当前位置:文档之家› 高中物理-能量量子化达标练习

高中物理-能量量子化达标练习

高中物理-能量量子化达标练习
高中物理-能量量子化达标练习

高中物理-能量量子化达标练习

1.对黑体辐射电磁波的波长分布的影响因素是( )

A.温度B.材料

C.表面状况D.以上都正确

解析:根据黑体辐射电磁波的波长分布的决定因素知,其只与温度有关.

答案:A

2.关于黑体辐射的强度与波长的关系,如图所示正确的是( )

A B C D

解析:黑体辐射的强度与温度有关,温度越高,黑体辐射的强度越大.随着温度的升高,黑体辐射强度的极大值向波长较短的方向移动.故B正确,A、C、D错误.答案:B

3.(多选)以下关于辐射强度与波长的关系的说法中正确的是( )

A.物体在某一温度下只能辐射某一固定波长的电磁波

B.当铁块呈现黑色时,说明它的温度不太高

C.当铁块的温度较高时会呈现赤红色,说明此时辐射的电磁波中该颜色的光强度最强D.早、晚时分太阳呈现红色,而中午时分呈现白色,说明中午时分太阳温度最高

解析:由辐射强度随波长变化关系知:随着温度的升高各种波长的波的辐射强度都增加,而热辐射不是仅辐射一种波长的电磁波.故正确答案为B、C.

答案:BC

4.(多选)对于带电微粒的辐射和吸收能量时的特点,以下说法正确的是( )

A.以某一个最小能量值一份一份地辐射或吸收

B.辐射和吸收的能量是某一最小值的整数倍

C.吸收的能量可以是连续的

D.辐射和吸收的能量是量子化的

解析:根据普朗克能量子假说,带电粒子的能量只能是某一最小能量值ε的整数倍,能量的辐射、吸收要一份一份地进行,故A、B、D正确.

答案:ABD

5.对应于3.4×10-19J的能量子,其电磁辐射的频率和波长各是多少?它是什么颜色?

解析:根据公式ε=hν和ν=c

λ

得 ν=εh =3.4×10-19

6.63×10

-34 Hz =5.13×1014 Hz, λ=c ν=3.0×1085.13×10

14 m =5.85×10-7 m. 5.13×1014 Hz 的频率属于黄光的频率范围,它是黄光,其波长为5.85×10-7

m.

答案:5.13×1014 Hz 5.85×10-7 m 黄色

A 级 抓基础

1.下列宏观概念中,是量子化的有( )

A .物体的质量

B .弹簧振子的能量

C .汽车的个数

D .卫星绕地球运行的轨道

解析:汽车的个数的数值只能取正整数,不能取分数或小数,因而是不连续的,是量子化的.其他三个物理量的数值都可以取小数或分数,甚至取无理数也可以,因而是连续的,非量子化的.故选C.

答案:C

2.近年来,无线光通信技术(不需光纤,利用红外线在空间的定向传播来传递信息的通信手段)在局域网、移动通信等多方面显示出巨大的应用前景.关于红外线和光通信,以下说法中正确的是( )

①光通信就是将文字、数据、图象等信息转换成光信号从一地传向另一地的过程 ②光纤通信中的光信号在光纤中传输,无线光通信的光信号在空气中传输 ③红外线的频率比可见光的频率高 ④红外光子的能量比可见光子的能量大

A .①②

B .③④

C .①③

D .②④

解析:无线光通信技术是光信号在空气中直接传输.光纤通信中的光信号是在光纤中传输.不论哪种方式,传输的都是文字,数据图象等信息.而红外线的频率由电磁波谱可知比可见光的频率低,由爱因斯坦的光子论可知ε=hν,红外光子的能量比可见光的光子的能量小.

答案:A

3.(多选)对一束太阳光进行分析,下列说法正确的是( )

A .太阳光是由各种单色光组成的复合光

B .组成太阳光的各单色光中,能量最强的光为红光

C.组成太阳光的各单色光中,能量最强的光为紫光

D.组成太阳光的各单色光的能量都相同

解析:由公式ε=hν可以知道,光的频率越大能量越强.组成太阳光的各单色光中,紫光的频率最大,故其能量最强.

答案:AC

B级提能力

4.关于黑体及黑体辐射下列说法正确的是( )

A.黑体是真实存在的

B.黑体辐射电磁波的强度仅与温度有关

C.随着温度升高黑体辐射中的有些成分会增强,有些成分会减弱

D.随着温度升高黑体辐射中强度最强的那一部分始终不变

解析:黑体并不是真实存在的,选项A错误;根据黑体辐射实验的规律可知:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,故B正确;随着黑体温度升高,辐射强度在短波区增强,长波区减弱,峰值向波长短的方向移动,故选项C、D错误;故选B.

答案:B

5.(多选)在实验室或工厂的高温炉子上开一小孔,小孔可看做黑体,由小孔的热辐射特征,就可以确定炉内的温度,如图所示,就是黑体的辐射强度与其辐射光波长的关系图象,则下列说法正确的是( )

A.T1>T2

B.T1

C.温度越高,辐射强度最大的电磁波的波长越长

D.温度越高,辐射强度的极大值就越大

解析:不同温度的物体向外辐射的电磁波的波长范围是不相同的,温度越高向外辐射的能量中频率小的波越多,所以T1>T2.故A正确,B错误;向外辐射强度最大的电磁波的波长随温度升高而减小,故C错误;由图可知,随温度的升高,相同波长的光辐射强度都会增加;同时最大辐射强度向左侧移动,即向波长较短的方向移动,故D正确.故选AD.

答案:AD

6.(多选)某光源放出波长在500~600 nm之间的各种光子,若已知该光源的发光功率为1 mW,则它每秒钟发射的光子数可能是( )

A.2.0×1015B.3.0×1015

C .2.6×1015

D .1.5×1015

解析:每秒发出的光子数与发光功率和波长之间的关系为n =Pt hc λ

,故光子数的范围在2.6×1015~3.0×1015个之间.

答案:BC

7.光是一种电磁波,可见光的波长的大致范围是400~700 nm.400 nm 、700 nm 电磁辐射的能量子的值各是多少(h =6.63×10-34 J ·s)?

解析:根据公式ν=c λ和ε=hν可知:

400 nm 对应的能量子ε1=h c λ1

=6.63×10-34×3.0×108400×10-9 J =4.97×10-19

J.

700 nm 对应的能量子ε2=h c λ2=6.63×10-34×3.0×108700×10

-9 J =2.84×10-19

J.

答案:4.97×10-19 J 2.84×10-19 J

精选高中物理《量子世界》教案.doc

既然我们已经掌握了探究微观世界的有力武器——量子,下面我们就来更深入地研究微观世界的物质体现的特性,看看和我们再熟悉不过的宏观世界有哪些不同的地方? 三、物质的波粒二象性 教师活动:请同学们阅读教材P119-P121,找出历史上对光的认识,并说出你自己的认识. 学生活动:交流、讨论自学后的收获,并阐述自己对这些假说的认识. 教师总结:人类历史上对光的本质有两种不同的认识,其实不管是牛顿的微粒说还是惠更斯的波动说都是为了解释某一特定的现象才引入的.所以它们都有各自的弊端.一些问题的难以解决又将人们带入了对光的本质的重新认识. 关键时刻又是爱因斯坦带来了新鲜的血液.他将普朗克的量子化理论用在了解释光的本质上. 请同学们再仔细阅读教材,看看爱因斯坦是如何解释这个问题的. 学生活动:交流、讨论自学后的收获,并阐述自己对这些假说的认识. 教师活动:是的,光具有波粒二象性.在一定条件下,突出

的表现为微粒性实质为不连续性;而在另一些条件下,又突出表现出波动性. 问题好像到此应该结束了,人们将光的本质已经很好地解释了,接下来有发生了什么事情呢?大家接着看书思考. 学生活动:交流、讨论自学后的收获,并阐述自己对这些假说的认识. 【教师精讲】 法国物理学家德布罗意进一步提出了物质波的理论(获1929年诺贝尔物理学奖),根据这一理论,每个物质粒子都伴随着一种波,即物质波,又称为概率波.这个理论揭示了物质的统一性. 总之,物质具有波粒二象性,我们要注意粒子性的本质在于不连续;波动性的实质在于对微观物体状态及运动描述的不确定性,不能把物质波理解为经典的机械波和电磁波. 学生总结光本性学说发展史: (1)17世纪牛顿的微粒说:光是从光源发出的一种物质微粒,在均匀介质中以一定的速度传播.能解释光的反射等现象,不能解释光的互不干扰、同时发生的反射和折射、在介质中v c 等问题. (2)17世纪惠更斯的波动说:光是在空间传播的某种波.能解释光的互不干扰、同时发生的反射和折射,但不能解释影子的形成、传播不需要介质等问题.

高中物理基础知识总结24原子原子核

氢原子的能级图 n E /eV ∞ 0 1 -13.6 2 -3.4 3 4 -0.8 5 E 1 E 2 E 3 高考物理知识点总结24 原子、原子核 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、α粒子、γ光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.汤姆生模型(枣糕模型) 汤姆生发现电子,使人们认识到原子有复杂结构。从而打开原子的大门. 2.卢瑟福的核式结构模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说 α粒子散射实验是用α粒子轰击金箔,实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上。 卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。 由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。 而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n 叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 (本假设是针对原子稳定性提出的) ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)(本假设针对线状谱提出) (终初E E h -=ν) 辐射(吸收)光子的能量为hf =E 初-E 末 氢原子跃迁的光谱线问题[一群氢原子可能辐射的光谱线条数为()2 12-==n n C N n ]。 [ (大量)处于n 激发态原子跃迁到基态时的所有辐射方式] ⑶能量和轨道量子化----定态不连续,能量和轨道也不连续;(即原子的不同能量 状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子的可能轨道分布也是不连续的) (针对原子核式模型提出,是能级假设的补充) 氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是: 【说明】氢原子跃迁 ① 轨道量子化r n =n 2r 1(n =1,2.3…) r 1=0.53×10-10m 能量量子化:21n E E n = E 1=-13.6eV ②

高中物理奥赛必看讲义——量子论

量子论 第一讲黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结构,因而它对外来辐 射的吸收以及它本身对外的辐射都不相同.但是有一类物体其表面 不反射光,它们能够在任何温度下,吸收射来的一切电磁辐射,这 类物体就叫做绝对黑体,简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际

上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J .Stefan ,1835~1893年)从实验观察到黑体的辐出度与绝对温度T 的四次方成正比,即: 4J T σ= 1884年玻尔兹曼从理论上给出这个关系式.其中8245.6703210/()W m K δ-=??. 对一般物体而言,()412J T Js m εσ--=,ε为发射率,J 为辐出度, () 412J T Js m εσ--=,式中() 81245.67010Js m K σ----=?,称为斯特藩-玻尔兹曼常数.通常ε<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为0T ,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为40T σ,a 为物体表面的吸收率,则该物体表面所吸收的辐射能通量密度为 40J a T σ'=,通常a < 1,但对黑体而言,1a =(即为完全吸收).因此物体表面对入射能量的反 射率为1r a =-. 从理论上我们不难证明物体表面的放射率和吸收率相等,即e a =,此称为我们可以说:容易辐射能量的物体,也容易吸收入射的能量. 处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度. 4.紫外灾难 (1)基尔霍夫定律(Kirchhoff's Law): 热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度 因此,“绝对黑体的单色辐出度”,是当时研究的尖端课题. 推论: a.若T A =T B ,则辐射多的吸收也多,不能辐射亦不能吸收; b.λ一定时,绝对黑体辐射和吸收的能量比同温度下的其它物体都多.

高中物理必背知识点原子和原子核公式

高中物理必背知识点原子和原子核公式 原子和原子核公式总结 1.粒子散射试验结果a)大多数的粒子不发生偏转;(b)少数 粒子发生了较大角度的偏转;(c)极少数粒子出现大角度的 偏转(甚至反弹回来) 2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构) 3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h=E初-E末{能级跃迁} 4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕} 5.天然放射现象:射线(粒子是氦原子核)、射线(高速运动的电子流)、射线(波长极短的电磁波)、衰变与衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。射线是伴随射线和射线产生的〔见第三册P64〕 6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度} 7.核能的计算E=mc2{当m的单位用kg时,E的单位为J;当m用原子质量单位u时,算出的E单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。 注:

(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握; (2)熟记常见粒子的质量数和电荷数; (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键; (4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。 考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。为大家整理了高中物理必背知识点:原子和原子核公式

能量量子化

17.1 能量量子化 高二物理组韦瑜教材分析、学情分析 本节由黑体和黑体辐射、黑体辐射的实验规律和能量子三部分内容组成。对黑体辐射的研究及由此引发的“紫外灾难”是19世纪初物理学天空中的“第三朵乌云”,然而正是在拨开“第二朵乌云”的过程中,物理学终于迎来了量子物理的曙光。本节的重点是对黑体辐射能量在不同温度下与波长关系的研究,难点是如何让学生理解能量量子化假说。对这部分内容,教材是按物理学史的发展展开的,目的是使学生能从前辈大师的工作中体会科学探究的真实过程。 教学目标 (一)知识与技能 1.了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射 2.了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系 3.了解能量子的概念 (二)过程与方法 了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。 (三)情感、态度与价值观 领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 教学重点 能量子的概念 教学难点 黑体辐射的实验规律 教学方法 教师启发、引导,学生讨论、交流。 教学用具: 投影片,多媒体辅助教学设备 课时安排 1 课时

教学过程 (一)引入新课 教师:介绍能量量子化发现的背景:(多媒体投影,见课件。) 19世纪末页,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的Maxwell方程。另外还找到了力、电、光、声----等都遵循的规律---能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。 1900年,在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。” 也就是说:物理学已经没有什么新东西了,后一辈只要把做过的实验再做一做,在实验数据的小数点后面在加几位罢了! 但开尔文毕竟是一位重视现实和有眼力的科学家,就在上面提到的文章中他还讲到: “但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云,----” 这两朵乌云是指什么呢? 一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。 然而,事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路,柳暗花明又一村”。 点出课题:我们这节课就来体验物理学新纪元的到来――能量量子化的发现(二)进行新课 1.黑体与黑体辐射 教师:在了解什么是黑体与黑体辐射之前,请同学们先阅读教材,了解一下什么是热辐射。 学生:阅读教材关于热辐射的描述。 教师:通过课件展示,加深学生对热辐射的理解。并通过课件展示,使学生进一步了解热辐射的特点,为黑体概念的提出准备知识。 (1)热辐射现象

第1节 能量量子化

第1节能量量子化 第2节光的粒子性 [随堂巩固] 1.(对黑体辐射规律的理解)(多选)以下关于辐射强度与波长的关系的说法中正确的是A.物体在某一温度下只能辐射某一固定波长的电磁波 B.当铁块呈现黑色时,说明它的温度不太高 C.当铁块的温度较高时会呈现赤红色,说明此时辐射的电磁波中该颜色的光强度最强D.早、晚时分太阳呈现红色,而中午时分呈现白色,说明中午时分太阳温度最高 解析由辐射强度随波长变化关系图知:随着温度的升高各种波长的波的辐射强度都增加,而热辐射不是仅辐射一种波长的电磁波,故B、C项正确。 答案BC 2.(能量子的理解及ε=hν的应用)(多选)关于普朗克“能量量子化”的假设,下列说法正确的是 A.认为带电微粒辐射或吸收能量时,是一份一份的 B.认为能量值是连续的 C.认为微观粒子的能量是量子化的、连续的 D.认为微观粒子的能量是分立的 解析普朗克的理论认为带电微粒辐射或吸收能量时,是一份一份的,微观粒子的能量是量子化的,是分立的,故A、D正确。 答案AD

3.(光电效应现象)在用如图17-1-8所示装置做光电效应实验中,当紫外线照射锌板时,发现原本闭合的验电器指针发生了明显的偏转,则此时 图17-1-8 A.验电器的金属球不带电 B.验电器的金属指针带正电 C.锌板被紫外线照射到的一面带负电 D.锌板未被紫外线照射到的一面带负电 解析用弧光灯发出的紫外线照射锌板,锌板失去电子带正电,验电器与锌板相连,则验电器的金属球和金属指针带正电,故B正确,A、C、D错误。 答案 B 4.(光电效应规律)关于光电效应,下列说法正确的是 A.当入射光的频率低于截止频率时,不能发生光电效应 B.只要光照射的时间足够长,任何金属都能产生光电效应 C.光电效应现象中存在极限频率,导致含有光电管的电路存在饱和电流 D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多 解析光电效应的条件是入射光的频率大于金属的截止频率,与入射光的强度无关,饱和电流的大小与极限频率无关,与入射光的强度有关;入射光的光强一定时,频率越高,光子的能量值越大,入射光中的光子的数目越少,单位时间内逸出的光电子数就越少。 答案 A 5.(光电效应方程的理解与应用)(多选)在做光电效应的实验时,某金属被光照射发生了光电效应,实验测得光电子的最大初动能E k与入射光的频率ν的关系如图17-1-9所示,

高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结(必修三) 载自:搜高考网.soogk. 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对大家有所帮助. 卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、粒子、光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.汤姆生模型(枣糕模型) 汤姆生发现电子,使人们认识到原子有复杂结构。从而打开原子的大门. 2.卢瑟福的核式结构模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说 α粒子散射实验是用α粒子轰击金箔,实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上。

卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。 由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m。 而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 (本假设是针对原子稳定性提出的) ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)(本假设针对线状谱提出) ( ) 辐射(吸收)光子的能量为hf=E初-E末 氢原子跃迁的光谱线问题[一群氢原子可能辐射的光谱线条数为 ]。

高中物理中的量子概率事件

高中物理中的量子概率事件 一、概率波 1、基本内容 微观粒子的运动规律不再能够用经典力学(牛顿定律加运动学)来描述,而要用量子力学来描述,其基本特征是不连续性和概率性,这两点都可以用波函数来表达——粒子在各种条件下,都有相应的波函数,粒子在空间各点出现的概率或相应事件发生的概率,用相应波函数的模的平方来计算。 我们把这种物质粒子的波(物质波)称之为概率波。 2、典型事例 电子的衍射(如右图所示为电子束通过晶格的衍射花样)、干涉现象是 概率波的典型事例。下面以电子的双缝干涉来谈概率波概念。 如图1所示是光波的双缝干涉现象,同一点光源a发出的光,经过挡板 S2上两个相距很近的狭缝后,在右侧叠加区域发生干涉,光屏F上就可以观 察到明暗相间的干涉条纹。 图1图2 如图2所示,当我们让电子枪发出的大量电子也经过双缝时,我们发现,在检测器上,我们看到了和光波双缝干涉一模一样的双缝干涉图样。 如果我们让电子枪一个一个的发射电子,我们可以看到,检测器的确只能检测到单个单个的电子,且其到达探测器的落点位置看似没有规律,但是当我们观测足够长的时间,我们就会发现检测器上出现了和大量电子同时穿过双缝时看到的一模一样的双缝干涉图样,如图3所示。 图3 这个实验现象表明,单个电子实际上就具有“波动性”——其到达空间各点的概率按波动规律计算,但是由于单个电子到达探测器时显然只能是一个确定的位置,无法显示出其在空间各点出现的概率特征;但是,大量具有同一概率特征的电子同时经过双缝,或者一个又一个具有同一概率特征的电子经过足够长时间累积到数量足够大时,每个电子的概率特征就变为了大量电子的统计特征了,其结果就是按波函数计算出来概率较大的地方电子出现得就多,概率较小的地方电子出现得就少。

高中物理《原子核》知识梳理

《原子核》知识梳理 【原子核的组成】 1.1919年卢瑟福用α粒子轰击氮原子核发现质子即氢原子核。 2.卢瑟福预想到原子内存在质量跟质子相等的不带电的中性粒子,即中子。查德威克经过研究,证明:用天α射线轰击铍时,会产生一种看不见的贯穿能力很强(10-20厘米的铅板)的不带电粒子,用其轰击石蜡时,竟能从石蜡中打出质子,此贯穿能力极强的射线即为设想中的中子。 3.质子和中子统称核子,原子核的电荷数等于其质子数,原子核的质量数等于其质子数与中子数的和。具有相同质子数的原子属于同一种元素;具有相同的质子数和不同的中子数的原子互称同位素。 【放射性元素的衰变】 1.天然放射现象 人类认识原子核有复杂结构和它的变化规律,是从天然放射现象开始的。 1896年贝克勒耳发现放射性,在他的建议下,玛丽·居里和皮埃尔·居里经过研究发现了新元素钋和镭。 用磁场来研究放射线的性质: α射线带正电,偏转较小,α粒子就是氦原子核,贯穿本领很小,电离作用很强,使底片感光作用很强 β射线带负电,偏转较大,是高速电子流,贯穿本领很强(几毫米的铝板),电离作用较弱; γ射线中电中性的,无偏转,是波长极短的电磁波,贯穿本领最强(几厘米的铅板),电离作用很小。 2.原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。在衰变中电荷数和质量数都是守恒的(注意:质量并不守恒。)。 3.半衰期:放射性元素的原子核有半数发生衰变需要的时间。放射性元素衰变的快慢是由核内部本身的因素决定,与原子所处的物理状态或化学状态无关,它是对大量原子的统计规律。 【放射性的应用与防护】 1.放射性同位素的应用: 利用它的射线(贯穿本领、电离作用、物理和化学效应) 做示踪原子。 2.放射性同位素的防护:过量的射线对人体组织有破坏作用,这些破坏往往是对细胞核的破坏,因此,在使用放射性同位素时,必须注意人身安全,同时要放射性物质对空气、水源等的破坏。

17.1能量量子化习题

能量量子化习题 [目标定位] 1.知道热辐射、黑体和黑体辐射的概念,知道黑体辐射的实验规律.2.知道普朗克提出的能量子假说. 一、黑体与黑体辐射 1.热辐射 (1)定义:周围的一切物体都在辐射电磁波,这种辐射与物体温度有关,所以叫热辐射. (2)特点:热辐射强度按波长的分布情况随物体的温度不同而有所不同. 2.黑体 (1)定义:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体. (2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关. 想一想在火炉旁边有什么感觉投入炉中的铁块颜色怎样变化说明了什么问题 答案在火炉旁会感到热,这是由于火炉不断地向外辐射能量.投入炉中的铁块依次呈现暗红、赤红、橘红等颜色,直至成为黄白色,这表明同一物体热辐射的强度与温度有关. 二、黑体辐射的实验规律 1.随着温度的升高,各种波长的辐射强度都增加. 2.随着温度的升高,辐射强度的极大值向着波长较短的方向移动. 想一想你认为现实生活中存在理想的黑体吗 答案现实生活中不存在理想的黑体,实际的物体都能辐射红外线(电磁波),也都能吸收和反射红外线(电磁波),绝对黑体不存在,是理想化的模型. 三、能量子 1.定义:普朗克认为,带电微粒辐射或吸收能量时,只能是辐射或吸收某个最小能量值的整数倍,这个不可再分的最小能量值叫做能量子. 2.大小:=hν,其中ν是电磁波的频率,h是普朗克常量,数值h=×10-34__J·s(一般h取×10-34 J·s).

一、对黑体辐射规律的理解 1.一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关. 2.黑体是指只吸收而不反射外界射来的电磁波的物体,由于黑体只进行热辐射,所以黑体辐射电磁波的强度按波长的分布只与黑体的温度有关. 3.黑体辐射的实验规律:随着温度的升高,一方面,各种波长的辐射强度都有增加;另一方面,辐射强度的极大值向波长较短的方向移动.如图17-1-1所示. 图17-1-1 例1 图17-1-2 在实验室或工厂的高温炉子上开一小孔,小孔可看作黑体,由小孔的热辐射特性,就可以确定炉内的温度.如图17-1-2所示,就是黑体的辐射强度与其辐射光波长的关系图象,则下列说法正确的是() A.T1>T2 B.T1

高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结 1.汤姆生模型(枣糕模型) ()发现电子,使人们认识到原子有复杂结构。从而打开人们认识原子的大门. 2.核式结构模型:()通过α粒子散射实验,总结出核式结构学说。由α粒子散射实验的实验数据还可以估算出()大小的数量级是()。 核式结构与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定),辐射(吸收)光子的能量为() 氢原子跃迁的光谱线问题[一群氢原子从n激发态原子跃迁到基态时可能辐射的光谱线条数为()。 ⑶能量和轨道量子化----定态不连续,能量和轨道也不连续; 氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是:() 【说明】氢原子跃迁 ① 轨道量子化r n=n2r1(n=1,2.3…)r1=0.53×10-10m

能量量子化:E1=-13.6eV ② ③氢原子跃迁时应明确: 一个氢原子直接跃迁向高(低)能级跃迁,吸收(放出)光子 ( 某一频率光子 ) 一群氢原子各种可能跃迁向低(高)能级跃迁放出(吸收)光子 (一系列频率光子) ④氢原子吸收光子时——要么全部吸收光子能量,要么不吸收光子 A光子能量大于电子跃迁到无穷远处(电离)需要的能量时,该光子可被吸收。(即:光子和原子作用而使原子电离) B光子能量小于电子跃迁到无穷远处(电离)需要的能量时,则只有能量等于两个能级差的光子才能被吸收。 ⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量因此,能量大于某两个能级差的电子均可被氢原子吸收,从而使氢原子跃迁。 ⑶玻尔理论的局限性。由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。

新课标高中物理:(教案)能量量子化

能量量子化 【教学目标】 一、知识与技能 1.了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 2.了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 3.了解能量子的概念。 二、过程与方法 1.了解微观世界中的量子化现象。 2.比较宏观物体和微观粒子的能量变化特点。 3.体会量子论的建立深化了人们对于物质世界的认识。 三、情感、态度与价值观 1.领略自然界的奇妙与和谐。 2.发展对科学的好奇心与求知欲,乐于探究自然界的奥秘。 3.体验探索自然规律的艰辛与喜悦。 【教学重点】 能量子的概念。 【教学难点】 能量子的概念。 【教学过程】 一、复习提问、新课导入 教师:介绍能量量子化发现的背景: 19世纪末页,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的Maxwell方程。另外还找到了力、电、光、声……等都遵循的规律——能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。 1900年,在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。” 也就是说:物理学已经没有什么新东西了,后一辈只要把做过的实验再做一做,在

实验数据的小数点后面在加几位罢了! 但开尔文毕竟是一位重视现实和有眼力的科学家,就在上面提到的文章中他还讲到:“但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云。” 这两朵乌云是指什么呢? 一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。 然而,事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路,柳暗花明又一村”。 点出课题:我们这节课就来体验物理学新纪元的到来――能量量子化。 二、新课教学 (一)热辐射 1.热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现热辐射现象称为热辐射。 (1)概念:我们周围的一切物体,在任何温度下都在辐射各种波长的电磁波,这种辐射与物体的温度有关,所以叫做热辐射。 教师展示铁块温度升高的过程种颜色的变化: 从看不出发光到暗红到橘红到黄白色 再次举例一个20瓦的白炽灯和一个200瓦的白炽灯,20瓦的白炽灯是昏黄色,200瓦的白炽灯接近白色。 说明所辐射电磁波的特征与温度有关。 (2)特征:辐射强度及波长的分布随温度变化;随着温度升高,电磁波的短波成分增加。 教师强调:激光、日光灯发光不是热辐射。 (3)热辐射的主要成分:室温时,波长较长的电磁波;高温时,波长较短的电磁波。 ①低温物体发出的是红外光。 ②炽热物体发出的是可见光。

1能量量子化

1 能量量子化:物理学的新纪元 ★新课标要求 (一)知识与技能 1.了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射 2.了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系 3.了解能量子的概念 (二)过程与方法 了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。 (三)情感、态度与价值观 领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 ★教学重点 能量子的概念 ★教学难点 黑体辐射的实验规律 ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 教师:介绍能量量子化发现的背景:(多媒体投影,见课件。) 19世纪末页,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的Maxwell方程。另外还找到了力、电、光、声----等都遵循的规律---能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。 1900年,在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。” 也就是说:物理学已经没有什么新东西了,后一辈只要把做过的实验再做一做,在实验

数据的小数点后面在加几位罢了! 但开尔文毕竟是一位重视现实和有眼力的科学家,就在上面提到的文章中他还讲到:“但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云,----” 这两朵乌云是指什么呢? 一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。 然而,事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路,柳暗花明又一村”。 点出课题:我们这节课就来体验物理学新纪元的到来――能量量子化的发现 (二)进行新课 1.黑体与黑体辐射 教师:在了解什么是黑体与黑体辐射之前,请同学们先阅读教材,了解一下什么是热辐射。 学生:阅读教材关于热辐射的描述。 教师:通过课件展示,加深学生对热辐射的理解。并通过课件展示,使学生进一步了解热辐射的特点,为黑体概念的提出准备知识。 (1)热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。 所辐射电磁波的特征与温度有关。 例如:铁块温度↑ 从看不出发光到暗红到橙色到黄白色 从能量转化的角度来认识,是热能转化为电磁能的过程。 (2)黑体 教师:除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。不同的物体吸收和反射电磁波的能力是不一样的。 概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。 教师:课件展示黑体模型。 不透明的材料制成带小孔的的空腔,可近似看作黑体。如图所示。 研究黑体辐射的规律是了解一般物体热辐射性质的基础。 2.黑体辐射的实验规律 教师:引导学生阅读教材“黑体辐射的实验规律” ,接合课件展示,讲解黑体辐射的实 黑体模型

高中物理原子与原子核知识点总结选修3-5

高中物理原子与原子核知识点总结(选修3-5) 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对同学们有所帮助. 一波粒二象性 1光电效应的研究思路 (1)两条线索: h为普朗克常数 h=6.63×J·S ν为光子频率 2.三个关系 (1)爱因斯坦光电效应方程E k=hν-W0。 (2)光电子的最大初动能E k可以利用光电管实验的方法测得,即E k=eU c,其中U c是遏止电压。 (3)光电效应方程中的W0为逸出功,它与极限频率νc的关系是W0=hνc。 3波粒二象性 波动性和粒子性的对立与统一 (1)大量光子易显示出波动性,而少量光子易显示出粒子性。 (2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。 (3)光子说并未否定波动说,E=hν=hc λ 中,ν(频率)和λ就是波的概念。 光速C=λν (4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的。 3.物质波 (1)定义:任何运动着的物体都有一种波与之对应,这种波叫做物质波,也

叫德布罗意波。 (2)物质波的波长:λ=h p =h mv ,h 是普朗克常量。 二 原子结构与原子核 (1)卢瑟福的核式结构模型 卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、 粒子、 光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.(1)电子的发现:1897年,英国物理学家汤姆通过对阴极射线的研究发现了电子。电子的发现证明了原子是可再分的。 (2)汤姆原子模型:原子里面带正电荷的物质均匀分布在整个原子球体中,而带负电的电子镶嵌在球。 2.卢瑟福的核式结构模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说

高中物理原子与原子核问题(含答案)

原子和原子核问题 一、氢原子光谱与能级跃迁 1.氢原子光谱 (1) 光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱. (2)光谱分类(3)氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式 1 λ=R ( 1 22- 1 n2) (n=3,4,5,…,R是里德伯常量,R=1.10×107 m-1). 光谱分析:利用每种原子都有自己的特征谱线,可以用来鉴别物质和确定物质的组成成分,它的优点是灵敏度高,样本中一种元素的含量达到10-10 g时就可以被检测到,这种方法称为光谱分析。(4)在发现和鉴别化学元素上有着重大的意义. 2.氢原子的能级结构、能级公式 (1) 玻尔理论 ①定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量. ②跃迁:电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即hν=E m-E n.(h是普朗克常量,h=6.63×10-34 J·s) ③轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.(2)几个概念

①能级:在玻尔理论中,原子的能量是量子化的,这些量子化的能量值,叫做能级. ②基态:原子能量最低的状态. ③激发态:在原子能量状态中除基态之外的其他的状态. ④量子数:原子的状态是不连续的,用于表示原子状态的正整数. (3) 氢原子的能级公式:E n=1 n2E1(n=1,2,3,…),其中E1为基态能 量,其数值为E1=-13.6 eV. (4) 氢原子的半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态半径, 又称玻尔半径,其数值为r1=0.53×10-10 m.. 3.氢原子的能级图 【例题】 1 当用具有1.87eV能量的光子照射n=3激发态的氢原子时,氢原 子()

高中物理量子理论知识点总结与例题

量子理论初步 1.光电效应现象。 光照使物体发射电子的现象叫光电效应现象;所发射的电子叫光电子;光电子定向移动所形成的电流叫光电流。 2. 光电效应现象的实验规律: (1)对于任何一种金属,入射光的频率必须大于某一极限频率才能产生光电效应,低于这个极限频率,无论强度如何,无论照射时间多长,也不能产生光电效应; (2)在单位时间里从金属极板中发射出的光电子数跟入射光的强度成正比; (3)发射出的光电子的最大初动能与入射光强度无关,只随入射光频率的增大而增大; (4)只要入射光的频率高于金属极板的极限频率,无论其强度如何,光电子的产生都几乎是瞬时的,不超过10—9s. 3.光子说 光子说的主要内容为:沿空间传播的光是不连续的,而是一份一份的,每一份叫做一个光量子,简称光子;光子的能量E 与光的频率ν成正比,比例系数即为普朗克常量E =h ν h =6.63×10 – 34 J.s ——普朗克恒量 4. 爱因斯坦光电效应方程 W h mv m -=γ22 1 爱因斯坦光电效应方程的图象 爱因斯坦光电效应方程是能量守恒定律在光电效应现象中的表现形式 逸出功和极限频率的关系: 0γh W = 极限波长和极限频率的关系: 由f v λ= 得0 0γλc = 5. 光的波粒二象性 光的干涉,衍射等现象充分表明光是波,而光电效应现象和康普顿效应又无可辩驳地证明了光是粒子。事实上,光具有波动和粒子二重特性。俗称光的波粒二象性。 光在传播时更多地表现为波动特性,在与物质微粒发生作用时更多地表现为粒子特征;波长越长的光波动性越显著,频率越高的光粒子性越显著;大量光子的整体行为表现为波动性,少量光子的个别行为表现为粒子性。 光是一种概率波,一切微观粒子都有波粒二象性 氢原子的能级跃迁 复习精要 一、玻尔的原子理论——三条假设 (1)―定态假设‖:原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽做变速运动,但并不向外辐射电磁波,这样的相对稳定的状态称为定态。 定态假设实际上只是给经典的电磁理论限制了适用范围:原子中电子绕核转动处于定态时不受该理论的制约。 (2)―跃迁假设‖:电子绕核转动处于定态时不辐射电磁波,但电子在两个不同定态间发生跃迁时,却要辐射(吸收)电磁波(光子),其频率由两个定态的能量差值决定hv=E 2-E 1。 跃迁假设对发光(吸光)从微观(原子等级)上给出了解释。 (3)―轨道量子化假设‖:由于能量状态的不连续,因此电子绕核转动的轨道半径也不能任意取值,必须满足 )3,2,1(2 == n n h m v r π 。 轨道量子化假设把量子观念引入原子理论,这是玻尔的原子理论之所以成功的根本原因。 二、氢原子能级及氢光谱 (1)氢原子能级: 原子各个定态对应的能量是不连续的,这些能量值叫做能级。 ①能级公式:)6.13(1112 eV E E n E n -== ; ②半径公式:)m .r (r n r n 10 11 2 10 530-?==。 (2)氢原子的能级图 (3)氢光谱 在氢光谱中,n=2,3,4,5,……向n=1跃迁发光形成赖曼线系; n=3,4,5,6向n=2跃迁发光形成巴耳末线系; n=4,5,6,7……向n=3跃迁发光形成帕邢线系; n=5,6,7,8……向n=4跃迁发光形成布喇开线系, 其中只有巴耳末线系的前4条谱线落在可见光区域内。 三、几个重要的关系式 (1)能级公式 2 12 6131n eV .E n E n -= = n E /e V ∞ 0 4 -0.85 3

13.5 能量量子化 (人教版新教材)高中物理必修三第十三章【知识点+练习】

第十三章电磁感应与电磁波初步 5 能量量子化 知识点一能量量子化 1.黑体与黑体辐射. (1)热辐射:我们周围的一切物体都在辐射电磁波.这种辐射与物体的温度有关,所以叫作热辐射. (2)黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.黑体虽然不反射电磁波,但是却可以向 外辐射电磁波。 2.黑体辐射的实验规律. (1)一般材料的物体,辐射电磁波的情况,除与温度有关外, 还与材料的种类及表面情况有关. (2)黑体辐射电磁波的强度按波长的分布只与黑体的温度有 关,如图所示. ①随着温度的升高,各种波长的辐射强度都增加. ②随着温度的升高,辐射强度的极大值向波长较短的方向移 动. *注意:自然界不存在真正的黑体,热辐射不一定需要高温, 任何温度都能热辐射,只是温度低时辐射弱 3.能量子. (1)定义:普朗克认为,振动着的带电微粒的能量只能是某一最小能量值ε的整数倍,当带电微粒辐射或吸收能量时,也是以这个最小能量值为单位一份一份地辐射或吸收的,这个不可再分的最小能量值ε叫作能量子. (2)能量子大小:ε=hν,其中ν是电磁波的频率,ν=c λ,h称为普朗克常量.h=6.626×10 -34 J·s(一般取h=6.63×10-34 J·s). 4.能量的量子化. 在微观世界中能量是量子化的,或者说微观粒子的能量是分立的. 知识点二能级 1.能级. 当电子在不同轨道上运动时,原子处于不同的状态中,具有不同能量,即原子的能量是量子化的,这些量子化的能量值叫作能级.原子中这些具有确定能量的稳定状态,称为定态.能量最低的状态叫作基态,其他的能量状态叫作激发态. 2.能级跃迁. 当电子从能量较高的定态轨道(其能量记为E m)跃迁到能量较低的定态轨道(能量记为E n,m>n)时,会放出能量为hν的光子,该光子的能量hν=Em-En,该式称为频率条件,又称辐射条件.由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线. 【例1】人眼对绿光最为敏感,正常人的眼睛接收到波长为530 nm的绿光时,只要每秒有6个绿光的能量子射入瞳孔,眼睛就能察觉.普朗克常量取6.63×10-34 J·s,光速为3.0×108 m/s,则人眼能察觉到绿光时所接收到的最小功率是() A.2.3×10-18 W B.3.8×10-19 W C.7.0×10-10 W D.1.2×10-18 W 【例2】许多情况下光是由原子内部电子的运动产生的,因此光谱的研究是探索原子结构的一条重要途径。关于氢原子光谱、氢原子能级和氢原子核外电子的运动,下列说法中正确的() A.因为氢原子核外只有一个电子,所以氢原子只能产生一种波长的光 B.氢原子光谱的不连续性,表明了氢原子的能级是不连续的

相关主题
文本预览
相关文档 最新文档