当前位置:文档之家› 火控性能参数静态测试系统

火控性能参数静态测试系统

火控性能参数静态测试系统
火控性能参数静态测试系统

万方数据

万方数据

万方数据

万方数据

万方数据

火控性能参数静态测试系统

作者:孙昊, 王春艳, SUN Hao, WANG Chun-Yan

作者单位:长春理工大学光电工程学院,吉林长春,130022

刊名:

应用光学

英文刊名:Journal of Applied Optics

年,卷(期):2014,35(2)

参考文献(8条)

1.王春艳;李帅;袁济林重复瞄准精度测量系统设计[期刊论文]-长春理工大学学报(自然科学版) 2010(02)

2.王春艳;王美蠲;周庆才远距离动目标实时测试系统设计[期刊论文]-应用光学 2011(04)

3.韩洋;常天庆;丁士拥半自主式火控系统建模与动态特性分析[期刊论文]-计算机工程与设计 2011(12)

4.魏云升;郭治;王校会军用光学仪器 2003

5.姚雾云;徐德友某型自行火炮火控系统检测系统[期刊论文]-兵工自动化 2010(12)

6.段锦;王小曼;王志坚炮瞄系统动态参数测量[期刊论文]-火力与指挥控制 2011(11)

7.王春艳;姜会林;王陆用于火控动态性能测试的多光轴光学系统[期刊论文]-兵工学报 2011(06)

8.赫赤;赵克定;冯三任炮控系统静态参数测试及其关键技术研究[期刊论文]-南京理工大学学报(自然科学版) 2004(01)引用本文格式:孙昊.王春艳.SUN Hao.WANG Chun-Yan火控性能参数静态测试系统[期刊论文]-应用光学 2014(2)

检测系统的基本特性

第2章 检测系统的基本特性 2.1 检测系统的静态特性及指标 2.1.1检测系统的静态特性 一、静态测量和静态特性 静态测量:测量过程中被测量保持恒定不变(即dx/dt=0系统处于稳定状态)时的测量。 静态特性(标度特性):在静态测量中,检测系统的输出-输入特性。 n n x a x a x a x a a y +++++= 332210 例如:理想的线性检测系统: x a y 1= 如图2-1-1(a)所示 带有零位值的线性检测系统:x a a y 10+= 如图2-1-1(b)所示 二、静态特性的校准(标定)条件――静态标准条件。 2.1.2检测系统的静态性能指标 一、测量范围和量程 1、 测量范围:(x min ,x max ) x min ――检测系统所能测量到的最小被测输入量(下限) x max ――检测系统所能测量到的最大被测输入量(上限)。 2、量程: min max x x L -= 二、灵敏度S dx dy x y S x =??=→?)( lim 0 串接系统的总灵敏度为各组成环节灵敏度的连乘积 321S S S S = 三、分辨力与分辨率 1、分辨力:能引起输出量发生变化时输入量的最小变化量min x ?。 2、分辨率:全量程中最大的min x ?即min max x ?与满量程L 之比的百分数。 四、精度(见第三章) 五、线性度e L max .. 100%L L F S e y ?=± ? max L ?――检测系统实际测得的输出-输入特性曲线(称为标定曲线)与其拟合直线之

间的最大偏差 ..S F y ――满量程(F.S.)输出 注意:线性度和直线拟合方法有关。 最常用的求解拟合直线的方法:端点法 最小二乘法 图2-1-3线性度 a.端基线性度; b.最小二乘线性度 四、迟滞e H %100. .max ??= S F H y H e 回程误差――检测系统的输入量由小增大(正行程),继而自大减小(反行程)的测试 过程中,对应于同一输入量,输出量的差值。 ΔHmax ――输出值在正反行程的最大差值即回程误差最大值。 迟滞特性 五、稳定性与漂移 稳定性:在一定工作条件下,保持输入信号不变时,输出信号随时间或温度的变化而出 现缓慢变化的程度。 时漂: 在输入信号不变的情况下,检测系统的输出随着时间变化的现象。 温漂: 随着环境温度变化的现象(通常包括零位温漂、灵敏度温漂)。 2.2 检测系统的动态特性及指标 动态测量:测量过程中被测量随时间变化时的测量。 动态特性――检测系统动态测量时的输出-输入特性。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入;

主要技术性能指标及参数

主要技术性能指标及参数 序号项目名称项目特征描述计量 单位 数量 1 水平输送机1.带宽550,长10m, 2.输送功率4kw,升降,线速度≤s, 3.处理能力:50t/h。 台 1 2 升降输送机1.带宽550,长15m 或18m, 2.输送功率,升降,线速度≤s, 3.处理能力:50-80t/h 台 1 3 卸粮机1.带宽550,8S+4D, 2.输送功率4kw,线速度≤s, 3.处理能力:50-100t/h 台 1 4 电动行走装仓 机 1.带宽550,12+6、含电动行走,新式方向盘, 2.输送,升降3kw,伸缩,行走 台 1 5 探粮器1.主机功率:1800w; 2.电源:220 50hz; 3.不锈钢管直径28mm。。 台 1 6 分样器适用于小麦、玉米、大豆等颗粒粮食样品的等量分样台 1 7 快速水分检测 仪 1.测量范围:3~35%(因样品种类而异) 2.显示分辨率:%, 3.测量精度:水分:干燥法的标准误差为%以下(水 分低于20%的全部样品), 4.测量品种:小麦、玉米等多个品种; 5.重复性误差:≤±%,重量:内置电子天平, 6.温度:自动温度补偿。 台 1 8 小麦容重器1.容重器大工作称重:1000±2g ; 2.容重器小工作称重:100g ; 3.容重器分辨力:1g ; 4.容重筒容积:1000± ; 5.供电电源:220v; 6.工作条件环境温度5℃-40℃ 7.相对湿度<90%RH ; 台 1

8.测量方式:组合式测量 9 玉米容重器1.容重器大工作称重:1000±2g ; 2.容重器小工作称重:100g ; 3.容重器分辨力:1g ; 4.容重筒容积:1000± ; 5.供电电源:220v; 6.工作条件环境温度5℃-40℃ 7.相对湿度<90%RH ; 8.测量方式:组合式测量 台 1 10 天平1.称量范围0-200g; 2.读取精度; 3.重复性±; 4.线性误差±; 5.称盘尺寸Ф80mm; 6.输出接口RS232C; 7.外型尺寸34cm××35cm(长*宽*高); 8.电源AC 110-240V; 台 1 11 害虫显微镜1.产品倍数:40-1600倍; 2.产品材质:全金属材质; 3.产品光源:LED上下电光源; 4.供电方式:电池; 5.产品配置:广角目镜、倍增镜、标本移动卡尺; 6.具有精细调节及微调功能 台 2 12 地磅1.称台规格:宽米、长16米、10mm-12mm(+, 2.称重量:100t; 3.数字高精度30吨桥式传感器; 4.不锈钢外壳数字仪表; 5.不锈钢防浪涌10线接线盒;衡器专用?4#主线;5H 防水外显屏; 6.称重管理软件一套; 7.附件含台式电脑、打印机; 8.含称台基础。 台 1

测试系统静态特性校准实验报告

实验一测试系统静态特性校准 一.实验目的 1.1 掌握压力传感器的原理 1.2掌握压力测量系统的组成 1.3掌握压力传感器静态校准实验和静态校准数据处理的一般方法 二.实验设备 本实验系统由活塞式压力计,硅压阻式压力传感器,信号调理电路,5位半数字电压表,直流稳压电源和采样电阻组成。图1-1实验系统方框图如下: 实验设备型号及精度 三.实验原理 在实验中,活塞式压力计作为基准器,为压力传感器提供标准压力0~0.6%Mpa信号调理器为压力传感器提供恒电源,将压力传感器输出的电压信号放大并转换为电流信号。信号处理器输出为二线制,4~20mA信号电源在250 采样电阻上转换为1~5V电压信号,由5位半数字电压表读出。

四.实验操作 4.1操作步骤 (1)用调整螺钉和水平仪将活塞压力计调至水平。 (2)核对砝码重量及个数,注意轻拿轻放。 (3)将活塞压力计的油杯针阀打开,逆时针转动手轮向手摇泵内抽油,抽满后,将油杯针阀关闭。严禁未开油杯针阀时,用手轮抽油,以防破坏传感器。 (4)加载砝码至满量程,转动手轮使测量杆标记对齐,再卸压。反复1-2次,以消除压力传感器内部的迟滞。 (5)卸压后,重复(3)并在油杯关闭前记录传感器的零点输出电压,记为正行程零点。 (6)按0.05Mpa的间隔,逐级给传感器加载至满量程,每加载一次,转动手轮使测量杆上的标记对齐,在电压表上读出每次加载的电压值。 (7)加压至满量程后,用手指轻轻按一下砝码中心点,施加一小扰动,稍后记录该电压值,记为反行程的满量程值。此后逐级卸载,并在电压表读出相应的电压值。 (8)卸载完毕,将油杯针阀打开,记录反行程零点,一次循环测量结束。 (9)稍停1~2分钟,开始第二次循环,从(5)开始操作,共进行5次循环。 4.2 注意事项 保持砝码干燥,轻拿轻放,防止摔碰。 轻旋手轮和针阀,防止用力过猛。 正、反行程中,要求保证压力的单调性,如遇压力不足或压力超值,应重新进行循环。 当活塞压力计测量系统的活塞升起是,请注意杆的标记线与两侧固定支架上的标记对齐,同时,用手轻轻旋动托盘,以保持约30转/分的旋转速度,用此消除静摩擦,此后方可进行读数。 严禁未开油杯针阀时,用手轮抽油,以防破坏传感器;或在电压表输出值不变的情况下,严禁连续转动手轮数圈。 五.数据处理 1、实验数据

第三章 测试系统的基本特性

第三章 测试系统的基本特性 (一)填空题 1、某一阶系统的频率响应函数为1 21)(+= ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为= ω,幅值= y ,相位= φ。 2、试求传递函数分别为5.05.35 .1+s 和2 22 4.141n n n s s ωωω++的两个环节串联后组成的系统 的总灵敏度。为了获得测试信号的频谱,常用的信号分析方法有、 和 。 3、当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y ?=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。4、传感器的灵敏度越高,就意味着传感器所感知的越小。5、一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度(3)回程误差(4)阻尼系数 2、从时域上看,系统的输出是输入与该系统 响应的卷积。(1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1))()(21ωωQ Q (2))()(21ωωQ Q +(3)) ()() ()(2121ωωωωQ Q Q Q +(4)) ()(21ωωQ Q ?4、一阶系统的阶跃响应中,超调量 。 (1)存在,但<5%(2)存在,但<1(3)在时间常数很小时存在 (4)不存在 5、忽略质量的单自由度振动系统是 系统。(1)零阶 (2)一阶 (3)二阶 (4)高阶 6、一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数(4)阻尼比 7、用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的

主要性能参数

智能辅助驾驶(ADAS)测试能力构建申请 1 背景 JT/T 1094-2016营运客车安全技术条件要求,9米以上营运车应安装车道偏离预警系统和自动紧急制动系统。GB7258-2016送审稿中要求11米以上公路客车和旅游车客车应装备车道保持系统和自动紧急制动系统。为了满足法规需求和智能汽车未来发展趋势,我司汽车电子课也立项进行自动驾驶技术研究(QC201701030006),第一阶段预计17年底开发完成。 智能辅助驾驶是自动驾驶的低级阶段也是必经之路。现阶段,智能辅助驾驶主要包含FCW(前撞预警)、LDW(车道偏离报警)、AEB (自动紧急制动)LKA(车道保持)ACC (自适应巡航)。从功能的实现到批量商用需要经过软件仿真→硬件在环(HiL)→室内试验室→受控场地测试→开放公路测试这一历程。ADAS技术涉及主动安全,目前还不完全成熟,需要大量测试以提高产品精度和可靠性,为了降低委外测试费用,提高我司ADAS配置装车性能,道路试验课申请分阶段构建ADAS测试能力,包含人员培训和设备采购,本次申请主要是测试设备购买。 2 ADAS测试能力构建计划(2017-2020) 智能辅助驾驶测试设备要求精度高,价格昂贵,考虑到成本因素,建议分阶段构建测试能力,构建计划见表1 表1 ADAS能力构建计划 201 7 年 AD AS 测 试能构建计划 设备测试功能仅满足现阶段法规和研发需求,并考虑未来功能拓展性,能力构建见表2。试验用假车和假人采用自制方式,暂不购买;与汽车电子课协商,目前满足2车测试需求即可,暂不购买第三车设备;用于开放道路测试的移动基站暂不购买。 数据采集与分析用笔记本电脑建议单独购买,要求性能稳定,坚固耐用,抗震防水性好。配置要求:15寸屏幕,酷睿i7处理器,128G以上固态硬盘,500G以上机械硬盘。推 荐型号:tkinkpadT570,Dell的Latitude系列。

测试系统的特性

第4章测试系统的特性 一般测试系统由传感器、中间变换装置和显示记录装置三部分组成。测试过程中传感器将反映被测对象特性的物理量(如压力、加速度、温度等)检出并转换为电信号,然后传输给中间变换装置;中间变换装置对电信号用硬件电路进行处理或经A/D变成数字量,再将结果以电信号或数字信号的方式传输给显示记录装置;最后由显示记录装置将测量结果显示出来,提供给观察者或其它自动控制装置。测试系统见图4-1所示。 根据测试任务复杂程度的不同,测试系统中每个环节又可由多个模块组成。例如,图4-2所示的机床轴承故障监测系统中的中间变换装置就由带通滤波器、A/D变换器和快速傅里叶变换(Fast Fourier Transform,简称FFT)分析软件三部分组成。测试系统中传感器为振动加速度计,它将机床轴承振动信号转换为电信号;带通滤波器用于滤除传感器测量信号中的高、低频干扰信号和对信号进行放大,A/D变换器用于对放大后的测量信号进行采样,将其转换为数字量;FFT分析软件则对转换后的数字信号进行快速傅里叶变换,计算出信号的频谱;最后由计算机显示器对频谱进行显示。 要实现测试,一个测试系统必须可靠、不失真。因此,本章将讨论测试系统及其输入、输出的关系,以及测试系统不失真的条件。 图4-1 测试系统简图 图4-2 轴承振动信号的测试系统

4.1 线性系统及其基本性质 机械测试的实质是研究被测机械的信号)(t x (激励)、测试系统的特性)(t h 和测试结果)(t y (响应)三者之间的关系,可用图4-3表示。 )(t x )(t y )(t h 图4-3 测试系统与输入和输出的关系 它有三个方面的含义: (1)如果输入)(t x 和输出)(t y 可测,则可以推断测试系统的特性)(t h ; (2)如果测试系统特性)(t h 已知,输出)(t y 可测,则可以推导出相应的输入)(t x ; (3)如果输入)(t x 和系统特性)(t h 已知,则可以推断或估计系统的输出)(t y 。 这里所说的测试系统,广义上是指从设备的某一激励输入(输入环节)到检测输出量的那个环节(输出环节)之间的整个系统,一般包括被测设备和测量装置两部分。所以只有首先确知测量装置的特性,才能从测量结果中正确评价被测设备的特性或运行状态。 理想的测试装置应具有单值的、确定的输入/输出关系,并且最好为线性关系。由于在静态测量中校正和补偿技术易于实现,这种线性关系不是必须的(但是希望的);而在动态测量中,测试装置则应力求是线性系统,原因主要有两方面:一是目前对线性系统的数学处理和分析方法比较完善;二是动态测量中的非线性校正比较困难。但对许多实际的机械信号测试装置而言,不可能在很大的工作范围内全部保持线性,只能在一定的工作范围和误差允许范围内当作线性系统来处理。 线性系统输入)(t x 和输出)(t y 之间的关系可以用式(4-1)来描述 )()(...)()()()(...)()(0111101111t x b dt t dx b dt t x d b dt t x d b t y a dt t dy a dt t y d a dt t y d a m m m m m m n n n n n n ++++=++++------ (4-1) 当n a ,1-n a ,…,0a 和m b ,1-m b ,…,0b 均为常数时,式(4-1)描述的就是线性系统,也称为时不变线性系统,它有以下主要基本性质: (1)叠加性 若 )()(11t y t x →,)()(22t y t x →,则有

手把手教你识别显卡主要性能参数

手把手教你识别显卡主要性能参数 手把手教你识别显卡主要性能参数 初识显卡的玩家朋友估计在选购显卡的时候对显卡的各项性能参数有点摸不着头脑,不知道谁对显卡的性能影响最大、哪些参数并非越大越好以及同是等价位的显卡但在某些单项上A 卡或者是N卡其中的一家要比对手强悍等等。这些问题想必是每个刚刚接触显卡的朋友所最想了解的信息,可以说不少卖场的销售员也正是利用这些用户对显卡基本性能参数的不了解来欺骗和蒙蔽消费者。今天显卡帝就来为入门级的显卡用户来详细解读显卡的主要性能参数的意义。 手把手教你识别显卡主要性能参数 关于显卡的性能参数,有许多硬件检测软件可以对显卡的硬件信息进行详细的检测,比如:Everest,GPU-Z,GPU-Shark等。这里我们以玩家最常用的GPU-Z软件来作为本文解析显卡性能参数的示例软件。

GTX590的GPU-Z截图 首先我们对GPU-Z这款软件的界面进行一个大致分区的解读,从上至下共8个分区,其中每个分区的具体含义是: ①.显卡名称部分: 名称/Name:此处显示的是显卡的名称,也就是显卡型号。 ②.显示芯片型号部分: 核心代号/GPU:此处显示GPU芯片的代号,如上图所示的:GF110、Antilles等。 修订版本/Revision:此处显示GPU芯片的步进制程编号。 制造工艺/Technology:此处显示GPU芯片的制程工艺,如55nm、40nm等。 核心面积/Die Size:此处显示GPU芯片的核心尺寸。 ③.显卡的硬件信息部分: BIOS版本/BIOS Version:此处显示显卡BIOS的版本号。 设备ID/Device ID:此处显示设备的ID码。 制造厂商/Subvendor:此处显示该显卡OEM制造厂商的名称。

测试系统的特性 2

测试系统的特性 填空题 1.用一阶系统作测量装置,为了获得最佳的工作性能,其时间常数τ原则上(越小越好)。 2.(时间常数)是一阶系统的动态特性参数。 3.线性度表示标定曲线(偏离其拟合曲线)的程度。 4.若线性系统的输入为某一频率的简谐信号,则其稳态响应必为(同一频率)的简谐信号。 5.(漂移)是在输入不变的条件下,测量系统的输出随时间变化的现象。 6.关于标定曲线不重合的测量系统静态特性有(滞后)和(重复性)。 7.测试装置在稳态下,单位输入变化所引起的输出变化称为该装置的(灵敏度);能够引起输出量可测量变化的最小输入量称为该装置的(分辨力)。 8.相频特性是指(输出较输入滞后角随输入频率)变化的特性。 9.二阶测试装置,其阻尼比ζ为(0.7)左右时,可以获得较好的综合特性。 10.测量系统输出信号的傅里叶变换与输入信号的傅里叶变换之比称为(频率响应函数)。 11.测量系统对单位脉冲输入的响应称为(脉冲响应函数)。 12.测试装置的频率响应函数H(j ω)是装置动态特性的(频)域描述。 简答题 1.说明线性系统的频率保持性在测量中的作用。 在实际测试中,测得的信号常常会受到其他信号或噪声的干扰,依据频率保持性可以认定,测得信号中只有与输入信号相同的频率成分才是真正由输入引起的输出。 在故障诊断中,对于测试信号的主要频率成分,根据频率保持性可知,该频率成分是由相同频率的振动源引起的,找到产生该频率成分的原因,就可以诊断出故障的原因。 2.测试系统不失真测试的条件是什么? 在时域,测试系统的输出y(t)与输入x(t)应满足)()(00t t x A t y -=。在频域,幅频特性曲线是一条平行于频率ω轴的直线,即幅频特性为常数,0)(A A =ω,相频特性曲线是线性曲线ωω?0t -=)(,式中,00,t A 均为常数。 3.在磁电指示机构中,为什么取0.7为最佳阻尼比? 磁电指示机构是二阶系统。当阻尼比取0.7时,从幅频特性的角度,在一定误差范围内,工作频率范围比较宽。从相频特性的角度,特性曲线近似于线性,这样可以在较宽的频率实现不失真测试。 4.对一个测量装置,已知正弦输入信号的频率,如何确定测量结果的幅值和相位的动态误差? 首先确定装置的频率响应函数,得出幅频特性A(ω)和相频特性)(ω?。然后,把输入信号的频率分别代入)0(/)(A A ω和)(ω?,分别得到输出与输入的动态幅

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

简支梁振动系统动态特性综合测试方法分析

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

判断显卡性能的主要参数有哪些

判断显卡性能的主要参数有哪些? 2008-09-09 18:04:17| 分类:科技博览|字号订阅 显示芯片 显示芯片,又称图型处理器- GPU,它在显卡中的作用,就如同CPU在电脑中的作用一样。更直接的比喻就是大脑在人身体里的作用。 先简要介绍一下常见的生产显示芯片的厂商:Intel、ATI、nVidia、VIA(S3)、SIS、Matrox、3D Labs。 Intel、VIA(S3)、SIS 主要生产集成芯片; ATI、nVidia 以独立芯片为主,是目前市场上的主流,但由于ATi现在已经被AMD收购,以后是否会继续出独立显示芯片很难说了; Matrox、3D Labs 则主要面向专业图形市场。 由于ATI和nVidia基本占据了主流显卡市场,下面主要将主要针对这两家公司的产品做介绍。 型号 ATi公司的主要品牌Radeon(镭) 系列,其型号由早其的Radeon Xpress 200 到Radeon (X300、X550、X600、X700、X800、X850) 到近期的 Radeon (X1300、X1600、X1800、X1900、X1950) 性能依次由低到高。 nVIDIA公司的主要品牌GeForce 系列,其型号由早其的GeForce 256、GeForce2 (100/200/400)、GeForce3(200/500)、GeForce4 (420/440/460/4000/4200/4400/4600/4800) 到GeForce FX(5200/5500/5600/5700/5800/5900/5950)、GeForce (6100/6150/6200/6400/6500/6600/6800/) 再到近其的GeForce (7300/7600/7800/7900/7950) 性能依次由低到高。 版本级别 除了上述标准版本之外,还有些特殊版,特殊版一般会在标准版的型号后面加个后缀,常见的有: ATi: SE (Simplify Edition 简化版) 通常只有64bit内存界面,或者是像素流水线数量减少。 Pro (Professional Edition 专业版) 高频版,一般比标版在管线数量/顶点数量还有频率这些方面都要稍微高一点。 XT (eXTreme 高端版) 是ATi系列中高端的,而nVIDIA用作低端型号。 XT PE (eXTreme Premium Edition XT白金版) 高端的型号。 XL (eXtreme Limited 高端系列中的较低端型号)ATI最新推出的R430中的高频版 XTX (XT eXtreme 高端版) X1000系列发布之后的新的命名规则。 CE (Crossfire Edition 交叉火力版) 交叉火力。 VIVO (VIDEO IN and VIDEO OUT) 指显卡同时具备视频输入与视频捕捉两大功能。 HM (Hyper Memory)可以占用内存的显卡

简述系统动态特性及其测定方法

简述系统动态特性及其测定方法 系统的特性可分为静态特性和动态特性。其中动态特性是指检测系统在被测量随时间变化的条件下输入输出关系。一般地,在所考虑的测量范围内,测试系统都可以认为是线性系统,因此就可以用一定常线性系统微分方程来描述测试系统以及和输入x (t)、输出y (t)之间的关系。 1) 微分方程:根据相应的物理定律(如牛顿定律、能量守恒定律、基尔霍夫电 路定律等),用线性常系数微分方程表示系统的输入x 与输出y 关系的数字方程式。 a i 、 b i (i=0,1,…):系统结构特性参数,常数,系统的阶次由输出量最高微分阶次决定。 2) 通过拉普拉斯变换建立其相应的“传递函数”,该传递函数就能描述测试装 置的固有动态特性,通过傅里叶变换建立其相应的“频率响应函数”,以此来描述测试系统的特性。 定义系统传递函数H(S)为输出量与输入量的拉普拉斯变换之比,即 式中S 为复变量,即ωαj s += 传递函数是一种对系统特性的解析描述。它包含了瞬态、稳态时间响应和频率响应的全部信息。传递函数有一下几个特点: (1)H(s)描述系统本身的动态特性,而与输入量x (t)及系统的初始状态无关。 (2)H(S)是对物理系统特性的一种数学描述,而与系统的具体物理结构无关。H(S)是通过对实际的物理系统抽象成数学模型后,经过拉普拉斯变换后所得出的,所以同一传递函数可以表征具有相同传输特性的不同物理系统。 (3)H(S)中的分母取决于系统的结构,而分子则表示系统同外界之间的联系,如输入点的位置、输入方式、被测量以及测点布置情况等。分母中s 的幂次n 代表系统微分方程的阶数,如当n =1或n =2 时,分别称为一阶系统或二阶系统。 一般测试系统都是稳定系统,其分母中s 的幂次总是高于分子中s 的幂次(n>m)。

第4章测试系统的基本特性解析

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

实验二-二阶系统的动态特性与稳定性分析

实验二-二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二二阶系统的动态特性与稳定性分析 一、实验目的 1、掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态 )对系统动态2、分析二阶系统特征参量(ξ ω, n 性能的影响; 3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质; 4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink实现方法。 二、实验内容 1、构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、用Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。 3、搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、

峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω2 2)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分环节 ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5 .12n =ω 保持不变,测试阻尼

汽车构造主要性能参数与汽车分类

汽车构造、主要性能参数及 汽车分类 【汽车构造】 汽车一般由发动机、底盘、车身和电气设备等四个基本部分组成。 一.汽车发动机:发动机是汽车的动力装置。其作用是使供入其中的燃料燃烧而产生动力(将热能转变为机械能),然后通过底盘的传动系驱动车轮,使汽车行驶。 发动机主要采用往复活塞式燃机,它利用燃料在气缸燃烧产生的热能转换为机械能,驱动汽车行驶。 发动机按工作的行程分为:四冲程发动机、二冲程发动机。 按燃料分为:汽油机、柴油机。 按冷却方式分为:水冷式发动机、风冷式发动机。 汽车发动机由2大机构5大系组成:曲柄连杆机构;配气机构;燃料供给系;冷却系;润滑系;点火系;起动系。 1.冷却系:一般由水箱、水泵、散热器、风扇、节温器、水温表和放水开关组成。汽车发动机采用两种冷却方式,即空气冷却和水冷却。一般汽车发动机多采用水冷却。 2.润滑系:发动机润滑系由机油泵、集滤器、机油滤清器、油道、限压阀、机油表、感压塞及油尺等组成。 3.燃料系:汽油机燃料系由汽油箱、汽油表、汽油管、汽油滤清器、汽油泵、化油器、

空气滤清器、进排气歧管等组成。 二.汽车的底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。 1.传动系:汽车发动机所发出的动力靠传动系传递到驱动车轮。传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。主要是由离合器、变速器、万向节、传动轴和驱动桥等组成。 离合器:其作用是使发动机的动力与传动装置平稳地接合或暂时地分离,以便于驾驶员进行汽车的起步、停车、换档等操作。 变速器:由变速器壳、变速器盖、第一轴、第二轴、中间轴、倒档轴、齿轮、轴承、操纵机构等机件构成,用于汽车变速、变输出扭矩。 2.行驶系:由车架、车桥、悬架和车轮等部分组成。行驶系的功用是:

摄像机主要性能参数

摄像机基础培训(三) 一、CCD彩色摄像机的主要技术指标或测量方法 1、CCD彩色摄像机的主要技术指标 (1)CCD尺寸,亦即摄像机靶面。一般来说,尺寸越大,包含的像素越多,清晰度就越高,性能也就越好。在像素数目相同的条件下,尺寸越大,则显示的图像层次越丰富。 (2)CCD像素,是CCD的主要性能指标,它决定了显示图像的清晰程度,分辨率越高,图像细节的表现越好。CCD是由面阵感光元素组成,每一个元素称为像素,像素越多,图像越清晰。现在市场上大多以25万和38万像素为划界,38万像素以上者为高清晰度摄像机。 (3)水平分辨率。彩色摄像机的典型分辨率是在320到500电视线之间,主要有330线、380线、420线、460线、500线等不同档次。分辨率是用电视线(简称线TV LINES)来表示的,彩色摄像头的分辨率在330-500线之间。分辨率与CCD和镜头有关,还与摄像头电路通道的频带宽度直接相关,通常规律是1MHz的频带宽度相当于清晰度为80线。频带越宽,图像越清晰,线数值相对越大。分辨率是水平线的数量乘上。因此最高垂直分辨率为:NTSC :525 X =393 条;PAL :625 X = 470 条。水平分辨率测量方法: a、检验(解析)图:将摄影机直接拍摄检验图,在监视器上直接读取垂直及水平分辨率。当多个摄像机进行测试时,应使用相同镜头,(推荐使作定焦、二可变镜头),以测试卡中心圆出现在监视器屏幕的左右边为准,清晰准确的数出已给的刻度线共10组垂直线和10组水平线。分别代表着垂直清晰度和水平清晰度,并给出相应的线数。如垂直350线水平800线。此时最好用高线的黑白监视器。测试时可在远景物聚焦,也可边测边聚焦。最好能两者兼用,可看出此摄像机的差异(对远近会聚)。 b、频宽测量:使用示波器测量摄影机读取图像讯号频宽, 测量出频宽再乘

新编整理[阀门主要性能参数]cpu的主要性能参数有

[阀门主要性能参数]cpu的主要性能参数有阀门(famen)是流体输送系统中的控制部件,具有截止、调节、导流、防止逆流、稳压、分流或溢流泄压等功能。 用于流体控制系统的阀门,从最简单的截止阀到极为复杂的自控系统中所用的各种阀门,其品种和规格相当繁多。阀门可用于控制空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等各种类型流体的流动。阀门根据材质还分为铸铁阀门,铸钢阀门,不锈钢阀门(201、304、316等),铬钼钢阀门,铬钼钒钢阀门,双相钢阀门,塑料阀门,非标订制等阀门材质。 表示阀门的主要性能参数为公称通径、公称压力、工作压力和工作温度等。 一、公称通径 公称通径DN是管路系统中所有管路附件用数字表示的尺寸,以区别用螺纹或外径表示的那些零件。公称通径是用作参考的经过圆整的数字,与加工尺寸数值上不完全等同。 公称通径是用字母DN后紧跟一个数字标志。如公称通径250mm 应标志为DN250。 二、公称压力 公称压力PN是一个用数字表示的与压力有关的标示代号,是供参考用的方便的圆整数。同一公称压力PN值所标示的同一公称通径!的所有管路附件具有与端部连接型式相适应的同一连接尺寸。 在我国,涉及公称压力时,为了明确起见,通常给出计量单位,以MPA表示。在英、美等国家中,尽管目前在有关标准中已列入了公称压力的概念,但实际使用中仍采用英制单位Class。由于公称压

力和压力级的温度基准不同,因此两者没有严格的对应关系。两者间大致的对应关系参见表。 日本标准中有一种K级制,例如10K、20K、40K等。这种压力级的概念与英制单位中的压力级制相同,但计量单位采用米制。 三、压力-温度额定值 阀门的压力-温度额定值,是在指定温度下用表压表示的最大允许工作压力。当温度升高时,最大允许工作压力随之降低。压力-温度额定值数据是在不同工作温度和工作压力下正确选用法兰、阀门及管件的主要依据,也是工程设计和生产制造中的基本参数。 各种材料的压力-温度额定值、数据见第4章,许多国家都制订了阀门、管件、法兰的压力--温度额定值标准。 1、美国标准 在美国标准中,钢制阀门的压力-温度额定值按ASME/ANSIB16.5a-1992、ASMEB16.34-1996的规定;铸铁阀门的压力-温度额定值按ANSIB16.1-1989~B16.4-1989,ANSIB16.42-1985的规定:青铜阀门的压力-温度额定值按ASME/ANSIB16.15a-1992、ASMEB16.24-1991的规定。 1)美国ASME/ANSIB16.5a-1992中规定了英制单位和米制单位两种法兰尺寸系列,同时分别列出了适用了两种单位制的法兰压力温度额定值。在该标准附录D中给出了确定英制单位压力-温度额定值的方法。 2)美国ANSIB16.42-1985《球墨铸铁管法兰及法兰管件》标准中规定了CL150和CL300球墨铸铁法兰压力-温度额定值在标准附录中又规定了压力-温度等级的制订方法,其基本原理、使用范围、限

第3章测试系统的动态特性与数据处理

信号与测试技术
第3章 测试系统的动态特性与数据处理 北航 自动化科学与电气工程学院 检测技术与自动化工程系 闫 蓓
yanbei@https://www.doczj.com/doc/de17714606.html,

第3章 学习要求
1、测试系统动态特性的定义及描述方法 2、如何获取测试系统的动态特性 3、掌握主要动态性能指标 时域指标、频域指标 4、掌握动态模型的建立(动态标定) 由阶跃响应获取传递函数的回归分析法 由频率特性获取传递函数的回归分析法
2014/3/14
信号与测试技术
2

第3章 测试系统的动态特性与数据处理 3.1 3.2 3.3 3.4 3.5 测试系统的动态特性的一般描述 测试系统时域动态性能指标与回归分析方法 测试系统频域动态性能指标与回归分析方法 测试系统不失真测试条件 测试系统负载效应及抗干扰特性
第3章小结 第3章作业
2014/3/14
信号与测试技术
3

3.1 测试系统的动态特性的一般描述 1. 动态特性的定义 测试系统进行动态测量过程中的特性。 输入量和输出量随时间迅速变化时,输出与输入之 间的关系,可用微分方程表示。
y (t ) 误差 e(t ) = ? x (t ) A
瞬态误差 稳态误差 时域特性 频域特性
2014/3/14
温 度 测 量
阶跃 冲激 正弦 一阶系统 二阶系统
心电参数测量
信号与测试技术
G (ω ) ? (ω )
振动位移测量
4

3.1 测试系统的动态特性的一般描述 2. 测试系统的动态特性方程 n 微分方程 传递函数 频响函数 状态方程 一阶系统 二阶系统
2014/3/14
x(t ) ? y (t )
X ( s) ? Y ( s)
d i y (t ) m d j x(t ) = ∑ bj ai ∑ i j d t d t i =0 j =0
1 1 G( s) = G( s) = 2 2 s 2 s + + ζ ω ω n n n Ts + 1
X ( jω ) ? Y ( jω ) G ( jω ) = Y ( jω ) = 输出傅立叶变换
X ( jω )
输入傅立叶变换
X = AX + BU
时域特性 频域特性
y (t ) = L?1 [G ( s ) X ( s ) ]
G ( jω ) ? ( jω )
信号与测试技术 5

相关主题
文本预览
相关文档 最新文档