当前位置:文档之家› 定积分的简单应用导学案

定积分的简单应用导学案

定积分的简单应用导学案
定积分的简单应用导学案

10、定积分的简单应用

一、自主学习,明确目标 1、会用定积分解决平面图形的面积 2、会用定积分解决变速直线的路程 3、会用定积分解决变力做功 4、如何将实际问题化为定积分问题 二、研讨互动,问题生成 1、常见图形面积与定积分的关系 (1)如图1,当0)(>x f 时,?

b a dx x )( 0,

所以S= ; (2)如图2,当0)(

b a dx x )( 0,所以S=|?

b a dx x f |)( ;

(3)如图3,当c x a ≤≤时,0)(

c a dx x )(

0,b x c ≤≤时,0)(>x f ,?b c dx x f )( 0,

所以S=|

??

=+c a b c dx x f dx x f )(|)( + ; (4)如图4,在公共积分区间[a,b]上,当f 1(x)>f 2(x)时,曲边梯形的面积为?=-=b a dx x f x f S ))()((21 ;

2、一物体沿直线以23+=t v (t 单位:s,v 单位:m/s )的速度运动,则该物体在3s~6s 间的运动路程为( ) A .46m B .46.5m C .87m D .47m

3、以初速40m/s 竖直向上抛一物体,t s 时刻的速度v=40-10t 2

,则此物体达到最高时的高度为( ) A .

m 3160 B .m 380 C .m 3

40 D .

m 3

20 4、一物体在力F(x)=3x 2

-2x+5(力单位:N ,位移单位:m )作用力下,沿与力F (x )相同的方向由x=5m 直线运动到x=10m 处做的功是( )

A .925 J

B .850 J

C .825 J

D .800 J

三、合作探究,问题解决。

例1:计算由y 2=x ,y=x 2

所围成的图形的面积。

例2:汽车以36km/h 的速度行驶,到某处需要减速停

车,设汽车以等减速度2m/s 2

刹车,求从开始刹车到

停车,汽车走过的路程。

例3:有一动点P 沿x 轴运动,在时间t 的速度为

v(t)=8t-2t 2

(速度的正方向与x 轴正方向一致)。 求: (1)P 从原点出发,当t=3时,求离开原点的路程。 (2)当t=5时,P 点的位置。 (3)从t=0到t=5时,点P 经过的路程。

(4)P 从原点出发,经过时间t 后又返回原点时的t 值。

例4:一物体在力F(x)(单位:N )的作用下沿与力F 相同的方向运动,力一位移曲线如图所示,求该物体从x=0处运动到x=4(单位:m )处,力F(x)作的功。

四、经典示例,巩固提高。 例:求曲线y=sinx 与直线2

π-=x ,π4

5

=

x ,y=0所围成图形的面积。

五、要点归纳,反思总结。

1、利用定积分求曲线所围成平面图形面积的步骤

2、路程、位移计算公式

3、变力做功的方法合成

11、合情推理

一、自主学习,明确目标。

知道什么是合情推理,能利用归纳和类比进行简单的推理。

二、研讨互动,问题生成。 1、下列说法正确的是( )

A .由合情推理得出的结论一定是正确的

B .合情推理必须有前提有结论

C .合情推理不能猜想

D .合情推理得出的结论无法判定正误

2、已知a 1=1,a n+1>a n ,且(a n+1-a n )2

-2(a n+1+a n )+1=0,计算a 2,a 3,猜想a n =( )

A .n

B .n 2

C .n 3

D .n n -+3

3、下面几种推理是合情推理的是( ) ①由圆的性质类比出球的有关性质;

②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形内角和都是180°; ③教室内有一把椅子坏了,则该教室内的所有椅子都坏了;

④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得凸n 边形的内角和是(n-2)·180°。

A .①②

B .①③④

C .①②④

D .②④

4、若数列{}n a 的前8项的值各异,且a n+8=a n ,对任意

的n ∈N*都成立,则下列数列中可取遍{}n a 的前8项

值的数列为( )

A .{}12+k a

B .{}13+k a

C .{}14+k a

D .{}16+k a 5、如图2-1-1中由火柴棒拼成的一列图形中,第n

个图形由n 个正方形组成:

通过观察可以发现:第4个图形中,火柴棒有 根;第n 个图形中,火柴棒有 根。

6、若三角形内切圆半径为r ,三边长为a ,b ,c ,则三角形的面积)(2

1

c b a r S ++=

,根据类比思想,若四面体内切球半径为R ,四个面的面积为S 1,S 2,S 3,S 4,则四面体的体积V= 。 三、合作探究,问题解决。

例1:已知数列{}n a 的第一项a 1=1,且

3,2,1(11=+=

+n a a a n

n

n ……),试归纳出这个数列的通项公式。

例2:已知:等差数列{}n a 的公差为d ,前n 项和为S n ,有如下性质:

(1)a n =a m +(n-m)·d ;

(2)若m+n=p+q ,其中,m ,n ,p ,q ∈N *

,则a m +a n =a p +a q ;

(3)若m+n=2p ,m ,n ,p ∈N *

,则a m +a n =2a p ; (4)S n ,S 2n -S n ,S 3n -S 2n 构成等差数列。

类比上述性质,在等比数列{}n b 中,写出相类似的性

质。

例3、将正整数排成如图2—1—2所示的螺旋状: 第一个拐弯处的数是2,第2个拐弯处的数是3,第三个拐弯处的数是5,……,判断第20个及第25个拐弯处的数各是多少。

例4:三角形与四面体有下列共同的性质。 (1)三角形是平面内由线段所围成的最简单的封闭图形,四面体是空间中由平面三角形所围成的最简单的封闭图形。 (2)三角形可以看做平面上一条线段外一点与这条直线段上的各点连线所形成的图形;四面体可以看作三角形外一点与这个三角形边上各点连线所形成的图形。

通过类比推理,完成下表:

三角形

四面体

三角形两边之和大于第三边

三角形的中位线等于第三边的一半并且平行于第三边

三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心

三角形的面积

r c b a S )(++=2

1

,r

力三角形内切圆的半径

四、经典示例,巩固提高。 例:观察下列等式

13

=12

13+12=32 13+23+33=62 13+23+33+43=102 …

可归纳出的结论是 五、要点归纳,反思总结

1、归纳推理的一般步骤:

2、类比推理的一般步骤:

3、常见的类比对象: (1)平面几何与立体几何 平面几何 立体几何 图 形 点 点、线 线 面 面 体 数 量

边长 面积 角 二面角 面积

体积

(2)其它可以类比的对象。

①实数相等关系与不等关系;方程与不等式。 ②实数的运算律与向量的运算律。 ③等差数列与等比数列的定义及性质。 ④三种圆锥曲线的定义与性质。 ⑤正弦函数、余弦函数的性质。

⑥不同类知识点之间的相似性质和结论。

12、演译推理

一、自主学习,明确目标。

1、知道什么是演译推理,能利用“三段论”进行简单的推理。

2、知道合情推理与演译推理之间的联系与差别 二、研讨互动,问题生成。 1、“三段论”是演译推理的一般模式,包括: (1)大前提:已知的 ; (2)小前提:所研究的 ;

(3)结论:根据一般推理,对特殊情况做出的 ; 2、“所有9的倍数(M )都是3的倍数(P ),若奇数(S )是9的倍数(M ),故该奇数(S )是3的倍数”,上述推理是( )

A .小前提错误

B .大前提错误

C .结论错误

D .正确的 3、《论语·学路》篇中说:“名不正,则言不顺;言不

顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不

正,则民无所措手足。”上述推理用的是( )

A .类比推理

B .归纳推理

C .演绎推理

D .一次三段论

4、给出如下三个命题: ①四个非零实数a ,b ,c ,d 依次成等比数列的充要条件是ad=bc ; ②设a ,b ∈R ,且ab ≠0,若1>a b ,则1

a ;

③若x x f 2log )(=,则|)(|x f 是偶函数。其中,不

正确命题的序号是( ) A .①② B .②③ C .①③ D .①②③ 三、合作探究,问题解决。 例1:用三段论的形式写出下列命题。 (1)0.33?

2是有理数;

(2))(sin R x x y ∈-=是周期函数;

(3)Rt △ABC 的内角和为180°。

例2:在△ABC 中,AC>BC ,CD 是AB 边上的高,求证:∠ACD>∠BCD.

例3:已知数列{}n a 满足a 1=1,a 2=3,

a n+2=3a n+1-2a n (n ∈N+). (1)证明:数列{}n n a a -+1是等比数列;

(2)求数列{}n a 的通项公式;

(3)若数列{}n b 满足1

1

4-b 124-b (1)

4-n b =(a n +1)bn (n ∈N +),证明:{}n b 是等差数列。

例4:数列{}n a 的前n 项和为S n ,数列{}n b 中,b 1=a 1,b n =a n -a n-1(n ≥2),若a n +S n =n ,

(1)设c n =a n -1,求证:数列{}n c 是等比数列; (2)求数列{}n b 的通项公形式。

四、经典示例,巩固提高。 已知函数x

a

x y +

=有如下性质:如果常数a>0,那么该函数在(0,a )上是减函数,在[a +∞)上是增函数。

(1)如果函数)0(2>+=x x

x y b

在(0,4]上是减函数 ,在[4,+∞)上是增函数,求b 的值;

(2)设常数c ∈[1,4],求函数

)21()(≤≤+=x x

c

x x f 的最大值和最小值;

(3)当

n

是正整数时,研究函数

)0()(>+

=c x

c

x x g n n 的单调性,并说明理由。

五、要点归纳,反思总结。 1、演译推理的特点。

2、合情推理与常驻译推理的区别与联系。

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待你的好评与关注!)

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

定积分的概念(教学内容)

授课题目定积分的概念 课时数1课时 教学目标理解定积分的基本思想和概念的形成过程,掌握解决积分学问题的“四步曲”。 重点与难点重点:定积分的基本思想方法,定积分的概念形成过程。难点:定积分概念的理解。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完导数和不定积分这两个概念后的学习,定积分概念的建立为微积分基本定理的引出做了铺 垫,起到了承上启下的作用。而且定积分概念的引入体 现着微积分“无限分割、无穷累加”“以直代曲、以不变 代变”的基本思想。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。

教学手段 传统教学与多媒体资源相结合。 课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、定积分问题举例 1、曲边梯形的面积 设)(x f y =在区间],[b a 上非负连续。由)(,0,,x f y y b x a x ====所围成的图形称为曲边梯形(见下图),求其面积A ,具体计算步骤如下: (1)分割:在区间],[b a 中任意插入1-n 个分点 b x x x x x a n n =<<<<<=-1210Λ 把],[b a 分成n 个小区间 ],[,],,[],,[12110n n x x x x x x -Λ 它们的长度依次为:n x x x ???,,,21Λ (2)近似代替:区间],[1i i x x -对应的第i 个小曲边梯形面积,)(i i i x f A ?≈?ξ ]).,[(1i i i x x -∈?ξ (3)求和:曲边梯形面积∑∑==?≈?=n i i i n i i x f A A 1 1 )(ξ (4)取极限:曲边梯形面积,)(lim 10∑=→?=n i i i x f A ξλ其中 }.,,m ax {1n x x ??=Λλ 2、变速直线运动路程 设物体做直线运动,已知速度)(t v v =是时间间隔],[21T T 上的非负连续函数,计算这段时间内物体经过的路程s ,具体计算步骤与上相似 x a b y o 1x i x 1-i x i ξ

《定积分》教学设计与反思

《定积分》教学设计与反思 学习目标 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分. 2、通过实例体会用微积分基本定理求定积分的方法. 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 教学难点:了解微积分基本定理的含义. 一、自主学习: 1.定积分的定义:, 2.定积分记号: 思想与步骤 几何意义. 3.用微积分基本定理求定积分 二、新知探究 新知1:微积分基本定理: 背景:我们讲过用定积分定义计算定积分,但如果要计算,其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 探究问题1:变速直线运动中位置函数S(t)与速度函数v(t)之间的联系 设一物体沿直线作变速运动,在时刻t时物体所在位移为S(t),速度为v(t)(), 则物体在时间间隔内经过的位移记为,则 一方面:用速度函数v(t)在时间间隔求积分,可把位移= 另一方面:通过位移函数S(t)在的图像看这段位移还可以表示为 探究问题2: 位移函数S(t)与某一时刻速度函数v(t)之间的关系式为 上述两个方面中所得的位移可表达为 上面的过程给了我们启示 上式给我们的启示:我们找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。 定理如果函数是上的连续函数的任意一个原函数,则

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。 例1.计算下列定积分: 新知2:用定积分几何意义求下列各式定积分: 若求 新知3:用定积分求平面图形的面积 1、计算函数在区间的积分 2、计算函数在区间的积分 3、求与在区间围成的图形的面积 通过此题的计算你发现了什么? 教学反思 本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了微积分的基本定理,具体反思如下: 1、改变定理的表述形式,丰富信息的呈现方式。 根据高中学生的认知特点,我在教学过程中,出示例题、习题时,呈现形式力求多样、新颖,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中实例分析顺序,重组和创设了这样一个情境,从而引入速度关于时间的定积分背景,即切合学生的生活实际,又让学生发现了定理的实际意义,理解了定理的本质,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。 2、突出数学应用价值,培养学生的应用意识和创新能力 《数学课程标准》中指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题中涉及路程和速度,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

人教新课标版数学高二-2-2导学案 1.5 定积分概念第一课时

1.5 定积分概念第一课时 (结合配套课件、作业使用,效果更佳) 周;使用时间17 年月日;使用班级;姓名 【学习目标】 1.了解“以直代曲”、“以不变代变”的思想方法. 2.会求曲边梯形的面积和汽车行驶的路程. 重点:会求曲边梯形的面积和汽车行驶的路程. 难点:了解“以直代曲”、“以不变代变”的思想方法. 【检查预习】预习课本,完成导学案“自主学习”部分,准备上课回答. 【自主学习】 知识点一曲边梯形的面积 思考1如何计算下列两图形的面积? 思考2如图,为求由抛物线y=x2与直线x=1,y=0所围成的平面图形的面积S,图形与我们熟悉的“直边图形”有什么区别? 思考3能否将求曲边梯形的面积问题转化为求“直边图形”的面积问题?(归纳主要步骤) (2)求曲边梯形面积的方法 把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).

(3)求曲边梯形面积的步骤:①分割,②近似代替,③求和,④取极限. 知识点二 求变速直线运动的(位移)路程 如果物体做变速直线运动,速度函数为v =v (t ),那么也可以用 、 、 、 的方法,求出它在a ≤t ≤b 内所作的位移s . 【合作探究】 类型一 求曲边梯形的面积 例1 求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积. 跟踪训练1 求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积. 类型二 求变速运动的路程 例2 有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h), 那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少? 跟踪训练2 一辆汽车在笔直的公路上变速行驶,设汽车在时刻t 的速度为v (t )=-t 2+5(t 的单位:h ,v 的单位:km/h),试计算这辆汽车在0≤t ≤2这段时间内汽车行驶的路程s (单 位:km). 【学生展示】探究点一 【教师点评】探究点二及【学生展示】出现的问题 【当堂检测】 1.把区间[1,3] n 等分,所得n 个小区间的长度均为( ) A.1n B.2n C.3n D.12n 2.函数f (x )=x 2在区间?? ??i -1n ,i n 上( ) A .f (x )的值变化很小 B .f (x )的值变化很大 C .f (x )的值不变化 D .当n 很大时,f (x )的值变化很小 3.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于( ) A .只能是左端点的函数值f (x i )

定积分教学设计

定积分的简单应用 一、教学目标 1、 知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、 过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、 情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 二、 教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题,正确计算。 三、教学过程 (一)创设问题情境: 复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 引入:.计算 dx x ? --2 2 2 4 2.计算 ?-22 sin π πdx x 思考:用定积分表示阴影部分面积 选择X 为积分变量,曲边梯形面积为 (二)研究开发新结论 1计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成图形的面积S. 2计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成的图形的面积S. 总结解题步骤:1找到图形----画图得到曲边形. 2曲边形面积解法----转化为曲边梯形,做出辅助线. dx x f dx x f s b a b a ??-=)()(21

3定积分表示曲边梯形面积----确定积分区间、被积函数. 4计算定积分. (三)巩固应用结论 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得 到。 解:2 01y x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、 (1,1),面积 S=1 20 x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象; 2.求交点; 3.用定积分表示所求的面积; 4.微积分基本定理求定积分。 巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y =x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =- 与曲线y =的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线y = 的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组4 y y x ?=?? =-?? 得直线4y x =-与曲线y =8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28 4 4 [(4)]x dx = +--? ? ? -1

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

N0.14《定积分的概念》导学案

N0.14《定积分的概念》导学案 目标展示: 1、掌握求曲边梯形面积的步骤。 2、了解定积分的定义和几何意义。 课程导读(阅读教材P38—P49后完成下列问题) 化很大 C .f (x )的值不变化 D .当n 很大时,f (x )的值变化很小 2.在求由x =a ,x =b (a 当n →+∞时,无限趋近于一个常数A ,则A 可用定积分表示为 ( ) A .dx x ?101 B .dx x p ?10 C .dx x p ?1 0)1( D .dx n x p ?10)( 4.当n 很大时,函数f (x )=x 2在区间????i -1n ,i n 上的值能够用下列哪个值近似代替( ). A .f ????1n B .f ????2n C .f ??? ?i n D .f (0) 5.求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间[0,t ]等分成n 个小区间,则第i -1个区间为( ) A.????i -1n ,i n B.????i n ,i +1n C.????t (i -1)n ,ti n D.????t (i -2)n ,t (i -1)n 6.由直线x =1,y =0,x =0和曲线y =x 3所围成的曲边梯形,将区间4等分,则曲边梯形 面积的近似值(取每个区间的右端点)是( ) A.119 B.111256 C.110270 D.2564 7.在等分区间的情况下,f (x )= 11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式准确的是( ) A.lim n →∞∑i =1n [1 1+????i n 2·2n ] B.lim n →∞∑i =1n [11+????2i n 2·2n ] C.lim n →∞∑i =1n ????11+i 2·1n D.lim n →∞∑i =1n [11+????i n 2·n ] 8.已知??13f (x )d x =56,则( ) A.??12f (x )d x =28 B.??2 3f (x )d x =28 C.??122f (x )d x =56 D.??12f (x )d x +??2 3f (x )d x =56 9.下列等式成立的是( ) A a b xdx b a -=? B. 5.0=?xdx b a

2017年定积分导学案

1.5定积分的概念 (一) 一,学习任务 1.连续函数 2.曲边梯形的面积 (1)曲边梯形: (2)求曲边梯形面积的方法与步骤: ①分割: ②近似代替: ③求和: ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 【例题1】求由直线x =1,y =0及曲线y =x 2所围成的图形的面积S . 思考1在求曲边梯形面积中第一步“分割”的目的是什么? 思考2求曲边梯形面积时,能否直接对整个曲边梯形进行“以直代曲”呢?怎样才能减小误差? 3.变速直线运动的路程 一般地,如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内的位移s . 【例题2】一辆汽车做变速直线运动,设汽车在时刻t 的速度v (t )= - t 2+2 , 求汽车在t =0到t =1这段时间内运动的路程s . 二,巩固练习 1.和式)1(y 5 1i i ∑=+可表示为。。。。。。。。。。。。。。。。。。。。。。。。。。。( ) A .(y 1+1)+(y 5+1) B .y 1+y 2+y 3+y 4+y 5+1 C .y 1+y 2+y 3+y 4+y 5+5 D .(y 1+1)(y 2+1)…(y 5+1) 2.在求由x =a 、x =b (a

[a ,b ]上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是 ( ) ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ; ④n 个小曲边梯形的面积和与S 之间的大小关系无法确定 A .1个 B .2个 C .3个 D .4个 3.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于。。。。。。。。。。。。( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1) C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1]) D .以上答案均不正确 4.在求由函数y =1 x 与直线x =1、x =2、y =0所围成的平面图形的面积时,把区间[1,2]等分 成n 个小区间,则第i 个小区间为。。。。。。。。。。。。。。。。。。。。。。。。。。( ) A .[i -1n ,i n ] B .[n +i -1n ,n +i n ] C .[i -1,i ] D .[i n ,i +1n ] 5.曲线y =cos x (0≤x ≤2π)与y =1围成的面积是。。。。。。。。。。。。。。。。。( ) A .4π B .5π 2 C .3π D .2π 6.当n 很大时,函数f (x )=x 2在区间],1[n i n i (i =1,2,…,n )上的值可以用______近似代替 ( ) A.n i B .)(n f 1 C .)(n i f D .n 1 7.求直线x =0、x =2、y =0与曲线y =x 2所围成曲边梯形的面积. 学习报告(学生): 教学反思(教师):

高中数学选修2-2优质学案:§1.5 定积分的概念

[学习目标] 1.了解定积分的概念.2.理解定积分的几何意义.3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想.4.能用定积分的定义求简单的定积分. 知识点一曲边梯形的面积和汽车行驶的路程 1.曲边梯形的面积 (1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线________所围成的图形称为曲边梯形(如图①所示). (2)求曲边梯形面积的方法 把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些________,对每个__________“以直代曲”,即用__________的面积近似代替__________的面积,得到每个小曲边梯形面积的________,对这些近似值______,就得到曲边梯形面积的________(如图②所示). (3)求曲边梯形面积的步骤:①________,②________,③________,④________. 2.求变速直线运动的(位移)路程 如果物体做变速直线运动,速度函数v=v(t),那么也可以采用________,________,________,________的方法,求出它在a≤t≤b内所作的位移s. 思考(1)如何计算下列两图形的面积?

(2)求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差? 知识点二 定积分的概念 如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

人教A版选修2-2 1.5.3 定积分的概念 学案 (1)

1.5.3 定积分的概念 预习课本P45~47,思考并完成下列问题 (1)定积分的概念是什么?几何意义又是什么? (2)定积分的计算有哪些性质? [新知初探] 1.定积分的概念与几何意义 (1)定积分的概念:一般地,设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

中的阴影部分的面积). [点睛] 利用定积分的几何意义求定积分的关注点. (1)当f (x )≥0时,??a b f (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义. (2)计算??a b f (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值: 当f (x )≥0时,??a b f (x )d x =S ;当f (x )<0时, ??a b f (x )d x =-S . 2.定积分的性质 (1)??a b kf (x )d x =k ??a b f (x )d x (k 为常数). (2)??a b [f 1(x )±f 2(x )]d x =??a b f 1(x )d x ±??a b f 2(x )d x . (3)??a b f (x )d x =??a c f (x )d x +??c b f (x )d x (其中a

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

§1.5.3定积分的概念教案

1.5.3定积分的概念 教学目标 能用定积分的定义求简单的定积分; 理解掌握定积分的几何意义; 重点 定积分的概念、定积分法求简单的定积分、 定积分的几何意义 难点 定积分的概念、定积分的几何意义 复习: 1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤 2.对这四个步骤再以分析、理解、归纳,找出共同点. 新课讲授 1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?=), 在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ= ,作和式: 1 1 ()()n n n i i i i b a S f x f n ξξ==-= ?= ∑ ∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数 S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为: ()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分()b a f x dx ?是一个常数,即n S 无限趋近的常数S

(n →+∞时)称为()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()n i i b a f n ξ=-∑ ; ④取极限:() 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑ ? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1 ()t t S v t dt =?; 变力做功 ()b a W F r dr = ? 2.定积分的几何意义 如果在区间[,]a b 上函数连 续且恒有 ()0 f x ≥,那么定积分 ()b a f x dx ? 表示由直线,x a x b ==(a b ≠),0y =和曲线() y f x = 所围成的 曲边梯形的面积。 例1.计算定积分2 1 (1)x dx +? 分析:所求定积分即为如图阴影部分面积,面积为5 2 。 即:2 1 5(1)2 x dx += ? 思考:若改为计算定积分 22 (1)x dx -+? 呢? 改变了积分上、下限,被积函数在 [2,2]-上出现了负值如何解决呢? (后面解决的问题) 练习 计算下列定积分 1.50(24)x dx -? 解:5 0(24)945x dx -=-=? 2.1 1x dx -? 解:11 111111122 x dx -= ??+ ??=?

2017-2018学年高中数学北师大版选修2-2同步配套教学案:第四章 章末小结 知识整合与阶段检测

[对应学生用书P44] 一、定积分 1.定积分的概念: ??a b f (x )d x 叫函数f (x )在区间[a ,b ]上的定积分. 2.定积分的几何意义: 当f (x )≥0时,??a b f (x )d x 表示的是 y =f (x )与直线x =a ,x =b 和x 轴所围成的曲边梯形的面积. 3.定积分的性质: (1)∫b a 1d x =b -a . (2)??a b kf (x )d x =k ??a b f (x )d x . (3)??a b [f (x )±g (x )]d x =??a b f (x )d x ±??a b g (x )d x . (4)??a b f (x )d x =??a c f (x )d x +??c b f (x )d x . 定积分的几何意义和性质相结合求定积分是常见类型,多用于被积函数的原函数不易求,且被积函数是熟知的图形. 二、微积分基本定理 1.如果连续函数f (x )是函数F (x )的导函数,即f (x )=F ′(x ),则??a b f (x )d x =F (x )| b a =F (b )-F (a ). 2.利用微积分基本定理求定积分,其关键是找出被积函数的一个原函数.求一个函数的原函数与求一个函数的导数是互逆运算,因此,应熟练掌握一些常见函数的导数公式. 三、定积分的简单应用 定积分的应用在于求平面图形的面积及简单旋转几何体的体积,解题步骤为: ①画出图形.②确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限.③确定被积函数.④写出平面图形面积或旋转体体积的定积分表达式.⑤运用微积分基本定理计算定积分,求出平面图形的面积或旋转几何体的体积.

相关主题
文本预览
相关文档 最新文档