。根据教学计划的需要,安排试验内容,以突出实践教学,突出技能训练。 试验课的目的:一、是加强理论联系实际,巩固和提高所学的土力学的理论知识;二、是增强实践操作的技能;三、是结合工程实际,让学生掌握土工试验的全过程和运用实验成果于实际工程的能力。 《土力学实验》的内容及要求 土力学实验指导书是依据中华人民共和国水利部发布《土工试验规程》(SL237-1999)规范编写的。根据教学大纲要求,安排下列实验项目。也可根据实验学时选做。 一、颗粒分析试验 [附1-1] 筛分法 (一)试验目的 测定干土各粒组占该土总质量的百分数,以便了解土粒的组成情况。供砂类土的分类、判断土的工程性质及建材选料之用。 (二)试验原理 土的颗粒组成在一定程度上反映了土的性质,工程上常依据颗粒组成对土进行分类,粗粒土主要是依据颗粒组成进行分类的,细粒土由于矿物成分、颗粒形状及胶体含量等因素,则不能单以颗粒组成进行分类,而要借助于塑性图或塑性指数进行分类。颗粒分析试验可分为筛析法和密度计法,对于粒径大于0.075mm的土粒可用筛析法测定,而对于粒径小于0.075mm的土粒则用密度计法来测定。筛析法是将土样通过各种不同孔径的筛子,并按筛子孔径的大小将颗粒加以分组,然后再称量并计算出各个粒组占总量的百分数。 (三)仪器设备 1.标准筛:孔径10、5、2、1.0、0.5、0.25、0.075mm; 2.天平:称量1000g,分度值0.1g; 3.台称:称量5kg,分度值1g; 4.其它:毛刷、木碾等。 (四)操作步骤 1.备土:从大于粒径0.075mm的风干松散的无粘性土中,用四分对角法取出代表性 的试样。 2.取土:取干砂500g称量准确至0.2g。 3.摇筛:将称好的试样倒入依次叠好的筛,然后按照顺时针或逆时针进行筛析。振摇时间一般为10~15分钟。 4.称量:逐级称取留在各筛上的质量。 (五)试验注意事项 1.将土样倒入依次叠好的筛子中进行筛析。 2.筛析法采用振筛机,在筛析过程中应能上下振动,水平转动。 3.称重后干砂总重精确至 2g。 (六)计算及制图 1.按下列计算小于某颗粒直径的土质量百分数:

一些土力学试验实验

实验一:密度试验(环刀法) 一、概述 土的密度ρ是指土的单位体积质量,是土的基本物理性质指标之一,其单位为g/cm3。土的密度反映了土体结构的松紧程度,是计算土的自重应力、干密度、孔隙比、孔隙度等指标的重要依据,也是挡土墙土压力计算、土坡稳定性验算、地基承载力和沉降量估算以及路基路面施工填土压实度控制的重要指标之一。土的密度一般是指土的天然密度。 二、试验方法及原理 密度试验方法有环刀法、蜡封法、灌水法和灌砂法等。对于细粒土,宜采用环刀法;对于易碎、难以切削的土,可用蜡封法,对于现场粗粒土,可用灌水法或灌砂法。环刀法就是采用一定体积环刀切取土样并称土质量的方法,环刀内土的质量与环刀体积之比即为土的密度。 1.仪器设备 (1)恒质量环刀:内径6. 18cm(面积30cm2)或内径7. 98cm(面积50cm2),高20mm,壁厚1.5mm; (2)称量500g、最小分度值0. 1g的天平; (3)切土刀、钢丝锯、毛玻璃和圆玻璃片等。 2. 操作步骤 (1) 按工程需要取原状土或人工制备所需要求的扰动土样,其直径和高度应大于环刀的尺寸,整平两端放在玻璃板上。 (2) 在环刀内壁涂一薄层凡士林,将环刀的刀刃向下放在土样上面,然后用手将环刀垂直下压,边压边削,至土样上端伸出环刀为止,根据试样的软硬程度,采用钢丝锯或修土刀将两端余土削去修平,并及时在两端盖上圆玻璃片,以免水分蒸发。

(3)擦净环刀外壁,拿去圆玻璃片,然后称取环刀加土质量,准确至0. 1g。 环刀法试验应进行两次平行测定,两次测定的密度差值不得大于0.03 g/cm3.,并取其两次测值的算术平均值。 实验二:含水率试验(烘干法) 一、概述 土的含水率是指土在温度105-110℃下烘到衡量时所失去的水质量与达到恒量后干土质量的比值,以百分数表示。 二、试验方法及原理 含水率试验方法有烘干法、酒精燃烧法、比重法、碳化钙气压法、炒干法等,其中以烘干法为室内试验的标准方法。烘干法是将试样放在温度能保持105~110℃的烘箱中烘至恒量的方法,是室内测定含水率的标准方法。 1.仪器设备 (1)保持温度为105110℃的自动控制电热恒温烘箱或沸水烘箱、红外烘箱、微波炉等其他能源烘箱; (2)称量200g、最小分度值0. 0lg的天平; (3)装有干燥剂的玻璃干燥缸; (4)恒质量的铝制称量盒。 2.操作步骤 (1)从土样中选取具有代表性的试样15~30g(有机质土、砂类土和整体状构造冻土为50g),放人称量盒内,立即盖上盒盖,称盒加湿土质量,准确至0. 0lg。 (2)打开盒盖,将试样和盒一起放人烘箱内,在温度105^-110℃下烘至恒量。试样烘至恒量的时间,对于粘土和粉土宜烘8~10h,对于砂土宜烘6~8h。对于有机质超过干土质量5%的土,应将温度控制在65~70℃的恒温下进行烘干。 (3)将烘干后的试样和盒从烘箱中取出,盖上盒盖,放人干燥器内冷却至室温。 (4)将试样和盒从干燥器内取出,称盒加干土质量,准确至0. 0lg。 烘干法试验应对两个试样进行平行铡定,并取两个含水率测值的算术平均值。当含水率小于40%时,允许的平行测定差值为1%;当含水率等于、大于40%时,允许的平行测定差值为2%。 实验三:土的压缩、固结试验 一、概述 标准固结试验就是将天然状态下的原状土或人工制备的扰动土,制备成一定规格的土样,然后在侧限与轴向排水条件下测定土在不同荷载下的压缩变形,且试样在每级压力下的固结稳定时间为24h。 二、试验方法与原理 1. 仪器设备 (1) 固结容器。由环刀、护环、透水板、加压上盖等组成,土样面积30cm2或50cm2,高度2cm。 (2)加荷设备。可采用量程为5~l0kN的杠杆式、磅秤式或气压式等加荷设备。 (3) 变形量测设备。可采用最大量程l0mm, 最小分度值0.0lmm的百分表,也可采用一准确度为全量程0. 2%的位移传感器及数字显示仪表或计算机。

土动力学动三轴液化试验报告

泥质粉砂岩液化动三轴试验报告 一 实验器材 振动三轴仪(包括控制部分,加载部分),泥质粉砂岩,托盘天平,游标卡尺,击实仪,真空泵等。 二 实验原理 当土体同时受到纵向和横向荷载作用时,土层中土单元应力状态可看为如下图一所示的简化。异向荷载被看为由自下而上的剪切波引起的,是一种幅值,频率不断变化的不规则运动。当在振动三轴仪上模拟这种应力状态时,将不规则振动简化为等效常幅有限循环次数的振动,即在试件上模拟两种应力状态,有效覆盖压力引起的静应力0γσ和00K γσ,均匀循环剪应力为hv τ。 图一 水平土层土单元应力状态 试件本身应在密度,饱和度和结构等方面尽可能模拟现场土层的实际状况。除取原状土做实验外,在实验室内也须准备重塑试件。考虑荷载作用过程时间短暂,产生的超孔压来不及消失,所以实验室在不排水条件下进行的试验。 为实现上述模拟,本实验采用不排水循环载荷三轴试验来实现上述模拟。假如在试件上先施加各项均等固结压力0σ,后在垂直方向施加2d σ± 循环载荷的同时,横向也施加2 d σ 的荷载,如下图二所示,试件45度斜面上的应力状态与图一相似,其初始法向应力为0σ,初始剪应力为零,与前单元水平面承受的0γσ相当,双向循荷载2 d σ作用并不该变45度倾斜面上的法向应力0σ值,而只产生循环剪应力2 d d στ= ,相当于图一中右图的受力情况, 即图二中第(1)栏所示在三轴试验中为了模拟所要求的应力状态。 σ0 τσ

显然,双向振动三轴仪能方便地实现这种应力状态。而在饱和不排水情况下,单项振动的三轴试验通过空压修正也能获得同样的应力状态。此时,施加的应力状态如同图二中(4)栏所示,只在垂直方向施加动荷载d σ±,当轴向增加d σ时,设想各向均等压力减少 2 d σ,所构成的等效应力状态恰好与所要求的相同;于此相似,轴向减少d σ时应当增加各向均等压力 2 d σ,由于是饱和不排水的,各向均等压力的变化只能引起试件中空隙水压力的相应变化,对有效应力,也即对试件的强度和变形并无影响。换句话说,可以获得与双向振动三轴仪试验完全相同的强度和变形值。对单项振动三轴试验中的实测孔压值进行修正即可获得双向振动时的相应孔压值,轴向加d σ时的修正值为 2d σ,减d σ时修正值为2 d σ -。但是,实际上很少作这种修正,因人们关心的主要是强度和变形值。 不难看出,只是在三轴试件45度斜面上才大体模拟了现场应力状态。实际上还存在若干重要的区别,例如现场土层静测压力系数0k 一般取0.4(随土的性质而变),最大和最小主应力方向分别为垂直和水平方向,振动时主应力方向的摆动不超过40度等,但在振动三轴试验中,试样的0k 等于1,主应力方向不断作90度变换。因此,在应用此试验结果于现场时,必须考虑这种差别而做相应的修正,此外,完全可以不拘泥于上述应力状态的模拟,而把单项振动液化试验只看做是在这种特定状态下的一种液化过程,进而着重研究这种液化过程与其他条件下液化过程的异同。 图二 轴实验中土单元应力状态的模拟 三 试验条件

关于岩土力学与工程的发展问题.

关于岩土力学与工程的发展问题 杨光华 (广东省水利水电科学研究所广州510610 摘要:本文主要针对目前岩土力学与工程存在需要解决的一些问题,岩土力学与工程的特点及其进一步的发展问题提出一些个人看法,供同行参考。 关键词:岩土力学工程发展 中图分类号:TU431 文献标识码:A 文章编号:1008-0112(200006-0015-03 1 岩土力学理论发展的特点 岩土力学应建立于岩土材料的力学特性基础上,经典固体力学理论建立于金属材料的力学特性基础上,以土体材料为例,其与金属材料显然存在很大的区别,如土体抗拉强度很低,拉压强度不同,这就涉及到传统弹性理论解在土介质中的适用性问题。就材料的强度而言,其与金属介质明显不同的是与围压密切相关,由此发展了著名的库仑强度理论;在变形方面,土体的本构特性要比传统的金属材料复杂,经典金属的本构理论在用于表述土体材料时,明显存在局限性,如剪胀、塑性与静水压力相关等的特点是金属介质所没有的,因而需要发展适合于岩土材料的本构理论;在材料组成方面,土是三相体,受力后的变形存在三相共同作用的问题,因而其基本方程更复杂,由此而发展的太沙基有效应力原理是土力学发展的里程碑,比奥固结理论是表述饱和土中水、土共同作用较为完善的基本方程。在岩石力学中,岩体中存在节理的变形可以说是岩体力学的一个主要特征,因而产生了节理单元。由此可见,岩土力学的发展是建立于岩土材料的特点基础上的,传统固体力学的理论可以借用,但不等于照搬,只有利用现代数学力学知识,结合岩土材料的力学特点,创造性地解决岩土工程中的力学问题,岩土力学理论才会取得新的发展。 2 土体的稳定性问题

土力学实验报告

园林学院 土力学实验报告 学生姓名 学号2009041001 专业班级土木工程091 指导教师李西斌 组别第三组 成绩

实验目录 前言 (1) 实验一含水量试验 (2) 实验二密度实验 (5) 实验三液限和塑限试验 (7) 实验四固结试验 (13) 实验五直接剪切试验 (18)

前言 土是矿物颗粒所组成的松散颗粒集合体,其物理力学性质与其他材料不同;土力学是利用力学的基本原理和土工试验技术来研究土的强度和变形及其规律性的一门应用学科。 土的天然含水率、击实性、压缩性、抗剪强度是水利工程中的四大问题,他们的好坏与否直接关系到水利工程的经济效益与安全问题,因此在工程中作好土料的指标实验,确定出相应标对水利工程具有十分重要的意义。

实验一 含水量试验 一、概述 土的含水率 是指土在温度105~110℃下烘干至恒量时所失去的水质量与达 到恒量后干土质量的比值,以百分数表示。 含水率是土的基本物理性质指标之一,它反映了土的干、湿状态。含水率的变化将使土物理力学性质发生一系列变化,它可使土变成半固态、可塑状态或流动状态,可使土变成稍湿状态、很湿状态或饱和状态,也可造成土在压缩性和稳定性上的差异。含水率还是计算土的干密度、孔隙比、饱和度、液性指数等不可缺少的依据,也是建筑物地基、路堤、土坝等施工质量控制的重要指标。 二、实验原理 土样在在105℃~110℃温度下加热,土中自由水会变成气体挥发,土恒重后, 即可认为是干土质量s m ,挥发掉的水分质量为w s m m m =-。 三、实验目的 测定土的含水量,供计算土的孔隙比、液性指数、饱和度等不可缺少的一个基本指标。并查表可确定地基土的允许承载力 四、实验方法 含水率实验方法有烘干法、酒精燃烧法、比重法、碳化钙气压法、炒干法等,其中以烘干法为室内实验的标准方法。在此仅用烘干法来测定。 烘 烘干法是将实样放在温度能保持105~110℃的烘箱中烘至恒量的方法,是室内测定含水率的标准方法。 (一)仪器设备 (1)保持温度为105~110℃的自动控制电热恒温烘箱; (2)称量200g 、最小分度值0.01g 的天平; (3)玻璃干燥缸;

动三轴试验操作步骤

动三轴试验操作步骤 1 开机 1.1 开电脑 1.2 开控制器(黑色机箱中红色按钮),打开控制程序,在参数选项中选择“动态试验”;将调整部分改为变形、位移控制,如已经为此种状态,则改为负荷、围压控制,然后再改回(以防开油源时侧向活塞突然升高,水喷出)。 1.3 预热15~30分钟。 1.4 开油源,按“启动”按钮,10秒后按下“高压”按钮,然后缓慢调节调压阀(油源)至5~6Mpa(可根据需要调更高),开冷却水。 2 安装试样 说明:试样必须饱和。试样饱和按照试验规程可以有多种方法,一般选用真空饱和,具体试验步骤见试验规程。如试验需要,可再进行反压饱和或者水头饱和。 2.1 控制区,调整轴向及侧向为变形、缸位置控制;拖动轴向及侧向平均值调整,使其居于最左或最低以便装样; 开上下孔压阀排除管路中气体 进行负荷、围压、上孔压、下孔压清零,变形不清零。 2.2 将饱和好的试样套好橡皮膜,两端分别放滤纸、透水石,然后将两端的橡皮膜翻转。微开下孔压阀,使试样安装底座有一层水膜,将试样平推放在底座上,翻下下端橡皮膜,缠2-3 条橡皮条,每条3-4 圈(橡皮条先缠在底座上)。 2.3 升底座,确认轴向控制方式为变形控制,缓缓拉动轴向调整,右移,约-30mm左右,看试样是否与上底座接触,快要接触时,鼠标点轴向调整,使缓缓上升,接触时负荷具体值与土样软硬程度 相关。 2.4 翻上端橡皮膜,微开下孔压阀,向试样中缓缓注入水,以赶出试样与橡皮膜之间的气泡,可使用刷子轻轻驱赶,当无气泡时,可抽出下孔压体变管中的水,然后关下孔压阀。 2.5 盖压力室,依次拧紧6个螺丝,打开压力室右侧的进出水开关。向压力室注水,当压力室注满水时(上部排气阀出水)关闭进水阀和压力室右侧的进出水开关。拧紧排气阀。清理顶盖多余的水。 3 设置参数 3.1 调用固结参数 菜单区选择设置,选择固结方案,一般为围压、固结比、加载时间和固结时间,修改口令为 213t,修改后另存在原目录下,再次调用。 菜单区选择设置,选择试验方案,一般为频率、次数、动态轴力等,选择静、动态试验,修改口令为213t,修改后另存在原目录下,再次调用。 3.2 打开固结方案,打开试验方案(否则默认为上次所用固结方案,试验方案),新建文件夹,选择目录,输入文件名,如不输入,则默认为当前日期时间。 3.3,系统参数可设置单位,保护等,采样间隔可根据试验要求设置,一般为2~20ms,可选择是否记录孔压耗散。系统参数,一般不更改; 3.4 设置原始数据,包括密度、含水率、干密度等基本的指标; 3.5 根据提示,安装主机背后的小变形传感器,接触良好,数据显示区小变形为-3mm左右,(若土样较软,加载时土样的变形较大,不易控制,有可能超量程),确认轴向为变形控制。可在侧向位置控制下缓慢加围压至10KPa 左右,侧向转为围压控制。 {3.6-3.7加压,固结操作替代方法:轴向保持位移控制不变,侧向转为围压控制,设定围压加载目标及加载速度。

《土力学》期末试卷及答案

《土力学》期末试卷及答案 一、填空题(每空1分,共20分) 1、无粘性土的性质主要取决于颗粒的粒径、级配 2、用三轴试验测定土的抗剪强度指标,在其它条件都相同的情况下,测的抗剪强度指标值最大的是固结排水剪切、试验,最小的是不固结不排水剪切试验。 3、评价粗颗粒土粒径级配的指标有不均匀系数、曲率系数和。 4、τf表示土体抵抗剪切破坏的极限能力,当土体中某点的剪应力τ=τf时,土体处 于状态;τ>τf时,土体处于状态;τ<τf时,土体处于状态。 5、桩按受力分为和。 6、用朗肯土压力理论计算土压力时,挡土墙墙背因、,墙后填土表面因。 7、桩的接头方式有、和。 8、建筑物地基变形的特征有、、和倾斜四种类型。 二、选择题(每小题2分,共10分) 1、采用搓条法测定塑限时,土条出现裂纹并开始断裂时的直径应为() (A)2mm (C) 4mm(D) 5mm 2、《地基规范》划分砂土的密实度指标是() (A)孔隙比(B)相对密度(D) 野外鉴别 3、建筑物施工速度较快,地基土的透水条件不良,抗剪强度指标的测定方法宜选用() B)固结不排水剪切试验(C)排水剪切试验(D)直接剪切试验 4、地基发生整体滑动破坏时,作用在基底的压力一定大于()。 (A)临塑荷载(B)临界荷载(D)地基承载力 5、夯实深层地基土宜采用的方法是 ( ) (B)分层压实法(C)振动碾压法(D)重锤夯实法 三、简答题(每小题5分,共20分) 1、直剪试验存在哪些缺点? 2、影响边坡稳定的因素有哪些? 3、产生被动土压力的条件是什么? 4、什么是单桩竖向承载力?确定单桩承载力的方法有哪几种? 四、计算题(共50分) 1、某土样重180g,饱和度S r=90%,相对密度为2.7,烘干后重135g。若将该土样压密,使其干密度达到1.5g/cm3。试求此时土样的天然重度、含水量、孔隙比和饱和度。(10分) 1、解:由已知条件可得原土样的三相数值为: m=180g m s=135g m w=180-135=45g V s=135/2.7=50cm3 V w=45 cm3 V v=45/0.9=50cm3 V=50+50=100 cm3 土样压密后的三相数值为:V=135/1.5=90cm3 V v=90-50=40 cm3 V w=40 cm3 m w=40g m=135+40=175g γ=175/90×10=19.4 kN/m3 w=40/135×40%=30% e=40/50=0.8

土力学综合试验任务书

土力学技能训练任务书 地质工程专业 兰州大学土木工程与力学院 2006年8月 土力学是一门实践性很强的专业基础课,它是利用力学知识和土工试验技术来研究土的强度和变形及其规律的一门科学。在土力学理论教学同时,配套28学时的土力学技能训练。考虑到土工试验对象土体的特殊性,土工试验并不是按照严格的课时经行,而是集中几天时间完成。 一、技能训练目的 土力学技能训练是课堂教学的继续和发展,使学生把所学知识与实际密切的结合起来。系统的练习土力学基本常规试验过程,了解各项试验之间的内在联系,训练学生的动手能力,掌握实验基本技能,培养独立思考、分析问题和解决现场施工问题的能力。从而,为将来从事地质工程建设打下良好的基础。 二、技能训练项目 1、土的密度实验 2、土的含水率实验 3、土粒比重实验 4、土的颗分实验 5、土的塑限实验 6、土的液限实验 7、土的击实实验 8、土的渗透实验 9、土的压缩实验 10、土的剪切实验 三、技能训练要求 (一)技能的要求 1、掌握土的密度、含水率、土粒比重标准实验方法操作技能; 2、掌握粗粒土的筛分法和细粒土密度计法实验方法操作技能; 3、掌握细粒土的液、塑限实验方法操作技能; 4、掌握土的渗透试验的常水头和变水头法操作技能; 5、掌握土的击实实验操作技能; 6、掌握土的固结实验操作技能; 7、掌握土的剪切实验操作技能。

(二)训练成果: 1、对试验数据要进行认真地分析整理; 2、试验数据要准确,试验成果可靠,绘图要正确,各项都要符合规范要求; 3、技能训练报告字迹要清楚,不得涂改,必须按着要求自己编写,不得抄袭他人成果。 (三)训练的态度: 要以严肃的科学态度,对每项试验负责,认真地按着试验规程进行操作。如有不符合规范要求的试验成果,应重新进行试验,不许涂改原始数据凑合了事。 (四)训练纪律: 1、要爱护实验室的仪器设备,如仪器设备的损坏,根据损坏的程度和具体情况加以不同的赔偿; 2、严格遵守作息时间; 3、试验后要清洗试验仪器,清扫试验环境。 四、技能训练成绩评定 根据学生在技能训练期间试验的态度与纪律、试验操作与动手能力、试验数据成果的分析整理与报告、试验的考试成绩等综合评定。训练成绩的等级,按着学校的统一规定进行。 五、技能训练的日程安排 为了达到技能训练的目的,在有限的时间内,顺利完成各试验项目,考虑各项试验和各组试验的交叉,技能练训的具体时间安排如下。根据实际情况,也可作适当调整。 前一天试验室工作人员准备好全部试验用样。

土力学三轴试验

土力学三轴试验

土力学三轴试验 三轴试验中土的剪切性状分析 摘要:按剪切前的固结状态和剪切时的排水条件分为三种:不固结不排水剪,固结不排水剪,固结排水抗剪。文中将讨论正常固结饱和黏性土在剪切时将具有不同的强度特性。 关键词:不固结不排水抗剪强度,固结不排水抗剪强度,固结排水抗剪强度作者简介: Triaxial shear Characters of Middle-earth LI Jia-chun (shanghai University,department of civil engineering,08124240) Abstract: Consolidation by the state before shear and shear when the drainage is divided into three types: non-consolidated undrained shear, consolidation undrained shear, consolidated drained shear. This article will discuss the normally consolidated saturated clay in the shear strength will have different characteristics. Key words: non-consolidated undrained shear, consolidation undrained shear, consolidated drained shear. 0 引言 广义黏性土包括粉土,黏性土。黏性土的抗剪强度远比无粘性土复杂。

岩土力学习题1

1、何谓岩体力学?其研究对象是什么? 2、岩体力学的研究内容和研究方法是什么? 3、何谓岩块、岩体?岩块与岩体、岩体与土有何异同点? 4、何谓结构面?结构面特征包含哪几个方面?各用什么指标表示?对岩体力学性质有何影响? 5、简述岩体分类的方法及目的。 6、已知岩样容重为24.5kN/m 3,比重为2.85,天然含水量为8%,试计算该岩样的孔隙率、干容重及饱和容重。 7、某岩样测得其天然密度2.24g/cm 3,饱和吸水率10%,干密度2.11g/cm 3,且已知其颗粒密度为2.85g/cm 3。试计算该岩样的大开空隙率、小开空隙率、总空隙率、吸水率、水下容重。 8、一种孔隙率为15%的砂岩,由70%的石英颗粒(比重2.65)和30%的黄铁矿颗粒(比重4.9)的混合物组成,试求其干容重及饱和含水量。 9、何谓岩石软化性?用什么指标表示?该指标在岩体工程中有何意义? 10、何谓岩石抗冻性?通常用什么指标表示? 11、如何获得岩石全应力-应变曲线?分为哪几个阶段?各阶段有哪些特征? 12、画出反复荷载作用下岩石的变形特征曲线,并说明岩石记忆、回滞环和疲劳强度等概念。 13、画出岩石的典型蠕变曲线图,并说明各阶段岩石的蠕变特征。 14、什么是岩石的流变性?流变模型中的基本元件有哪些?各代表什么介质?力学性质如何? 15、试推导Maxwall 模型和Kelven 模型的蠕变本构方程,并画出其变形曲线? 16、某岩石的单轴抗压强度为8MPa ,在常规三轴试验中,当围压增加到4MPa 时,测得其抗压强度为16.4MPa ,试求其c 、φ值。 求此砂岩莫尔—库仑准则的c 、φ值。 18、将一个岩石试件进行单轴压缩试验,当压应力达到28.0MPa 时发生破坏,破裂面与最大主应力面的夹角为60°,假定遵循莫尔库仑破坏准则(直线型)。①求内摩擦角;②在正应力为零的面上的抗剪强度;③与最大主应力面成30°夹角的面上的抗剪强度;④破坏面上的正应力和剪应力;⑤岩石在垂直荷载等于零的直剪试验中发生破坏,试画出其莫尔圆。 19、 砂岩地层中,某一点初始应力状态为:1σ=34.49(MPa)、3σ=8.97(MPa),孔隙水压力w p 因修水库而增大。试求w p 达到多大时该处的岩石破裂(假定破裂发生在峰值应力时,岩石c 、φ值分别为1.17MPa 和40°)。

土力学实验报告

土力学 实验报告 姓名 班级 学号

含水量实验 一、实验名称:含水量实验 二、实验目的要求 含水量反映了土的状态,含水量的变化将使土的一系列物理力学性质指标 也发生变化。测定土的含水量,以了解土的含水情况,是计算土的孔隙比、液性指数、饱和度和其他物理力学性质指标不可缺少的一个基本指标。 三、试验原理 土样在100~105℃温度下加热,途中自由水首先会变成气体,之后结合水也会脱离土粒的约束,此时土体质量不断减少。当图中自由水和结合水均蒸发脱离土体,土体质量不再变化,可以得到固体矿物即土干的重。土恒重后,土体质量即可被认为是干土质量m s ,蒸发掉的水分质量为土中水质量m w =m-m s 。 四、仪器设备 烘箱、分析天平、铝制称量盒、削土刀、匙、盛土容器等。 五、试验方法与步骤 1.先称量盒的质量m 1,精确至0.01g 。 2.从原状或扰动土样中取代表性土样15~30g (细粒土不少于15g ,砂类土、有机质土不少于50g ),放入已称好的称量盒内,立即盖好盒盖。 3.放天平上称量,称盒加湿土的总质量为m 0+m ,准确至0.01g 。 4.揭开盒盖,套在盒底,通土样一样放入烘箱,在温度100~105℃下烘至质量恒定。 5.将烘干后的土样和盒从烘箱中取出,盖好盒盖收入干燥器内冷却至室温。 6.从干燥器内取出土样,盖好盒盖,称盒加干土质量m 0+m s (准确至0.01g ) 。 六、试验数据记录与成果整理 含水量试验(烘干法)记录 计算含水量:%100) () ()(000?++-+= s s m m m m m m w 实验日期 盒质量 m 0/g 盒+湿土质 量(m 0+m )/g 盒+干土质 量(m 0+m s ) /g 水质量/g 干土质量m s /g 含水量w/% 1 2 3 4=2-3 5=3-1 4/5

土力学综合性试验

土力学综合性试验报告 专业土木工程 班级道路与桥梁工程121班 学号201202014227 姓名熊祥森 指导教师杨迎晓陈华 所在学院城建学院 完成时间2014年12月26日

目录 土力学综合性试验一 (3) 土力学综合性实验二 (5) 土力学综合性实验三 (10) 《土力学综合性试验一》 姓名:熊祥森班级:道桥121 组别:四组 实验名称:地基土层的鉴别与划分日期2014/10/27

注:NO.97,IL指数=0.26 0.25〈IL〈0.75之间,为可塑状态IP指数=18.1 IP指数〉17 ,为黏土 孔隙比=0.798 孔隙比〈0.8为膨胀土NO.98,,IL指数=0.25 0〈=IL〈=0.25之间,为硬塑状态IP指数=18.4 IP指数〉17 ,为黏土 孔隙比=0.774 孔隙比〈0.8为膨胀土 NO.99,IL指数=0.25 0〈=IL〈=0.25之间,为硬塑状态IP指数=14.0 10〈IP指数〈=17为粉质黏土 孔隙比=0.691 孔隙比〈0.8为膨胀土 NO.100,IL指数=0.25 0〈=IL〈=0.25之间,为硬塑状态IP指数=17.9 IP指数〉17 ,为黏土 孔隙比=0.794 孔隙比〈0.8为膨胀土

综合性试验二 一、试验目的 模拟施工现场的压实条件,测定试验土在一定击实次数下的最大干密度和相应的最优含水率,为施工控制填土密度提供设计依据。 二、试验方法 本试验采用轻型击实试验方法,每层击数25下,例如水库堤防、铁路路基填土均采用轻型击实。 三、试验设备 击实试验仪用电动自动操作的,主要的仪器设备有:1、击实仪:包括击实筒、击锤及导筒等。2、天平:称量200g,分度值0.01g。3、台秤:称量10kg,分度值5g。4、标准筛:孔径为20mm、40mm和5mm标准筛。5、试验推出器:宜用螺旋式千斤顶或液压式千斤顶,如无此类装置,也可用刮刀或修土刀从击实筒中取出试样。6、其他:烘箱,喷水设备,碾土设备,盛土器,修土刀和保湿设备等。仪器的标签和仪器如下图: 备土: 1、用锤子将工程土样敲碎,用铲子拌和均匀,铲入0.5mm的筛孔当中 2、用0.5mm的筛孔过筛,取小于0.5mm的土样进行制备。 3、估计风干含水率:W风干=3% 干土称重1900/袋m s=(1900)/(1+0.03)=1845g m w= m s*(w目标-w风干)*0.01

非饱和试验步骤-动三轴

非饱和土试验步骤 1.控制器充排水:试验之前先将控制器中的水排出一部分然后再吸水,确保控制器中水装满2/3且无气泡; 2.饱和陶土板::施加不超过50kPa的反压,打开孔压传感器端阀门,排出管路和底座内部的气泡,然后关闭阀门,当发现陶土板上表面完全被水覆盖表明陶土板基本饱和; 3.安装试样:安装试样时小心土颗粒,特别是砂子掉入压力时内部,安装试样尽量采用三半模以减小对试样的扰动; 4.内压力室和参照管注水:试样装好之后安装内压力室,将差压传感器的两根管道分别与内压力室和参照管相连,给内压力室和参照管注水,打开湿湿差压传感器上部的堵头,排出管路中的气泡,气泡排完后保证参照管水位大约在2/3位置,内压力室水位在细管中间位置; 5.安装外压力室:安装压力室之前确保轴向力传感器处于最上位置,安放压力室时观察拉伸帽是否压住试样,螺栓需要对称拧紧; 6.荷重传感器清零:通过软件对力传感器清零; 7.调接触:调节荷重传感器位置,观察荷重传感器读数,当读数达到0.005左右时锁紧轴向加载杆; 8.压力室充水:打开压力室顶部排气孔的堵头,打开进水阀门给压力室注水,装满之后关闭进水阀门和排气孔的堵头; 9.加压检查:通过电脑施加20kPa围压,观察压力室是否漏水,观察孔压传感器读数是否迅速上升到与围压值相等,如果相等则橡皮膜破裂; 10.吸力平衡:吸力平衡阶段主要的目的是给试样施加一个基质吸力让试样由饱 和状态变成非饱和状态。为了保护设备并让试样与压力杆接触,在设置压力时应该遵循一个原则:轴向压力>径向压力>孔隙气压>反压; 11.等吸力固结:等吸力固结也采用应力控制模块。等吸力固结时反压和孔隙气 压保持不变,同步增大围压和轴向压力,过观察反压体积是否稳定来判断固结是否完成; 12.等吸力剪切:剪切包括应力控制和应变控制。剪切过程一定要比较缓慢避免

岩土力学综合练习及解析

综合练习 一、填空题 1、土的塑性指数是指 减去 ,塑性指数 土性越粘。 2. 评价砂土密实度的指标有 、 、 。 3. 根据前期固结压力与目前土层所受的自重压力之比将土层分为 、 和 三种 4.土的渗透系数是指单位水力坡降的 ,它是表示土的 的指标,一般由渗透试验确定。 5.土的抗剪强度试验的目的,是测定土的抗剪强度指标 和 。 6. 为了考虑固结程度和排水条件对抗剪强度的影响,根据加荷速率的快慢将直剪试验划分为 、 和 三种类型。 7.地基土的固结度是指地基土在固结过程中 的变形量与 变形量之比。 8.岩石的破坏形式可分为 、 和弱面剪切破坏三种。 二、判断题 1. 不均匀系数C u 愈大,说明土粒愈不均匀。 ( ) 2 . 同一种土的抗剪强度是一定值,不随试验方法和排水条件不同而变化。 ( ) 3.根据莫尔-库伦准则可证明均质岩石的破坏面法线与大应力方向间夹角为2 45φ - o ( ) 4. 由于洞室围岩的变形和破坏而作用于支护或衬砌上的压力称为围岩压力。 ( ) 5. 洞室的形状相同时,围岩压力与洞室的尺寸无关。 ( ) 三、简答题

1. 土的级配曲线的特征可用哪两个系数来表示?这两个系数是怎样定义的? 2. 试述莫尔---库伦破坏准则,什么是极限平衡条件? 3. 确定地基承载力的方法有那些? 4. 简述坝基表层滑动稳定性的分析计算方法。 5. 简述挡土墙后土压力的类型。

四、计算题 1. 某地基土试验中,测得土的干重度15.7kN/m3,含水量19.3%,土粒比重 2.71,液限28.3%,塑限16.7%,求(1)该土的孔隙比,孔隙度及饱和度; (2)该土的塑性指数,液性指数,并定出该种土的名称和状态。 2. 有一8m厚的饱和粘土层,上下两面均可排水,现从粘土层中心处取得2cm厚的试样做固结试验(试样上下均有透水石)。试样在某级压力下达到60%的固结度需要8分钟,则该粘土层在同样的固结压力作用下达到60%的固结度需要多少时间?若该粘土层单面排水,所需时间为多少?

土力学实验一__相对密度

实验一 相对密度、密度、含水量测定 A 、实验目的 测定土的相对密度、密度和含水量,以了解土的疏密、干湿状态和含水情供计算土的其它物理指标和设计以及控制施工质量之用。 B 、实验要求 1、由实验室提供一份扰动土样,要求学生测定该上样的含水量、密度和该土 的相对密度; 2、根据实验结果要求学生确定该土的孔隙比(e )、孔隙率(n )、饱和度(r S )、干土密度(d ρ)及饱和土密度(sat ρ)等物理指标; 3、参观原状土样。 C 、实验方法 一、相对密度实验(又称比重实验) 土粒的相对密度是土在100℃—105℃下烘至恒重时土粒的密度与同体积4℃时纯水密度的比值。 (一)实验目的 测定土的相对密度(比重),为计算土的孔隙比、饱和度以及为其它土的物理力学实验(如颗粒分析的比重计法实验、压缩实验等)提供必需的数据。 (二)实验方法 相对密度实验的方法取决于试样的粒度大小和土中是否含有水溶盐,如果水中不含水溶盐时,可采用比重瓶和纯水煮沸排气法。土中含有水溶盐时,要用比重瓶和中性液体真空排气法。粒径都大于5mm 时则可采用缸吸筒法或体积排水法。本实验采用比重瓶和纯水煮沸排气法。 (三)仪器设备

1、比重瓶:容量100毫升: 2、天平:称量200克,感量0.001克; 3、恒量水槽:灵敏度±1℃; 4、电热砂浴(或可调电热器); 5、孔径5mm 土样筛、烘箱、研钵、漏斗、盛土器、纯水、蒸馏水发生器等。 (四)实验步骤 1、试样制备 将风干或烘干之试样约100克放在研钵中研碎,使全部通过孔径为5mm 的筛,如试样中不含大于5mm 的土粒,则不要过筛。将已筛过的试样在100℃—105℃下恒重后放入干燥器内冷却至室温备用。(此项工作由实验室工作人员负责完成) 2、将烘干土约15克,用漏斗装入烘干了的比重瓶内并称其质量,得瓶加上的质量m l ,准确至O.001克。 3、将已装入干土的比重瓶注纯水至瓶的一半处。 4、摇动比重瓶,使土粒初步分散,然后将比重瓶放在电热砂浴上煮沸(注意将瓶塞取下)。煮沸时要注意调节砂浴温度,避免瓶内悬液溅出。煮沸时间从开始沸腾时算起,砂土和粉土不小于30分钟,粉质粘土和粘土不小于1小时。本次实验因时间关系,煮沸时间由教师根据具体情况决定。 5、将比重瓶从砂浴上取下,注入纯水至近满,然后放比重瓶于恒温水槽内,待瓶内悬液温度稳定后(与水槽内的水温相同),测记水温(T),准确至0.5℃(注:本实验室槽内水温控制在20℃)。 6、轻轻插上瓶塞,使多余水分从瓶塞的毛细管上溢出(溢出的水必须是不含土粒的清水)。取出比重瓶,擦干比重瓶外部水分,称瓶加水加土的总质量(4m )准确至0.001克。 (五)计算 按下式计算相对密度: C w wT m m m m ds ??-+= 44300ρρ

相关主题
文本预览
相关文档 最新文档