当前位置:文档之家› 第11章同步电机的基本理论与运行特性

第11章同步电机的基本理论与运行特性

1电动机的故障、异常运行状态及保护方式

电动机的故障、异常运行状态及保护方式 在电力生产和工矿企业中,大量地使用电动机。发电厂厂用机械大部分用的是异步电动机,但厂用低速磨煤机、大容量给水泵以及水泵房循环水泵等则采用同步电动机。以下介绍的内容主要以异步电动机为主。电动机的安全运行对确保发电厂以至整个工业生产的安全、经济运行都有很重要的意义,因此应根据电动机的类型、容量及其在生产中的作用,装设相应的保护装置。但是,由于实际使用的电动机数量很多,且大部分为中、小型,因而不可能在每一台电动机上都配置性能完善的保护装置,故在进行电动机保护配置时,除考虑继电保护的四个基本要求外,还应该从技术、经济上衡量,力求简单、可靠。 电动机的主要故障有定子绕组的相间短路、单相接地以及同一相绕组的匝间短路。 电动机发生相间短路故障时,不仅故障的电动机本身会遭受严重损伤,同时还将使供电电压显著下降,影响其他用电设备的正常工作,在发电厂中甚至可能造成停机、停炉的全厂停电事故。因此,对电动机定子绕组及其引出线的相间短路,必须装设相应的保护装置,以便及时地将故障电动机切除。通常,对于容量在75kW及以下的低压小容量电动机,可采用熔断器或低压断路器(自动空气开关)的短路脱扣器作为相间短路保护;容量较大的高压电动机,则装设由电磁型电流继电器或感应型电流继电器构成的电流速断作为相间短路保护;当电动机的容量在2000kW以上,或者很重要但电流速断灵敏度不能满足要求时,若具有六个引出线,可装设纵差保护。 单相接地对电动机的危害取决于供电网络中性点的运行方式。对于380/220V的低压电动机,其电源中性点一般直接接地,故发生单相接地时,将产生很大的短路电流,因而也应尽快切除,故应该装设快速动作于跳闸的单相接地保护。为了简化,一般由相间保护采用三相式接线即可;灵敏度不能满足要求的重要电动机,才考虑采用零序保护。而对于3—10kV 的高压电动机,由于所在供电网络属于小电流接地系统,电动机单相接地后,只有电网的电容电流流过故障点,其危害一般较小。《规程》规定,当接地电容电流大于5A时,应装设接地保护,当接地电容电流大于10A时,保护一般作用于跳闸。 同一相绕组的匝间短路将破坏电动机运行的对称性,并使故障相的电流增大,增大的程度与被短路的匝数有关,最严重情况为一相绕组全部被短接,此时电动机可能被损坏。但由于目前尚未找到既简单又性能完善的方法反应匝间短路,因此在电动机上一般不装设专用的匝间短路保护。 电动机的异常运行状态主要是各种形式的过负荷。引起电动机过负荷的原因有:所带机械负荷过大;电源电压或频率下降而引起的转速下降;一相断线造成两相运行;电动机启动和自启动时间过长等等。长时间的过负荷将使电动机绕组温升超过允许值,使绝缘老化速度加速,甚至发展成故障。因此,根据电动机的重要程度、过负荷的可能性以及异常运行状态等情况,应装设相应的过负荷保护作用于信号、自动减负荷或跳闸。具体配置情况如下:容量在100kW及以下的低压电动机,可利用磁力启动器中的热继电器或低压断路器中的热脱

电动机运行状态监测系统

兰州理工大学技术工程学院 微机原理及应用 课 程 设 计 班级:焊接工艺与控制工程2班 姓名:史鹏举 学号:09050227 时间:二〇一一年十二月

目录 引言 (3) 1硬件设计 (3) 信号采集单元 (4) I/O单元 (5) 通讯单元 (8) CPU单元 (9) 2 软件设计 (11) 3抗干扰措施 (12) 4结论 (12)

引言 随着电子技术的发展,电动机运行状态监测系统正向基于现场总线的智能型方向发展。电机参数的监测(特别是动态参数的实时监测)可为判别电机运行质量提供不可缺少的数据.我所设计的这种电机运行状态监测系统,是由一台单片机及电机外围电路组成,构成主从方式工作.输入的模拟信号首先送到前置处理部分,再送到差分放大器.采用双端输入单端输出,再经低通滤波器送入A/D转换器,而后进入单片机.单片机的数字量,在LED显示器实时显示。这样就大大提高了参数的监测精度而且加强抗干扰能力。 采用单片机,使外围电路减少,可靠性增强,性价比提高,并具有一下特点:采用空芯电流互感器,电路和分量程放大电路进行电流采样,可提高电流的采样范围,保证大范围的采样,且采样线性度高;根据热容情况判断电动机的过载引起的发热(温度)状态,最大发挥电动机的过载能力;用微处理器可实现实时监测,可在设定时间范围内跳闸保护。 1 硬件设计 电动机运行状态监测系统,用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。

信号采集单元 电动机运行状态监测系统采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续循环实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。 信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。电动机运行状态监测系统中处理三相电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。 图1 信号采集放大电路 信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。 图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从输出大信号从输出。这样处理是因为:电动

电机学答案

电机学专升本学习指南 一、选择题 1、单相变压器5=N S kVA ,110/220/21=N N U U V ,将它改接为110/330V 的自耦变压器后,其容量为( C )。 (A)5kVA (B)10kVA (C) (D)15kVA 2、三相变压器二次侧的额定电压是指一次侧加额定电压时二次侧的( A ) (A) 空载线电压 (B) 空载相电压 (C) 额定负载时的线电压 (D) 负载相电压 3、一台50Hz 的三相异步电动机,额定转速为720 r/min ,则电动机的同步转速为(A )r/min (A) 750 (B) 720 (C) 600 (D) 1000 4、单相变压器通入正弦激磁电流,二次侧的空载电压波形为( A ) (A) 正弦波 (B) 尖顶波 (C) 平顶波 (D) 方波 5、三相变压器二次侧的额定电压是指一次侧加额定电压时二次侧的(A ) (A) 空载线电压 (B) 空载相电压 (C) 额定负载是的线电压 (D) 额定负载是的相电压 6、当异步电动机转速下降时,转子电流产生的转子基波磁动势相对于定子绕组的转速( C )。 (A) 增大 (B) 减小 (C) 不变 (D) 不定 7、在电源电压不变的情况下,增加二次绕组匝数,将二次侧等效到一次侧,则等效电路的励磁电抗m X 和励磁电阻m R 将( C ) (A) 增大,减小 (B) 减小,不变 (C) 不变,不变 (D) 不变、减小 8、异步电动机空载电流比同容量变压器大,其原因是( C )。 (A) 异步电动机的损耗大 (B) 异步电动机是旋转的 (C) 异步电动机气隙较大 (D) 异步电动机漏抗较大 9、频率不变的条件下,变压器一次电压超出额定电压时,( D ) (A) 励磁电流将增大,铁芯损耗增大,励磁电抗增大 (B) 励磁电流将减小,铁芯损耗增大,励磁电抗增大 (C) 励磁电流将增大,铁芯损耗减小,励磁电抗增大 (D )励磁电流将增大,铁芯损耗增大,励磁电抗减小 10、一台变比为10=k 的变压器,从低压侧做空载试验,求得二次侧的励磁阻抗标幺值为16,则一次侧的励磁阻抗标幺值是( A ) (A)16 (B)1600 (C) (D)160 11、三相感应电动机等效电路中的附加电阻上所消耗的电功率应等于( D ) (A) 输出功率 (B) 输入功率 (C) 电磁功率 (D) 总机械功率 12、变压器一次侧接额定电压,二次侧接纯电阻负载,则从一次侧输入的功率( C ) (A) 只含有有功功率 (B) 只含有感性无功功率 (C) 既含有有功功率又含有感性无功功率

高压电动机的保护一般有以下几种

高压电动机的保护一般有以下几种:速断保护、过负荷保护、起动时间过长保护、堵转保护、两段式负序过流保护、反时限负序过流保护、低电压保护、过电压保护、接地保护等。 电流速断保护反映的是电动机的定子绕组或引线的相间短路而动作。动作时限可整定为速断(无延时)或带较短的延时(一般为零点几秒)。其整定值应躲过电动机的起动电流。在电动机运行时任一相电流大于整定值,电流速断保护动作即动作于跳闸。 电动机起动时间这个参数一般是由电机厂家提供,然后设计人员根据厂家提供的电动机的几个参数来计算电动机的各个保护定值(一般计算定值需要由厂家提供以下几个参数:电动机的额定电流、额定功率、起动电流倍数、起动时间和铭牌上的其它参数等)。 起动时间过长保护的定值由设计给出,为一个电流定值,和一个动作于跳闸的延时时间。综保装置这样判断电动机是否为起动过程阶段:起动前电流为零,合上断路器后,电流瞬间增大,随着电动机转速的升高,电动机的电流逐渐减小,当电动机到额定转速后,电动机的电流也稳定在额定电流的附件(一般低于额定电流)。综保装置根据电流特征来判断电动机的状态。电动机的电流小于0.1倍的额定电流时,认为电动机处于停止状态。当从一个时刻t1(合上断路器那一时刻)开始,电动机电流从无到有,装置即认为电动机进入了起动状态。当电流由大变小,并稳定在t2时刻(额定电流附近),则认为电动机已经进入稳定运行状态。起动时间过长保护是在电动机起动过程中对电动机进行保护。而在电动机运行过程中,装置自动将起动时间过长保护退出。当在电动机起动过程中,任一相电流大于整定值,起动时间过长保护即经过延时而动作于跳闸相电流速断保护 1)速断动作电流高值Isdg Isdg = Kk / Ist 式中,Ist:电动机启动电流(A) Kk:可靠系数,可取Kk = 1.3 2)速断电流低值Isdd Isdd可取0.7~0.8Isdg,一般取0.7Isdg 3)速断动作时间tsd 当电动机回路用真空开关或少油开关做出口时,取tsd =0.06s,当电动机回路用FC做出口时,应适当延时以保证熔丝熔断早于速断保护。 4、电动机启动时间tqd 按电动机的实际启动时间并留有一定裕度整定,可取tqd =1.2倍实际启动时间。 修正:Isdg = Kk* Ist Pe=710KW,COS=0.8,CT:150/1A,零序:100/1A,启动时间按18S (CT变比要按照实际变比,有的二次侧可能是5A的,自己换算一下) 速断 躲过电机启动电流: Ie=710/(0.8×√3×6.3)=81.3A Izd=Kk×I_qd=(1.5×6×81.3)/150=4.9A

电动机四象限运行

电机四象限运行 1、什么是单象限和4象限? 以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。每一种状态的机械特性曲线分别在直角坐标系的四个象限。如果装置只能满足电动机的电动运转状态,那么它就是单象限的。如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。 左半部是众所周知的可逆变频器原理图,各位同行一看便知。而右半部分电机分别处于四象限运行的转矩方向和转速方向(也是旋转方向)图。现简单分析如下: 当电机通常是处于处于第一象限运行,我们称其为正转(顺时针反向)电动状态,电动机通过变频器以不同的转速从电网吸收电能,并将其转换为机械能。电动机的电动转矩和旋转反向一致,也是顺时针方向。负载机械转矩和电动机电动转矩相反,当电动转矩大于负载转矩时,电动机升速,当电动转矩等于负载转矩时,电机匀速运转。 当我们电机处于某一转速运行在第一象限运行时,当变频器的给定频率突然变小,不管变频器的减速参数如何设定,只要是频率下降减速度大于电动机带负载的惯性减速速率,那么电机由电动状态变为发

电状态,它将机械动能通过逆变模块的续流二极管并由制动单元控制向制动电阻放电,将机械能通过制动电阻发热耗掉,这时电机运转方向仍为正转(顺时针),而电机的电动转矩方向和第一象限相反,也就是和转动方向相反(逆时针),电动机对机械负载起制动作用,使得电机运转减速度加快。我们称其为发电能耗制动状态,如果具有回馈制动单元的话,它可以将机械能通过回馈制动单元向电网回馈。 第三象限和第一象限过程相同,只不过电动转矩和旋转方向分别相反。而第四象限和第二象限过程相同,也只不过是电动转矩和旋转方向分别相反。2、关于控制器的象限和电机的象限: 单象限:能量只能单向流动。 四象限:能量可以双向流动。 电机和变频器都有自己的象限,不要搞混了。 *电机的单象限运行,指电机电动运行。四象限指发电运行。*变频器的单象限运行,指能量从电网进入变频器。四象限指能量还

三相异步电动机的机械特性习题

10.3 节 一、填空题 1、异步电动机的电磁转矩是由和共同作用产生的。 2、三相异步电动机最大电磁转矩的大小与转子电阻r2 值关,起动转矩的大小与转子电阻r2 关。 (填有无关系) 3、一台线式异步电动机带恒转矩负载运行,若电源电压下降,则电动机的旋转磁场转速,转差率,转速,最大电磁转矩,过载能力,电磁转矩。 4、若三相异步电动机的电源电压降为额定电压的0.8 倍,则该电动机的起动转矩T st =?T stN 。 5、一台频率为f1= 60Hz 的三相异步电动机,接在频率为50Hz 的电源上(电压不变),电动机的最大转矩为原来的,起动转矩变为原来的。 6、若异步电动机的漏抗增大,则其起动转矩,其最大转矩。 7、绕线式异步电动机转子串入适当的电阻,会使起动电流,起动转矩。 二、选择题 1、设计在f1= 50Hz 电源上运行的三相异步电动机现改为在电压相同频率为60Hz 的电网上,其电动机的()。 (A)T st 减小,T max 减小,I st 增大(B)T st 减小,T max 增大,I st 减小 (C)T st 减小,T max 减小,I st 减小(D)T st 增大,T max 增大,I st 增大 2、适当增加三相绕线式异步电动机转子电阻r2时,电动机的()。 (A)I st 减少, T st 增加, T max 不变, s m 增加(B)I st 增加, T st 增加, T max 不变, s m 增加 (C)I st 减少, T st 增加, T max 增大, s m 增加(D)I st 增加, T st 减少, T max 不变, s m 增加 3、一台运行于额定负载的三相异步电动机,当电源电压下降10%,稳定运行后,电机的电磁转矩()。(A)T em =T N (B)T em = 0.8T N (C)T em = 0.9T N (D)T em >T N 4、一台绕线式异步电动机,在恒定负载下,以转差率s 运行,当转子边串入电阻r = 2r2',测得转差率将为 ()(r 已折算到定子边)。 (A)等于原先的转差率s (B)三倍于原先的转差率s (C)两倍于原先的转差率s (D)无法确定 5、异步电动机的电磁转矩与( )。 (A)定子线电压的平方成正比;(B)定子线电压成正比; (C)定子相电压平方成反比;(D)定子相电压平方成正比。 6、一般电动机的最大转矩与额定转矩的比值叫过载系数,一般此值应( )。 (A)等于1 (B)小于1 (C)大于1 (D)等于0 三、问答题

相异步电动机在各种运行状态下的机械特性

三相异步电动机在各种运行状态下的机械特性 一、实验目的 了解三相线绕式异步电动机在各种运行状态下的机械特性。 二、预习要点 1、如何利用现有设备测定三相线绕式异步电动机的机械特性。 2、测定各种运行状态下的机械特性应注意哪些问题。 3、如何根据所测出的数据计算被试电机在各种运行状态下的机械特性。 三、实验项目 1、测定三相线绕式转子异步电动机在R S=0时,电动运行状态和再生发电制动状态下的机械特性。 2、测定三相线绕转子异步电动机在R S=36Ω时,测定电动状态与反接制动状态下的机械特性。 3、R S=36Ω,定子绕组加直流励磁电流I1=0.36A及I2=0.6A时,分别测定能耗制动状态下的机械特性。 四、实验方法 1 2、屏上挂件排列顺序 D34-2、D51

图6-2 三相线绕转子异步电动机机械特性的接线图 3、R S=0时的反转性状态下机械特性、电动状态机械特性及再生发电制动状态下机械特性。 (1)按图6-2接线,图中M用编号为DJ17的三相线绕式异步电动机,U N=220V,Y接法。MG用编号为DJ23的校正直流测功机。S1、S2、、S3选用D51挂箱上的对应开关,并将S1合向左边1端,S2合在左边短接端(即线绕式电机转子短路),S3合在2'位置。R1选用R2的180Ω阻值加上R3、R5上四只900Ω串联再加R 上两只1300Ω并联共4430Ω阻值,R2选用R1上1800Ω阻值,R S选用MET01电源控制屏R7上36Ω的电阻,R3暂不接。直流电表A2、A4的量程为5A,A3量程为200mA,V2的量程为500V,交流电表V1的量程为500V,A1量程为3A。 (2)确定S1合在左边1端,S2合在左边短接端,S3合在2'位置,M的定子绕组接成星形的情况下。把R1、R2阻值置最大位置,将控制屏左侧三相调压器旋钮向逆时针方向旋到底,即把输出电压调到零。 (3) 检查控制屏下方“直流电机电源”的“励磁电源”开关及“电枢电源”开关都须在断开位置。接通三相调压“电源总开关”,按下“启动”按钮,旋转调压器旋钮使三相交流电压慢慢升高,观察电机转向是否符合要求。若符合要求则升高到U=110V,并在以后实验中保持不变。接通“励磁电源” ,调节R2阻值,使校正直流测功机的励磁电流为校正值100mA并保持不变。 (4)接通控制屏右下方的“电枢电源”开关,在开关S3的2'端测量校正直流测功机的输出电压的极性,先使其极性与S3开关1'端的电枢电源相反。在R1阻值为最大的条件下将S3合向1'位置。 (5)调节“电枢电源”输出电压或R1阻值,使电动机M的转速下降,直至n为零,再把R1的R3、R5上四个900Ω串联电阻调至零后用导线短接,继续减小R1阻值或调高电枢电压使电机反向运转,直至n=-1300r/min为止。然后增大电阻R1或者减小校正直流测功机的电枢电压使电机从反转运行状态进入堵转然后进入电动运行状态,在该范围内测取电机MG的U a、I a、n及电动机M的交流电流表A1的I1值,将

三相异步电动机工作特性及全参数测定实验

实验二、三相鼠笼异步电动机的工作特性及参数测定 一、实验目的 1、掌握三相异步电动机的空载、堵转和负载试验的方法。 2、用直接负载法测取三相鼠笼式异步电动机的工作特性。 3、测定三相鼠笼式异步电动机的参数。 二、预习要点 1、异步电动机的工作特性指哪些特性? 2、异步电动机的等效电路有哪些参数?它们的物理意义是什么? 3、工作特性和参数的测定方法。 三、实验项目 1、测量定子绕组的冷态电阻。 2、空载实验。 3、短路实验。 4、负载实验。 四、实验方法 1、实验设备 2、屏上挂件排列顺序 D33、D32、D34-3、D31、D42、D51

三相鼠笼式异步电机的组件编号为DJ16。 3、测量定子绕组的冷态直流电阻。 将电机在室放置一段时间,用温度计测量电机绕组端部或铁心的温度。当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。 利用万用表测定绕组电阻,记录下表 表4-3 4、空载实验 1) 按图4-3接线。电机绕组为Δ接法(U N=220V),直接与测速发电机同轴联接,负载电机DJ23不接。 2) 把交流调压器调至电压最小位置,接通电源,逐渐升高电压,使电机起动旋转,观察电机旋转方向。并使电机旋转方向符合要求( 如转向不符合要求需调整相序时,必须切断电源)。 3) 保持电动机在额定电压下空载运行数分钟,使机械损耗达到稳定后再进行试验。 图4-3 三相鼠笼式异步电动机试验接线图 4) 调节电压由1.2倍额定电压开始逐渐降低电压,直至电流或功率显著增大

为止。在这围读取空载电压、空载电流、空载功率。 5) 在测取空载实验数据时,在额定电压附近多测几点,共取数据7~9 组记录于表4-4中。 表4-4 5、短路实验 1) 测量接线图同图4-3。用制动工具把三相电机堵住。制动工具可用DD05上的圆盘固定在电机轴上,螺杆装在圆盘上。 2) 调压器退至零,合上交流电源,调节调压器使之逐渐升压至短路电 流到1.2倍额定电流,再逐渐降压至0.3倍额定电流为止。 3) 在这围读取短路电压、短路电流、短路功率。 表4-5 4) 共取数据5~6组记录于表4-5中。

电机学专升本答案

电机学专升本答案

电机学专升本学习指南 一、选择题 1、单相变压器5=N S kVA ,110/220/21=N N U U V ,将它改接为110/330V 的自耦变压器后,其容量为( C )。 (A)5kVA (B)10kVA (C)7.5kVA (D)15kVA 2、三相变压器二次侧的额定电压是指一次侧加额定电压时二次侧的( A ) (A) 空载线电压 (B) 空载相电压 (C) 额定负载时的线电压 (D) 负载相电压 3、一台50Hz 的三相异步电动机,额定转速为720 r/min ,则电动机的同步转速为(A )r/min (A) 750 (B) 720 (C) 600 (D) 1000 4、单相变压器通入正弦激磁电流,二次侧的空载电压波形为( A ) (A) 正弦波 (B) 尖顶波 (C) 平顶波 (D) 方波 5、三相变压器二次侧的额定电压是指一次侧加额定电压时二次侧的(A ) (A) 空载线电压 (B) 空载相电压 (C) 额定负载是的线电压 (D) 额定负载是的相电压 6、当异步电动机转速下降时,转子电流产生的转子基波磁动势相对于定子绕组的转速( C )。 (A) 增大 (B) 减小 (C) 不变 (D) 不定 7、在电源电压不变的情况下,增加二次绕组匝数,将二次侧等效到一次侧,则等效电路的励磁电抗m X 和励磁电阻m R 将( C ) (A) 增大,减小 (B) 减小,不变 (C) 不变,不变 (D) 不变、减小 8、异步电动机空载电流比同容量变压器大,其原因是( C )。 (A) 异步电动机的损耗大 (B) 异步电动机是旋转的 (C) 异步电动机气隙较大 (D) 异步电动机漏抗较大 9、频率不变的条件下,变压器一次电压超出额定电压时,( D ) (A) 励磁电流将增大,铁芯损耗增大,励磁电抗增大 (B) 励磁电流将减小,铁芯损耗增大,励磁电抗增大 (C) 励磁电流将增大,铁芯损耗减小,励磁电抗增大 (D )励磁电流将增大,铁芯损耗增大,励磁电抗减小 10、一台变比为10=k 的变压器,从低压侧做空载试验,求得二次侧的励磁阻抗标幺值为16,则一次侧的励磁阻抗标幺值是( A ) (A)16 (B)1600 (C) 0.16 (D)160 11、三相感应电动机等效电路中的附加电阻上所消耗的电功率应等于( D ) (A) 输出功率 (B) 输入功率 (C) 电磁功率 (D) 总机械功率 12、变压器一次侧接额定电压,二次侧接纯电阻负载,则从一次侧输入的功率( C ) (A) 只含有有功功率 (B) 只含有感性无功功率 (C) 既含有有功功率又含有感性无功功率

三相异步电动机的工作特性(精)

一、三相异步电动机的转矩特性 异步电动机的电磁转矩T是由载流导体在磁场中受电磁力的作用而产生的,它使电动机旋转。 式中U1——定子绕组相电压有效值,单位是伏特(V; f1——定子电源频率,单位是赫兹(Hz; s——电动机的转差率; R2——转子绕组一相电阻,单位是欧姆(Ω; X20——转子不动时一相感抗,单位是欧姆(Ω; C——与电机结构有关的比例常数。

为了分析方便,将异步电动机的电磁转矩T代替电动机的输出转矩T2 由于电动机的转子参数R2及X20是一定的,电源频率f1也是一定的,故当电源电压U1一定时,上式即表明异步电动机的电磁转矩T只与转差率s有关,因此可用函数式T=f(s)表示,称为异步电动机的转矩特性,画出其图象则称为转矩特性曲线,如图1-13所示。 图1-13异步电动机的转矩特性曲线 二、异步电动机的机械特性 1.电动机的额定转矩的实用计算式 旋转机械的机械功率等于转矩和转动角速度的乘积,对于电动机而言,就有

P2=T2Ω(1-4 当电动机的输出转矩T2用牛·米(N·m作单位,旋转角速度Ω用弧度/秒(rad/s作单位时,输出功率P2的单位是瓦特。 在电动机中计算转矩时输出功率P2的单位是千瓦(kW,转速n的单位是转/分(r/min,所以可以将计算公式简化,如在额定状态下转矩公式为 式中T N——电动机的额定转矩,单位是牛·米(N·m; P N——电动机的额定功率,单位是千瓦(kW; n N——电动机的额定转速,单位是转/分(r/min. 2.异步电动机的机械特性曲线

将异步电动机的转矩特性曲线顺时针转过90度,并把转差率S换成转速n,即得如图1-14所示的曲线,我们称为异步电动机的机械特性曲线,可表示为n=f(T)。 图1-14异步电动机的机械特性曲线 电动机在旋转时,作用在轴上的有两种转矩,一种是电动机产生的电磁转矩T,一种是生产机械作用在轴上的负载转矩T L(其它如摩擦转矩忽略不计,当T=T L时,电动机便以某种相应转速稳定运行;当T>T L时,电动机则提高转速;当T<T L时,电动机将降低转速。 3.异步电动机的机械特性参数

电机特性

?软启动是相对于硬启动的概念,在工程中最常用的就是三相异步电机,在民用和工业工程电动设备中,由于其电机启动特性,这些电动机直接连接供电系统(硬启动), 会导致较大的冲击电流和峰值转矩,不利于机械装置的良好运转。软启动则是平滑的启 动运行,电压由零慢慢提升到额定电压,使电机启动的全过程都不存在冲击转矩。 目录 ?软启动的特性 ?软启动的原理 ?软启动与其他降压启动性能比较 ?软启动的起停方式 ?软启动的应用 ?软启动的发展趋势 软启动的特性 异步电机启动性能主要有两个指标,启动电流倍数和启动转矩倍数,软启动器是就是在启动时通过改变加在电机上的电源电压,以减小启动电流、启动转矩。电动机传统启动方式有自耦减压、Y/△减压等方式,其共同特点是控制线路简单,启动转矩不可调并有二次冲击电流,对负载有冲击转矩。软启动可以有效地降低电动机的启动电流,其启动电流仅为标准电机硬启动电流的50%,是高效电动机硬启动电流的20%(见图1)。软启动的限流特性可有效限制浪涌电流,避免不必要的冲击力矩以及对配电网络的电流冲击,有效地减少线路刀闸和接触器的误触发动作;对频繁启停的电动机,可有效控制电动机的温升,大大延长电动机的寿命。

软启动的原理 目前应用较为广泛、工程中常见软启动器时晶闸管(SCR)软启动。 晶闸管软启动原理:在三相电源与电机间串入三相联晶闸管,利用晶闸管移相控制原理(见图2),改变晶闸管的触发角,启动时电机端电压随晶闸管的导通角从零逐渐上升,就可调节晶闸管调压电路的输出电压,电机转速逐渐增大,直至达到满足启动转矩的要求而结束启动过程;软起动器的输出是一个平滑的升压过程(且可具有限流功能),直到晶闸管全导通,电机在额定电压下工作;此时旁路接触器接通(避免电机在运行中对电网形成谐波污染,延长晶闸管寿命),电机进入稳态运行状态;停车时先切断旁路接触器,然后由软启动器内晶闸管导通角由大逐渐减小,使三相供电电压逐渐减小,电机转速由大逐渐减小到零,停车过程完成。 软启动与其他降压启动性能比较

相绕线式异步电动机各种运行状态下的机械特性

三相绕线式异步电动机各种运行状态下的机械特性 原理简述 机械特性是指其转速与转矩间的关系,一般表示为。由于三相异步电动机的机械特性呈非线性关系,所以函数表达式以转速为自变量,转矩为因变量,写为更为方便。又因转差率s也可以用来表征转速,而且用s表示的机械特性表达式更为简洁,所以对三相异步电动机一般用来表示机械特性,同时将作为横坐标,这样和原的图形是一致的。 一、三相异步电动机机械特性的表达式 三相异步电动机机械特性的表达式一般有三种: 1.物理表达式 其中为异步电机的转矩常数;为每极磁通;为转子电流的折算值;为转子回路的功率因数。 2.参数表达式 其中。 3.实用表达式

其中为最大转矩,为发生最大转矩时的转差率。 三种表达式其应用场合各有不同,一般物理表达式适用于定性分析与及间的关系,参数表达式可以分析各参数变化对电动机运行性能的影响,而实用表达式最适合用于进行机械特性的工程计算。 二、三相异步电动机的机械特性 1.固有机械特性 固有机械特性是指异步电动机在额定电压、额定频率下,电动机按规定方法接线,定子及转子回路中不外接电阻(电抗或电容)时所获得的机械特性,如图15-1所示。 图15-1 三相异步电动机的固有机械特性 下面对机械特性上反映其特点的几个特殊点进行分析: (1)起动点:其特点是:,,起动电流; (2)额定运行点:其特点是:,,;

(3)同步速点:其特点是: ,,,, 点是电动状态与回馈制动的转折点; (4)最大转矩点:电动状态最大转矩点,其特点是:,;回馈制动最大转矩点,其特点是:,;由公式可以看出,。 2.人为机械特性 由三相异步电动机机械特性的参数表达式可见,异步电动机的电磁转矩在某一转速下的数值,是由电源电压、频率、极对数及定转子电路的电阻、电抗、、、决定的。因此人为的改变这些参数,就可得到不同的人为机械特性。现介绍改变某些参数时人为机械特性的变化: (1)降低电压 不变,不变,因为,,,所以降低电压时,、、均减小,其人为机械特性见图15-2。 (2)转子回路串联对称电阻

三相异步电动机的机械特性

三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式.固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 5。1三相异步电动机的运行特性三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩与转子转速之间的关系。由于转子转速与同步转速、转差率存在下列关系,即 (5。1)则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩. 三相异步电动机的机械特性有三种表达式,现介绍如下: 5.1.1机械特性的物理表达式

由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 (5。2)式中为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。 仅从式(5.2)不能明显地看出电磁转矩与转差率之间的变化规律。要从分析气隙每极磁通量,转子相电流,以及为转子功率因数与转差率之间的关系,间接地找出其变化规律.现分析如表5。1所示。

根据表5。1中的分析,可作出曲线、和 分别如图5。2、5.3、5。4所示,据此可得出图5。1所示的机械特性曲线。曲线分为两段:当较小时(),变化不大,,电磁转矩与转子相电流成正比关系,表现为AB段近似为直线,称为直线部分;当较大时(),如, 减少近一半, 很小,尽管转子相电流增大,有功电流不大,使电磁转矩反而减小了,此时表现为 段,段为曲线段,称为曲线部分.由此分析知,三相异步电动机的机械特性在某转差率下,产生最大转矩,即点称为最大转矩点,相应的转矩为称为最大转矩,对应的转差率称为临界转差率。 5。1.2机械特性的参数表达式 1.参数表达式的推导: 三相异步电动机的机械特性的参数表达式就是直接表示异步电动机 的电磁转矩与转差率和电机的某些参数(及阻抗等)之间的关系的数学表达式。现推导如下:

异步电机有三种运行状态

异步电机有三种运行状态,可运行在发电机状态、电动机状态和电磁制动状态。 当转差率在S<0时,异步电机处于发电机状态;当转差率0 1.3短路方面 从异步发电机负荷特性曲线可知,异步发电机的负荷电流增加到临界值时,发电机电压急剧下降,直至崩溃。异步发电机三相短路时情况和此相似。所以当异步发电机发生三相短路时,电压将急剧下降,直至电压崩溃,不会有很大的短路电流。 当发电机发生不对称短路,如单相短路,此时该相绕组相当于一个短路绕组,它将产生去磁效应,最终使电压崩溃。从以上分析可见,异步发电机无需装设任何形式的短路保护。

2 异步发电机的运行方式 和其它发电方式一样,异步机在发电时也有两种运行方式,独立运行与并网运行。 2.1异步发电机独立运行 异步发电机独立运行时,由于电机的铁芯中通常会有一些剩磁存在,当电机转子被原动机拖动时,与定子绕组的磁场相互作用,导体中就有感应电流。载流导体在磁场中运动,又在定子绕组中产生感应电动势。如果在定子绕组加一组电容,使闭合回路的总阻抗呈容性,那么电流产生的磁通就与剩磁的磁通同相叠加而得到加强,使总磁场变强,进而使感应电动势增大。如此反复,最后因铁芯达到饱和状态而使电动势不再增加。此时的端电压已达到额定值,就可以带负载,达到发电的目的。带负荷之后,还得根据负荷的变化投切相应的辅助电容器组。这种励磁建压方式类似于同步发电机的自励方式。 如果铁芯中没有剩磁,可以事先用蓄电池接在电机某一相的绕组上,通电几秒钟对铁芯进行磁化,或称充磁。 这种运行方式,被用于自成供电体系的农村微小型电站。 2.2异步发电机并网运行 异步发电机并网运行时,情况可以更简单些。因为电网中的无功电流就可为电机建起旋转磁场,所以可以省去励磁所需的电容。运行时只要把电机投入电网、把转子的转速提高到超过同步转速就可开始发电。这种励磁建压方式类似于同步发电机的它励方式。 在实际的设计技术操作环节上,往往是在把转子速度加速到同步转速附近(如90%~95%额定转速)的同时,通过软启动装置或变频启动装置把电机并入电网,以减低启动电流对电网造成的影响。 这种运行方式,不需要同期装置,是被风力发电广为采用的原因之一。

电机学概念以及公式总结

一、直流电机 A. 主要概念 1. 换向器、电刷、电枢接触压降2U b 2. 极数和极对数 3. 主磁极、励磁绕组 4. 电枢、电枢铁心、电枢绕组 5. 额定值 6. 元件 7. 单叠、单波绕组 8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式 12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场 14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E、转矩常数C T 16. 电磁功率P em 电枢铜耗p Cua 励磁铜耗p Cuf 电机铁耗p Fe 机械损耗p mec 附加损耗p ad 输出机械功率P2

可变损耗、不变损耗、空载损耗 17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车” 19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、软特性 20. 稳定性 21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动 22. DM 的调速方法:电枢回路串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式: 发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势: 60E a E E C n pN C a Φ== 电磁转矩: em a 2T a T T C I pN C a Φπ== 直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 : 12 ()()a f a f a a a f a a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++ 12em Cua Cuf em Fe mec ad P P p p P P p p p =++=+++ DM 的转矩方程:20d d em T T T J t Ω --=

电机学答案

第五章 异步电机 5.1 什么叫转差率?如何根据转差率来判断异步机的运行状态? 转差率为转子转速n 与同步转速 1n 之差对同步转速1n 之比值11 n n n s -= 0s < 为发电机状态。 01s <<为电动机状态,1s >为电磁制动状态。 5.2 异步电机作发电机运行和作电磁制动运行时,电磁转矩和转子转向之间的 关系是否一样?怎样区分这两种运行状态? 发电机运行和电磁制动运行时,电磁转矩方向都与转向相反,是制动转矩; 但发电机的转向与旋转磁场转向相同,转子转速大于同步速,电磁制动运行时,转子转向与旋转磁场转向相反。 5.3 有一绕线转子感应电动机,定子绕组短路,在转子绕组中通入三相交流电 流,其频率为1f ,旋转磁场相对于转子以p f n /6011=(p 为定、转子绕组极对数)沿顺时针方向旋转,问此时转子转向如何?转差率如何计算? 假如定子是可转动的,那么定子应为顺时针旋转(与旋转磁场方向相同) 但因定子固定不动不能旋转,所以转子为逆时针旋转。11 n n n s += (n 为转子 转速) 5.4 为什么三相异步电动机励磁电流的标幺值比变压器的大得多? 在额定电压时异步机空在电流标么值为30﹪左右,而变压器的空载电流标么 值为50﹪左右。这是因为异步机在定子和转子之间必须有空隙,使转子能在定子内圆内自动转动,这样异步机的磁路磁阻就较大,而变压器磁路中没有气隙,磁阻小,因此,相对变压器而言,异步电动机所需励磁磁动势大,励磁电流大。 5.5 三相异步电机的极对数p 、同步转速1n 、转子转速n 、定子频率1f 、转子频

率2f 、转差率s 及转子磁动势2F 相对于转子的转速2n 之间的相互关系如何?试填写下表中的空格。 2F &相对于转子的转速21n n n =- 2F &相对于定子的转速1 n 5.6 试证明转子磁动势相对于定子的转速为同步速度1n 。 转子磁势是由转子三相(或多相)对称绕组感应的三相(或多相)对称电流产生的一个旋转磁势,这个磁势相对转子的转速由转子电流的频率决定,当转 子的转速为2F &相对于转子的转速n ,转差率为s 时,转子电流的频率21 f sf =,则这个磁动势相对转子的转速为1sn ,它相对定子的转向永远相同,相对定子的 转速为11111n n n sn n n n n -+=+=,即永远为同步速。 5.7 试说明转子绕组折算和频率折算的意义,折算是在什么条件下进行的? 绕组折算:将异步电机转子绕组折算成一个相数为1m ,匝数为1N ,绕组系数为1N k 的等效转子绕组来替代原来的转子绕组,保持极对数不变。 频率折算:用一个等效的静止转子来代替原来的旋转的转子,在该静止转 子回路中串入一个12s s R -的模拟电阻,而定子方各物理量不变。 折算的条件:保持转子磁动势不变,及转子上有功,无功率不变。

三相异步电动机在各种运行特性下的机械特性

实验五 三相异步电动机在各种运行状态下的机械特性 【思考要点】 1. 如何利用现有设备测定三相绕线式异步电动机的机械。 2. 测定各种运行状态下的机械特性应注意哪些问题。 3. 如何根据所测得的数据计算被试电机在各种运行状态下的机械特性。 【实验原理】 三相异步电动机的定、转子之间没有直接电的联系,它们之间的联系是通过电磁感应而实现的。一台三相异步电动机的电磁转矩的大小决定了其拖动负载的能力,而三相异步电动机的电磁力矩的大小不仅与电动机本身的参数有关,也和其外加电源的电压有关。本实验围绕异步电动机的电磁力矩和其参数、外加电压的关系以及各种运行状态等电力拖动问题进行展开。 1. 三相异步电动机的机械特性 机械特性是指电动机转速n 与转矩T 之间的关系,一般用曲线表示。欲求机械特性,先求T 与n 的数学关系式,称为机械特性表达式。 电磁转矩 '' 2 12 00 em R m I P s T ==ΩΩ 由异步电动机的近似等效电路,得 ()'22 ' 2 '2 112X U I R R X X s = ??+++ ?? ? 代入T 的公式,即得参数表达式 ) ()(' 212' 21' 22 1 X X s R R s R U m T X +++Ω= 考虑到 0(1)n s n =-, 00260 n πΩ= , 即可由此式绘出异步电动机的机械特性曲线()n f t =,如图6.24所示。

图6.24 三相异步电动机机械特性 机械特性的参数表达式为二次方程,电磁转矩必有最大值,称为最大转矩T m 。 将表达式对s 求导,并令0dT ds =,可求出产生最大转矩T m 时的转差率S m ()'2 22'112m R S R X X =±++ S m 称为临界转差率。代入T 的公式则可得T m 的公式 ()2 122' 011122X m U T R R X X =± Ω??±+++???? 式中正号对应于电动机状态,负号适用于发电机状态。 一般' 112()R X X +,故可得近似公式 ' 2 ' 12 m R S X X =±+ () 2 1' 0122X m mU T X X =± Ω+ 可见:(1)当电动机参数和电源频率不变时,2 m X T U ∝,而S m 与U X 无关; (2)当电源电压和频率不变时,S m 和T m 近似与' 12()X X +成反比; (3)增大转子回路电阻'2R ,只能使S m 相应增大,而T m 保持不变。 最大转矩T m 与额定转矩T N 之比称为过载倍数,也称过载能力,用K T 表示: m T N T K T = 一般异步电动机K T =1.8~3.0。对于起重冶金机械用的电动机,可达3.5。 异步电动机起动时,n =0,s =1,代入参数表达式,可得起动转矩的公式 ()()2' 12 22 ''01 2 1 2 X st m U R T R R X X =Ω+++ 由此式可知,对绕线式异步电动机,转子回路串接适当大小的附加电阻,能加大起动转矩T st ,从而改善起动性能。

相关主题
文本预览
相关文档 最新文档