当前位置:文档之家› 3D端面检测仪HelpDoc

3D端面检测仪HelpDoc

3D端面检测仪HelpDoc
3D端面检测仪HelpDoc

SANA自动非接触式光纤端面干涉仪

操作手册

版本号V.1.0

深圳市维度科技有限公司

2008.8

第一章概述

Sana 光纤端面干涉仪是维度科技自主开发的拥有专利技术的一款高性能低价格的自动非接触式光纤端面干涉仪。它能够准确快速的测量出光纤连接器的曲率半径(ROC), 顶点偏移(Apexoffset),光纤高度(FiberHeight)及APC光纤连接器的研磨角度与键度误差;同时立体展现光纤连接器的表面几何状况。

Sana光纤端面干涉仪分为干涉仪主机和Sana干涉测量软件两个部分,随干涉仪还配有一台式商用PC机。

Sana干涉仪主机采用的是650nm的高功率LED窄带光源,能够使用户方便快捷的得到干涉图像。

随机配有两个干涉夹具(2.5mm通用型,1.25mm通用型)能够测量几乎所有的光纤连接器。2.5mm通用型干涉夹具可以测量FC/PC、SC/PC、ST/PC、E2000/PC、DIN、FC/APC、SC/APC等光纤连接器;1.25mm 通用型可以测量LC/PC、MU/PC、LC/APC等光纤连接器。在APC与PC互相转换时不需要更换夹具也不需要对软件校准,只需将角度调节杆调节到相应的角度就可以,使用起来方便快捷。

测量软件的卓越准确性、测量结果的高重复性和界面直观容易操作的特点给测量带来前所未有的便利。初始测量前需要进行校准,在进入校准界面后应用“旋转6点法”进行校准,六点校准完成后软件会自动给出硬件的偏差值,按一下补偿“OK”钮软件对该偏差进行补偿。终端用户不需要对硬件进行调整即可达到校准的目的。

测量时只要点击“测量”按钮就可完成一次测量。当前测量值及历史4次测量值显示在分析图的下方。用户还可根据需求选择是否保存测量结果。如果用户选择自动保测量结果方式软件会将测量值储存在excel 表格中,并根据用户选择的标准(IEC、Telicordia、或者用户自定义标准)判断是否合格。测量完成后软件将光纤连接器的表面几何状况还原出来以三维图的形式显示,并给出等高图和表面粗糙度图使用户直观地认知光纤连接器的表面状况。

主要特点:

1、测量结果的高重复性、准确性;

2、方便直观的软件硬件操作性能;

转换测量PC连接器与APC连接器时不需更换夹具与校准

校准时软件自动补偿硬件偏差,不需要对硬件调整

3、拥有专利技术,干涉夹具锁紧准确,操作方便。独有的APC浮动定位技术使测量APC光

纤连接器的准确性达到前未有的精度;

4、生成三维图及分析图能够直观反映光纤连接器的细节;

5、生成的报告和数据报表格式为Excel,便于文件的管理和打印;

6、与市场同类产品相比具有价格上的绝对优势。

配置及附件:

1、干涉仪主机一台

2、PC机一台(联想台式商用机)

3、测试夹具两个(LC通用型,SC通用型)

4、APC连接头定位夹具2个(FC/APC ,SC/APC,)

5、校准连接头二个、标定件一个

6、调整扳手一套

7. 数据线一条

8、电源一个

9、测试软件一套

10、说明书一本。

性能指标

第二章Sana干涉仪的安装

2.1 Sana 面板及调节键介绍

Sana光纤端面干涉仪硬件用户需要连接及操作的有:背面板、夹具台、参考镜调节孔三部分。

2.1.1夹具台调整功能旋钮如图5

图5 夹具台

2.1.2Sana背面板有三个连接端口和一个电源开关,三个端口分别是供电电源接口(power DC 12V)、

数据接口(RS 232)和视频输出接口(Video Out)。如图6所示。

图6 Sana背面板

2.1.3参考境调节孔位置

参考镜的位置如图7所示

图7 参考镜调节孔图

2.2硬件的连接

开箱后取干涉仪将其置于平整无振动的工作台上。把电源开关置于OFF状态。用数据线将背板上的RS 232 与pc机的连接起来。将1394数据线插入干涉仪的视频输出端口(Video Out),另一端连接到PC机的图像采集卡上。将12V供电电源接入干涉仪的POWER端口。这样就完成了硬件的

连接。

2.3软件的安装

将硬件连接完成后就可以进行软件的安装。在安装软件前将USB 加密够插入到电脑的USB接口,开启干涉仪的电源。按下列顺序安装相应的软件:

2.3.1 支持软件Office 2003的安装。Office 2003 的安装按照微软提供的安装方法进行安装即可。

2.3.2Matlab的安装。Matlab有三个光盘,在安装的时候只需要安装第一个光盘就可以了。

2.3.3采集卡驱动程序安装。

先安装《ptgrey相机板卡驱动》文件夹下windows 补丁:dotnetfx.exe与

WindowsXP-KB885222-v2-x86-CHS.exe再执行安装《PointGrey》文件夹下PGRInstallBase.exe 2.3.4Dimension Sana 干涉测量软件的安装。点击Dimension Sana安装程序执行安装即可。

2.3.5所有软件安装完成后需先启动一次Matlab程序,启动完成后退出该程序后再启动Dimension

Sana测量软件。

2.4Dimension Sana 干涉测量软件的界面

Dimension Sana 干涉测量软件的界面如图8所示。主界面可分为主菜单栏、图形显示窗口、信息栏、快捷键栏、历史纪录栏、和进程条。

主菜单栏可以位于标题栏的下方,分为:File、Action、Setup、Calibration、Image、Windows、Help等下拉菜单,通过这些菜单可以完成对该软件的各种操作。图像显示窗口位于界面的左侧。分为4个区域分别是实时动态图像,三维立体图像、等高图、表面粗糙度图。通过该4幅图可以直观的了解光纤连接器的表面状况。位于右上方的信息栏自上而下是信息窗口,标准设置窗口,测量结果和判定窗口。信息栏下方是快捷键栏,用户测量时直接点击快捷键即可进行方便快捷的操作。在界面的最下方分别是历史测量纪录栏和测量进程条。

图8 Dimension Sana 干涉测量软件的界面

2.4.1 测量设置

启动Dimension Sana干涉测量软件后,通过菜单或者快捷键进入SETUP界面。

第一栏是公司名称,用户可以可以自行设置。

第二栏是计算区域的设置,Fiber Dia指的是被测量光纤连接器的光纤直径。其他几项是计算区域的设置。通长情况下用户不需要对该项目进行设置。初始设置为Region(um):180,Region(um):140,AvgDia (um):100。

第三栏是判定标准的设置。标准中我们预设了IEC,Telicordia与Custom三种标准。在标准栏Connector Type连接头种类选择栏中选择要测量的连接头种类。可选择项目有SC/PC——2.5mm插芯,LC/PC ——1.25mm插芯,APC——APC光纤连接器。选择Custom用户自标准时,用户根据课自行设定标准并可按Save as保存(保存文件需加后缀.ini)及下次使用时按Load载入。

第四栏数据保存设定。测量的结果保存方式的选择及保存路径的设置。Auto 自动保存,Ask询问是否要保存,Off不保存。生成报告的设置方法同测量结果。

2.4.2 信息栏设置

信息栏位于主界面的右上侧。显示了测量软件当前的一些设置信息。如下图12

图12 信息栏

Connector type 选择菜单的设置同SETUP界面的标准设置项。

Connector ID 选择项Auto是产品ID自动增加的方式,Custom是用户每次此测量前必需在Result 栏的Connector ID项目中输入指定的ID号码。如图13

图13

Auto Save Data与Auto Print Report 选择项同SETUP界面是数据设置保存项。

Filename 是数据保存的文件名称。用户可自行输入一个文件名系统就会建立一个新的测量结果保存文件。

2.4.3 快捷工具栏如图14

图14

Measure ——测量按钮

Data ——查看数据表格

Report ——查看生成的报告

Setup ——进入设置界面

Calibrate——进入校准界面

Quit ——退出程序

第三章SANA干涉仪的使用

3.1 夹具的安装

SANA干涉仪夹具随机带有两个干涉仪测量夹具。一个2.5mm通用型,一个1.25mm通用型。2.5mm 通用型可以用来测量SC/UPC、FC/UPC、ST/UPC、E2000/UPC、DIN、SC/APC、FC/APC、E2000/APC 等光纤连接器。1.25mm通用型光纤连接器可以用来测量LC、MU的1.25mm光纤连接器。

2.5mm光纤连接器的安装。将一个光纤连接器装入2.5mm通用型夹具中并锁镜。确定夹具台角度调

节杆调到0刻度和夹具旋转台已经锁紧。测量夹具置于夹具座上并向右下方轻推夹具使之与水平位置调节杆和升降滑块紧秘接触(如图15)。

夹具安装时注意事项:保证夹具水平!

图15

调解对焦环得到清晰图像。再调解水平位置和垂直位置调解旋钮将光纤调整到圆形光标中间。再锁紧夹具锁紧丝。

1.25mm通用型测量夹具的安装同

2.5mm通用型测量夹具。

3.2校准

当更换夹具后或者发现干涉仪顶点偏移偏差比较大的时候需要重新校准。校准时将校准件插入夹具内并锁紧,调节对焦旋钮直至得到清晰的干涉图像,点击Calibrate键进入校准界面。如图16。

校准时注意事项:

1.角度调整螺杆为0度;

2.角度调整螺杆前端与旋转台紧密接触。如没有接触需先松开旋转台锁紧丝,让旋转台与角度调

节杆紧密接触后再锁紧调整平台;

3.校准及正常使用时夹具平台处于锁紧状态;

4.每次校准测量时校准头都应处于锁紧状态;

5.每校准测量一次校准头旋转60度测量一次。

图16

按如下步骤进行校准:

1.将光纤调整到动态窗口圆形光标区域。(松开两个夹具锁紧丝,调节对焦环得到最清晰的图像。2.按Measure键测量一次。松开光纤连接头旋转60度后锁紧,调节图像为最清晰,再按Measure 键测量进行第二测量次,这样共测量6次。

3.6次测量完成后系统会计算出硬件的偏差。X轴的偏差显示在X_Apexoff(um)栏中,Y轴的偏差显示在Y_Apexoff(um)栏中。当其中任何一个值的偏差大于10um时。系统会提示请对参考镜的调整(如图17)。对参考镜调整后需要再次校准直至再次校准的时侯系统该两个值的偏差在10um 以内。并弹出对话框(如图18)按OK进行校准数据的刷新及系统对校准数据的补偿。(若不对参考镜进行调整直接按图17对话框按OK键也系统也会对该偏差值进行补偿,不影响测量结果)。

图17

4.按图18 OK键保存校准数据退出校准界面。

图18

3.3UPC光纤连接器的测量

夹具安装并校准完成后即可进行UPC光纤连接器的测量。测量前需要对判定标准和数据保存设置。

3.3.1判定标准的设置

判定标准可以通过主界面的标准信息栏或者Setup标准设置栏来完成。选择你要采用的标准(IEC、telicordia、Custom)。当选择Custom时用户可以根据自己的要求判定标准。用户自定义标

准可以按Save as 进行保存(保存文件名需加后缀.ini)。

3.3.2数据保存设置

SANA干涉仪数据的保存分为测量结果的保存和生成单次测量报告。测量结果和测量报告均是以exll文件格式。用户可以设置保存方式和路径等。

数据保存也可通过主界面或者Setup设置来完成。测量结果的保存方式及保存路径的设置如下:Auto 自动保存,Ask询问是否要保存,Off不保存。生成报告的设定设置方法同测量结果。

3.3.3图像亮度设置

图像亮度设置是指对动态图像的亮度度设置。点击image下拉菜单点击Video set 调整图像的亮度。

图像的亮度设置不宜过亮也不宜过暗。要达到干涉环的亮环和暗环都能够区分层次。

3.3.4UPC光纤连接器的测量

设置完成后即可进行光纤连接器的测量。测量前先清洁光纤连接器的端面,及光纤连接器的柱面(如果光纤连接器的端面和柱面有大的异物会影响测量结果),将光纤连接器插入到测量夹具

中并锁紧。旋转调解对焦环直到得到清晰的干涉图像为止,用鼠标点击Measure 键或按F12快捷

键软件开始测量。

测量的结果显示主界面的右下方如图19。超差的参数以红色字体显示。软件并对测量结果做以判断。在软件界面的下方同时显示最近6次测量的历史记录(图20)。

图19

图20

3.4APC光纤连接器的测量

在进行APC光纤连接器测量时不需要进行更换夹具也不需要进行重新校准。只需要松开夹具旋转台的锁紧丝,调整角度旋钮到8度位置再锁紧夹具旋转台。将相应的APC轴向定位片垂直插入夹具中。

插入要测量的接头调节对焦环得到清晰干涉图像。如果此时光纤的位置不在圆形光标中需将光纤调整到光标中(调整后夹具要保持水平,不能倾斜)。

在标准设置栏中的Connector Type选择APC。

四章使用过程中注意事项及维护

4.1 注意事项:

1、使用时要保持干涉仪在低震动的环境下;

2、校准时校准件旋转60度,且每次对焦准确;

4、保证测量夹具端口洁净;

5、装入光纤接头时如发现光纤插入非常紧请检查光纤连接器插芯侧面是否有胶水的异物。

4.2 维修事宜请联系深圳市维度科技有限公司。

光纤端面清洗操作规范及判定标准

作业指导类文件 光纤端面清洗操作规范及判定标准 一、名称:光纤端面清洗操作规范及判定标准 二、内容:模块清洗的操作方式和判定标准,以及清洗机的使用和维护。 三、适用范围:此作业指导书适应于恒宝通单、多模组件/模块的光纤端面清洁,及清洗机的维护。

四、所需仪器、设备及工具:台式清洗机/手提式清洗机、酒精、棉签、牙签、棉、防静电手链。 电源开关 初始化按键 (B) (C)(D) SC清洗针头 探测针头LC清洗针头 LC探测针头 ) 弹簧开关 (I) (J) 6.1 检查区域的划分

Zone 1a(A区):中间直径25微米以内部分,对于单模光纤包括部分的包层(cladding),对于多模光纤就只包含纤芯的中间部分; Zone 1b(B区):从直径25微米以外至直径120微米部分,对于单模光纤包括大部分的包层部分,对于多模光纤包含纤芯的外围部分和包层的部分; Epoxy Zone Ring(C区):中间直径120微米以外,130微米以内部分,为环氧树脂区域,包层边缘10微米宽度部分; Zone 2(D区):中间直径130微米以外,250微米以内部分,扩展到陶瓷插芯部分区域。 Zone 3(E区):中间直径250微米以外的部分。 6.2 不良现象定义: 6.3 PC/UPC/APC单模连接头端面外观检查标准:

PC/UPC/APC 多模连接头端面外观检查标准: 1)多模连接头端面划痕:通过纤芯(纤芯的直径为50um 或62.5um )的划痕不允许超过2条,且划痕宽度必须小于2um ,见示例图片6.4.5.1和6.4.5.2); 2)其余各项检查标准和单模连接头相同。 注意: 1. 可清除的任何污染物一定要被清除. 2. 任何污染物过多的区域受制于最严格的标准. 3. 测量污染物的大小时应使用最大的直径. 6.4 图片示例 (说明:当肉眼无法判定污点/划痕等大小时,须依据对比图做出判定,见下图所示:) 光通道端面判定对比图(仅适用于台式显示器200X 放大时使用) 6.4.1 脏污: 5um 10um 20um 30um 50um 2um 5um

光纤连接器端面检测技术

光纤连接器端面检测技术 1. 前言 随着网络应用的扩大和网络情报流量的急速增加,公共网及局域网对网络带宽的要求越来越高。带宽网络也就应运而生。具有代表性的带宽网络有使用电话线的 ADSL(Asymmetric Digital Subscriber Line), 使用有线电视线路的CATV(CAble TeleVvision), 使用无线发射与接收的无线网络,还有使用光纤的光纤通信网络。 作为现代通讯讯号的传播介质,光纤通信具有其独特的优点。其传送速度比一般ADSL方式及CATV方式至少快一个数量级。并且不受高压线及电视,收音机的电磁波的影响,保密性强。此外,光纤所用的材料是地球上大量存在的硅, 所以不会有资源枯竭的问题。自从光纤通信正式进入电信网络以来,它已经成为现代化通信网的主要支柱之一。近年来,随着光同步数字系列(SDH)、掺铒光纤放大器(EDFA)、密集波分复用(DWDM等技术的商业化,光纤通信系统的传输容量不断扩大,光纤传输的带宽潜力和技术优越性不断得到挖掘和发挥。与此同时,由于互联网的迅速普及,世界各国纷纷把光纤接入网的发展作为战略性的国策加以重视。基 于波长多重(DWDM的光通讯大容量化,光纤家家通FTTH (Fiber To The Home)计划也在急速的展开。 光通信需要大量的光纤连接器,用于远程电话通讯装置间的连接,程控电话交换机, 中继器,以及同一电讯局内的通讯装置间的连接等。由于对光纤通信网络的经济性和高性能的要求,高信頼性,小型化,低成本的光纤连接器就显得非常重要。 由于光纤是一种直径仅有数微米能传送光信号的纤芯和将光束缚在纤芯内的覆盖层构成的高纯度石英玻璃拉制而成的玻璃丝线,为了提高光纤连接及光信号传输的效率,必需控制光纤连接器的几何参数以减少光纤连接的插入损耗和回损(或称为反射減衰量) 。例如,对于插入损耗,一般要求在0.05dB 以下。对于回损,通常研磨

SPI7500锡膏测厚仪操作规程

REAL SPI7500锡膏测厚仪操作规程 (ISO45001-2018/ISO9001-2015) 一、目的: 监测锡膏的厚度和变化趋势,提高SMT质量,降低返修成本,满足质量体系对过程参数监测记录的要求。 二、仪器型号: REAL SPI7500锡膏测厚仪。 三、操作步骤: 3.1 外观和部件图(图一) 3.2打开电脑→打开SPI7500锡膏测厚仪电源开关; 3.3点击桌面“SPI3D”图标,在对话框中输入密码“goodspi”,进入SPI3D 界面; 3.4 装板:

3.4.1点击“移动到…”按钮,然后在下拉菜单中点击“出板”按钮; 3.4.2松开轨道锁定旋钮(如图六),根据PCB的尺寸将轨道调整到合适的宽度,然后将PCB放入轨道,并将Y定位挡块打到阻挡PCB退出的位置; 3.4.3点击“移动到…”下拉菜单中的“进板”按钮,将PCB送入待检测位置; 3.5 编程; 3.5.1 新建程序:点击“新建程序”按钮,然后在对话框中输入与PCB型号对应的程序名称,再点击“保存”按钮; 3.5.2点击“编辑当前程序”按钮; 3.5.3输入PCB尺寸等信息,并确认其它参数无误后点击“确认”按钮; 3.5.4寻找MARK点:用鼠标左键点击导航图中PCB板MARK点的位置,用鼠标右键点击显示画面中左下角的图像,将蓝色十字光标移动到MARK点的中心位置; 3.5.5编辑MARK点:点击“编辑标记1”按钮,然后选择适当的照明颜色、曝光率、阈值,观察显示画面中MARK点的识别效果达到最佳时,点击“应用/识别”按钮,然后点击“确定”按钮完成第一个MARK点的编辑,点击“编辑标记2”按钮,用同样的方法完成PCB对边(对角/同侧)另一个MARK点的编辑;3.5.6识别MARK点:2个MARK点编辑完成后,点击“识别标记”按钮进行MARK 点识别,当提示“自动识别失败”时,需重新修正MARK点识别参数或重新选取MARK点; 3.5.7编辑扫描程序:点击“目标”按钮,在左下角的视图中框选需要测试的目标范围,然后点击“参照”按钮,选择4个参考点,原则上4个参考点应选择在靠近目标测试区域的较大的覆铜线路上,以减小测量误差,最后点击“自

实验一 光纤的几何特性测试实验

实验一光纤的几特性测试实验 姓名:学号: 一、实验的目的和意义 1、了解光纤的基本结构 2、学习光纤的处理法,包括光纤的剥线、端面切割和清洗等等法 3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构 4、学会Matlab处理实验数据 5、掌握光学实验注意事项和实验室安全隐患及事故处理法 光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。 光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。 光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。[2]

本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。[3] 二、实验的系统结构和实验步骤 1、实验的系统结构 实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。 实验系统的基本结构图如下: 2、实验仪器 光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑 3、实验步骤

光纤连接示意图

光纤连接示意图 一、双纤SC光接口,必须采用SC的光跳线连接,左边光纤收发器光口的上面接口连接右边光纤收发器的下面光接口(一台光纤收发器的TX 应于另一台的RX连接),两台之间的连接是交叉的。 二、光纤收发器可以用于运营商和终端客户的光纤宽带,做为光猫使用。 三、光纤收发器可以用于以太局域网中,五类双绞线传输距离超过100米就无法稳定传输,光纤收发器可以无中继传输120公里,在局域网中可做为延长传输距离的设备来使用,可直接接入电脑的网卡、交换机、路由器使用(注:自适应的光纤收发器可以兼容本速率以下的设备,比如:10/100M的光纤收发器,可以直接接入100M的交换机,也可以接入10M的交换机,纯速率的光纤收发器只能使用在同速率的设备上,不然接入后是不通的

NET-LINK HTB-1100S是10/100M自适应快速以太网光纤收发器。它可以实现双绞线和光纤两种不同传输介质的转换,中继10/100Base-TX和100Base-FX两个不同网段,能满足远距离、高速、高带宽的快速以太网工作组用户的需要。 产品技术参数: 符合IEEE 802.3u 10/100Base-TX和100Base-FX以太网标准 提供一个SC型的单模光纤端口和一个RJ45端口 RJ45端口支持端口自动翻转(Auto MDI/MDIX)功能 RJ45端口10/100M速率、全/半双工模式自适应 双绞线最大传输距离100米,单模光纤最大传输距离20/40/60千米(视不同型号而定) 外置电源 兼容IEEE 802.3u 10Base-TX、100Base-TX和100Base-FX以太网标准 连接接口:一个SC型的光纤连接器和一个RJ45连接器 双绞线端口支持速率和全/半双工模式自动适应 支持Auto MDI/MDIX,无需进行电缆选择 光纤端口可以进行全/半双工模式选择 连接线缆类型: RJ45连接器:5类双绞线 SC光纤连接器:1300nm 62.5/125um,50/125um多模光纤,1300nm 9/125um多模光纤 双绞线最大传输距离100米,单模光纤最大传输距离20/40/60千米(视不同型号而定)

光纤连接器的标准要求

光纤连接器,是光纤与光纤之间进行可拆卸(活动)连接的器件,它把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器影响了光传输系统的可靠性和各项性能。 光纤是传光的纤维波导,裸纤一般分为三层:中心高折射率玻璃芯,折射率较高,用来传送光;中间为低折射率硅玻璃包层,与纤芯一起形成全反射条件;最外是保护用的树脂涂层。 光纤分类方法很多,可以按照传输模式、工作波长、折射率分布、等进行分类。 (一)按传输模式 多模光纤:可传输多种模式的光,外径一般为125微米(一根头

发平均100微米),典型纤芯直径为50或62.5微米。 单模光纤:只能传输一种模式的光,外径与多模光纤相同,但纤芯直径较细,一般为9微米。 如何辨别单模光纤与双模光纤呢?最常规的分辨方法就是:黄色的光纤线一般是单模光纤,橘红色或者灰色的光纤线一般是多模光纤。 单模光纤不存在模间时延差,且模场直径仅几微米,带宽一般比渐变型多模光纤的带宽高一两个数量级。因此,它适用于大容量、长距离通信。 (二)按工作波长 短波长光纤:光纤的工作波长为850nm。 长波长光纤:光纤的工作波长为1300nm和1550nm。 光纤损耗一般是随波长加长而减小,850nm的损耗约为2.5dB/km,1300nm的损耗约为0.35dB/km,1550nm的损耗约为0.20dB/km,这是光纤的最低损耗,波长1650nm以上的损耗趋向加大。 (三)按光纤材料 石英光纤:一般是指由掺杂石英芯和掺杂石英包层组成的光纤。这种光纤有很低的损耗和中等程度的色散。目前通信用光纤绝大多数是石英光纤。 全塑光纤:用高度透明的聚苯乙烯制成的,成本低,使用方便,但损耗较大、带宽较小,只适合短距离低速率通信。

光纤端面处理工艺流程

光纤端面处理工艺流程 摘要:本文主要分析了光纤端面处理熔接对光纤激光器功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 1、前言光纤是圆柱形介质波导由纤芯、包层和涂敷层3部分组成,一般单模和多模光纤的纤芯直径分别为5~15μm和40~100μm,包层直径大约为125~600μm。经过处理的光纤端面,理想状态是一个光滑平面。但实际中,光纤端面的加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使端面情况复杂化。对于光纤与激光器中其它元件的耦合以及光纤之间的熔接来说,要求光纤端部必须有光滑平整的表面,否则会增大损耗。本文分类介绍了光纤损耗产生的原因,通过实验验证了光纤端面质量对光纤激光器输出功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 2、光纤损耗种类 2.1光纤本征损耗光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷和含有金属过渡杂质和OH- ,使光在传输过程中产生散射、吸收和色散,一般可分为散射损耗,吸收损耗和色散损耗。其中散射损耗是由于材料中原子密度的涨落,在冷凝过程中造成密度不均匀以及密度涨落造成浓度不均匀而产生的。吸收损耗是由于纤芯含有金属过渡杂质和OH-吸收光,特别是在红外和紫外光谱区玻璃存在固有吸收。光纤色散按照产生的原因可分为三类,即材料色散、波导色散和模间色散。其中单模光纤是以基模传输,故没有模间色散。在单模光纤本征因素中,对连接损耗影响最大的是模场直径。单模光纤本征因素引起的连接损耗大约为0.014dB,当模场直径失配20%时,将产生0.2dB的连接损耗。多模光纤的归一化频率

(整理)光纤接头说明图(全)

全光纤及光纤连接器图示说明.doc 光纤接头图片.doc 光纤接头说明图.doc ST、SC、FC、LC光纤接头区别 2008-10-13 21:33:01 作者:来源:互联网文字大小:【大】【中】【小】简介:ST、SC、FC光纤接头是早期不同企业开发形成的标准,使用效果一样,各有优缺点。ST、SC 连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易 ... ST、SC、FC光纤接头是早期不同企业开发形成的标准,使用效果一样,各有优缺点。 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。 MTRJ 型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。 光纤接口连接器的种类

光纤连接器,也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。不是经常接触光纤的人可能会误以为GBIC和SFP模块的光纤连接器是同一种,其实不是的。SFP模块接LC光纤连接器,而GBIC接的是SC光纤光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明: ①FC型光纤连接器:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ②SC型光纤连接器:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ST型光纤连接器:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) ④LC型光纤连接器:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用) ⑤MT-RJ:收发一体的方形光纤连接器,一头双纤收发一体 常见的几种光纤线 光纤接口大全

各种光纤连接器结构及性能浅析

各种光纤连接器结构及性能浅析 1.引言 在安装任何光纤系统时,都必须考虑以低损耗的方法把光纤或光缆相互连接起来,以实现光链路的接续。光纤链路的接续,又可以分为永久性和活动性的两种。永久性的接续,大多采用熔接法、粘接法或固定连接器来实现;活动性的接续,一般采用活动连接器来实现。本文将活动连接器做一简单的介绍。 光纤活动连接器,俗称活接头,一般称为光纤连接器,是用于连接两根光纤或光缆形成连续光通 路的可以重复使用的无源器件,已经广泛应用在光纤传输线路、光纤配线架和光纤测试仪器、仪表中,是目前使用数量最多的光无源器件。 2.光纤连接器的一般结构 光纤连接器的主要用途是用以实现光纤的接续。现在已经广泛应用在光纤通信系统中的光纤连接器,其种类众多,结构各异。但细究起来,各种类型的光纤连接器的基本结构却是一致的,即绝大多数的光纤连接器一般采用高精密组件(由两个插针和一个耦合管共三个部分组成)实现光纤的对准连接。 这种方法是将光纤穿入并固定在插针中,并将插针表面进行抛光处理后,在耦合管中实现对准。插针的外组件采用金属或非金属的材料制作。插针的对接端必须进行研磨处理,另一端通常采用弯曲限制构件来支撑光纤或光纤软缆以释放应力。耦合管一般是由陶瓷、或青铜等材料制成的两半合成的、紧固的圆筒形构件做成,多配有金属或塑料的法兰盘,以便于连接器的安装固定。为尽量精确地对准光纤,对插针和耦合管的加工精度要求很高。 3.光纤连接器的性能 光纤连接器的性能,首先是光学性能,此外还要考虑光纤连接器的互换性、重复性、抗拉强度、温度和插拔次数等。 (1)光学性能:对于光纤连接器的光性能方面的要求,主要是插入损耗和回波损耗这两个最基本 的参数。 插入损耗(Insertion Loss)即连接损耗,是指因连接器的导入而引起的链路有效光功率的损耗。插入损耗越小越好,一般要求应不大于0.5dB。 回波损耗(Return Loss)是指连接器对链路光功率反射的抑制能力,其典型值应不小于25dB。实际应用的连接器,插针表面经过了专门的抛光处理,可以使回波损耗更大,一般不低于45dB。 (2)互换性、重复性 光纤连接器是通用的无源器件,对于同一类型的光纤连接器,一般都可以任意组合使用、并可以重复多次使用,由此而导入的附加损耗一般都在小于0.2dB的范围内。 (3)抗拉强度 对于做好的光纤连接器,一般要求其抗拉强度应不低于90N。 (4)温度

光纤端面处理对光纤激光器地影响

光纤端面处理对光纤激光器地影响.txt18拥有诚实,就舍弃了虚伪;拥有诚实,就舍弃了无聊;拥有踏实,就舍弃了浮躁,不论是有意的丢弃,还是意外的失去,只要曾经真实拥有,在一些时候,大度舍弃也是一种境界。光纤端面处理对光纤激光器地影响 1、前言 光纤是圆柱形介质波导由纤芯、包层和涂敷层3部分组成,一般单模和多模光纤的纤芯直径分别为5~15μm和40~100μm,包层直径大约为125~600μm。经过处理的光纤端面,理想状态是一个光滑平面。但实际中,光纤端面的加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使端面情况复杂化。对于光纤与激光器中其它元件的耦合以及光纤之间的熔接来说,要求光纤端部必须有光滑平整的表面,否则会增大损耗。本文分类介绍了光纤损耗产生的原因,通过实验验证了光纤端面质量对光纤激光器输出功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 2、光纤损耗种类 2.1光纤本征损耗 光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷和含有金属过渡杂质和OH-,使光在传输过程中产生散射、吸收和色散,一般可分为散射损耗,吸收损耗和色散损耗。其中散射损耗是由于材料中原子密度的涨落,在冷凝过程中造成密度不均匀以及密度涨落造成浓度不均匀而产生的。吸收损耗是由于纤芯含有金属过渡杂质和OH-吸收光,特别是在红外和紫外光谱区玻璃存在固有吸收。光纤色散按照产生的原因可分为三类,即材料色散、波导色散和模间色散。其中单模光纤是以基模传输,故没有模间色散。在单模光纤本征因素中,对连接损耗影响最大的是模场直径。单模光纤本征因素引起的连接损耗大约为0.014dB,当模场直径失配20%时,将产生0.2dB的连接损耗[1]。多模光纤的归一化频率V>2.404,有多个波导模式传输,V值越大,模式越多,除了材料色散和波导色散,还有模间色散,一般模间色散占主要地位。所谓模间色散,是指光纤不同模式在同一频率下的相位常数β不同,因此群速度不同而引起的色散。 此外,光纤几何参数如光纤芯径、包层外径、芯/包层同心度、不圆度,光学参数如相对折射率、最大理论数值孔径等,只要一项或多项失配,都将产生不同程度的本征损耗。 2.2光纤附加损耗 光纤的附加损耗一般由辐射损耗和应用损耗构成。其中辐射损耗是由于光纤拉制工艺、光纤直径、椭圆度的波动、套塑层温度变化的胀缩和涂层低温收缩导致光纤微弯所致;应用损耗是由于光纤的张力、弯曲、挤压造成的宏弯和微弯所引起的损耗。 3、实验装置与结果 掺Er3+光纤环形腔激光器实验装置如图1所示,泵浦光由波长980nmLD尾纤输出,经波分复用器(WDM)耦合进入环形光纤谐振腔,经过耦合器分光后输出激光。其中光纤光栅中心波长为1546.3nm,掺Er3+光纤长度为3m,掺杂浓度为400ppm,隔离器工作波长范围为1535~1565nm,各元件插入损耗均为0.4dB,经上述装置输出功率与输入功率的关系曲线如图2所示,最大输出功率可达16.9mW。但由于光纤激光器各个部件之间均熔接在一起,插入损耗和熔接损耗对整个系统具有非常大的影响。在熔接质量比较好的情况下,总体光光效率可达5.3%,在光纤焊接较差的情况下,焊点漏光严重,用转换片可以看到明显的泵浦光泄露,严重影响总体光光效率,二者功率相差23%左右。因此如何降低腔内熔接损耗是影响激光器输出功率的关键因素。 4、光纤端面处理 光纤端面处理也称为端面制备,是光纤技术中的关键工序,主要包括剥覆、清洁和切割三个环节。端面质量直接影响光纤激光器的泵浦光耦合效率和激光输出功率。

光纤接入设备及使用图解

光纤接入设备及使用图解由于不同种类信息的需求也越来越多,伴随而来的不断增长的IP数据、话音、多媒体图像等多种新业务需求,促使了各大网络运营商的传送网络环境发生了翻天俯地的变化, 以前那些以承载模拟话音为主要目的的传统城域网和接入网在容量以及接口种类上都已经无法满足多种多样的新业务传输与处理的要求。 于是迫于社会信息量的突飞猛进,那些专门为城域网和接入网上提供新业务传送的技术及设备迅速发展起来。其中以MSTP(多业务传输平台)和PON(无源光网络)发展是最具有代表性的,它们都是基于光纤传送技术、在城域网或接入网上提供多种新业务承载的最佳解决方案。 基于光缆的光纤接入技术是未来宽带网络的发展方向,它的发展也离不开光纤接入设备发展和支持,就像鱼与水一样。谈起光纤接入设备不得不提起它的三代发展经历: 第一代大量采用地PDH(光纤光端机)设备,包括点到点型和星型局端设备,不具备汇聚功能。全部采用PDH传输协议,也没有光接口规范。用户业务如E1和数据业务通过远端设备,利用私有PDH协议进行复接,经光纤传输到局端设备。局端设备按照私有协议对PDH光信号进行分接,又转换成为E1等PDH 接口,再通过电缆经DDF配线架与城域骨干/汇聚设备连接。由于PDH协议的局限性致使各类光纤接入设备很快落伍。 第二代鉴于第一代设备的缺陷,一些PDH设备厂商研发出第二代设备,即在局端设备中增加一个SDH(密集型光波复用)终端卡。在局端与远端设备之间仍然

采用私有的PDH协议,而在局端提供汇聚功能,将原来的E1信号经SDH终端卡复用,并给出标准SDH接口。主要解决了局端设备与城域骨干设备的互连问题和统一接口标准。 第三代是SDH直通设备,包括汇聚型和非汇聚型。由于新业务覆盖面广,新一代SDH直通设备已经能够按照SDH规范,自动适配到SDH进行传送;非汇聚型的远端设备可以通过SDH光接口直接连接到城域网汇聚层节点上,适合从汇聚层网络上分支出较少的业务接口。汇聚型则在局端插入SDH汇聚设备,将来自多个方向的VC12业务汇聚到上行SDH接口中,从而节省大容量骨干节点设备上的STM-1接口卡数量。主要解决了各设备兼容问题,便于以后升级、维护。 光纤接入设备发展到今天,由于光纤接入技术的不断更新和越来越多的生产商加盟,光纤接入设备的类别也越来越明显,主要分三大类为: (1)光纤通信接续文元件(适用通信及计算机网络终端连接),如:光纤跳线、光纤接头(盒)等。 (2)光纤收发器(适用计算机网络数据传输),如:包括光纤盒、光纤耦合器和配线箱(架)等。 (3)光缆工程设备、光缆测试仪表(大型工程专用),如:光纤熔接机、光纤损耗测试仪器等。 对于前两大类是我们经常可以了解、接触的光纤接入设备产品,下面小编就以光纤通信接续文元件和光纤收发器两大类设备作个介绍: 光纤跳线

Easyget光纤端面检查系统使用说明书

Easyget光纤端面检查系统使用说明书 V. 1.0 深圳市维度科技有限公司

目录 Easyget 光纤端面检查系统简介 (3) 1.性能特点 (3) 2.应用范围 (3) 3.技术规格 (3) 操作说明 (4) 1. 手持式显示器连接使用方法..................................................................................................4-5 2. 台式显示器连接使用方法 (5) 3. PC机连接使用方法 (6) 3.1采集卡驱动的安装 (6) 3.2 查看硬件安装是否正常 (7) 3.3 驱动程序注册 (7) 3.4 应用程序安装.......................................................................................7-11 维护及保养. (11)

Easyget 光纤端面检查系统简介 Easyget 光纤端面检查系统采用3.5英寸22万像素的TFT高清晰液晶显示器,可将光纤端面图像放大200倍,断面状况清晰可见。体积小便于携带的特点,使其成为工程上安装网络前后对连接器端面检查的理想工具。 全系列的适配接口可以满足各种场合光纤端面检查需求,主要有:连接器端面、光模块内耦合插芯端面、配线架上连接器端面、仪器仪表的端口。 低功耗一次充电后可以连续工作在6个小时以上,配备专业的信号采集卡和图像软件,可将图像传输到PC机上显示。 性能特点 ◇图像清晰 ◇操作性能好 ◇体积小重量轻 ◇低功耗充电一次连续使用6小时以上 应用范围 ◇光纤网络工程中光纤端面检验 ◇光收发模块的端口检验 ◇配线架内连接器端口的检验 ◇通讯系统设备及仪器仪表端口检验。 技术规格 图像放大率 200X or 400X 视频信号格式 PAL 显示器 3.5′′TFT 220k pix LCD 功耗 3W 使用温度 -10℃—+50℃ 储存温度 -20℃—+50℃ 供电方式 内置12V充电电池或外接AC电源 一次充电工作时间 >6h 体积 显示器:205mm*94mm*25mm 视频放大显微镜:23mm*160mm

光纤连接器图解1

光纤连接器图解1

光纤连接器 自从前年开始,基于光缆的千兆以太网有了非常迅猛的发展。在局域网中的主干网 络(backbone)几乎大部分都采用了基于光 缆的千兆以太网。而在千兆网络的光缆链路 中使用的光缆链路连接方式中也发生了新 的变化。 路连接方式主要是ST,SC或者FC的连接方式。目前。这些光缆的连接方式简单方便,所连接的每条光缆都些光缆链路时,并不知道在实际中这些光缆是如果使用际使用中,将光缆和网络设备连接时,就要首先确定信连接。此外,光缆的连接器的制作也不方便,需要特殊

SC插入锁定-------------ST插入锁定---------------- FC旋紧锁定 2.新型的光缆连接方式 大家知道,千兆以太网在连接光缆时都是成对儿使用的,即一个输出(output,也为光源),一个输入(input,光检测器),例

如路由器和交换机的光缆连接。如果在使用时,能够成对一块儿使用而不用考虑连接的方向,而且连接简捷方便,那将会有助于千兆以太网的连接。因此不少光缆布线的厂商推出了各种连接器来满足这种应用。这种新的光缆连接器叫做SFF(Small Form Factor)。目前还没有比较明确的术语来描述,我们一般将其称作微型光缆连接器。 目前市场最主要SFF光缆连接器有四种类型。1)LC类型,它是Lucent公司推出的一种SFF类型的连接器。2)FJ类型,它是由Panduit公司推出的连接器。 3)MT-RJ 型,它是由美国AMP公司推出

的连接器以及由3M公司推出的VF-45连接器。 下图是这几种类型的连接器。这种连接器是一对儿光缆一起连接而且接插的方向是固定的。所以在实际使用中比较方便,也不会误插。 光纤配线箱

光纤检测教程

光纤检测教程 光纤连接器在网络中非常常见,它使我们能够上路、下路、移动和改变网络。然而不可否认的是,光纤连接器端面的污染是网络故障中断的一个主要成因。这就是为什么我们总是强调光纤连接器端面的清洁工作十分有必要的原因。对连接器插针端面的检查可以找出光纤连接器上的灰尘或划痕,也可以在终端接续过程中检测出连接器端面的研磨类型。光纤检测在光纤终端接续中扮演着非常重要的角色。我们建议,养成一个在光纤连接之前先进行检测的良好习惯,这样就可以确保连接器在对接之前光纤端面是干净清洁的。本教程中,我们将向您介绍光纤检测。 关于光纤连接器和端面污染 众所周知,光纤连接器是光纤网络中最重要的部件,但同时也是最脆弱、最多问题点的部件。在介绍光纤检测前,有必要先向您介绍光纤连接器和端面污染的一些知识。 光纤连接器安装在一根光纤的终端,能够比熔接接续实现更快速的连接和断接。连接器以机械的方式耦合和对接光纤纤芯,使光线能够从中通过。一个好的连接器由于光纤反射或纤芯偏移所造成的光损耗可以说是微乎其微。目前,光纤连接器有100多种,包括单芯和多芯连接器都已推向市场用于各种各样的用途。 要实现高效的光纤连接,有3个基本的方面非常关键:完美的纤芯对接、物理接触和干净的连接器端面。今天的连接器设计和生产技术已战胜了大多数摆在“纤芯对接”和“物理接触”面前的挑战,而这最后的一项挑战就是如何保护干净的连接器端面。由此,污染就成了光纤网络

首先要解决的一个问题。如图1所示,光纤或连接器端面应没有任何污染或瑕疵。常见的污染和瑕疵类型包括灰尘、油污、凹坑和碎屑,以及划痕(图2)。连接器端面的检查是确定终端接续是否合格最好的一种方法,同时也是诊断问题(如:连接器上的灰尘或划痕)最好的一种方法。除此之外,还有很多不同的污染源,如:检测设备、防尘帽、隔板、人群和环境等,来自这些污染源的灰尘和其他颗粒物都能够污染光纤和连接器的端面。光纤连接器和检测设备上的端口频繁对接,这也是造成污染的高发事件。设备一旦受到污染,那么网络连接器和端口之间就会发生交叉污染。因此,在检测网络连接器以前,检查和清洁设备的检测端口和导线将能防止交叉污染。 图1 图2 光纤检测 我们建议在对接连接器前进行光纤检查。如图3所示,我们必须检查和确保端面是干净的。若端面不干净,那么必须要进行清洁。光纤检查和清洁是两个能够带来极大好处的简易步骤。关于光纤清洁的文章有很多,接下来我们将主要介绍连接器的光纤检查工作。

锡膏测厚仪操作规程

锡膏测厚仪操作规程 一、目的: 测量SMT印刷工艺锡膏高度、体积;衡量印刷机工艺参数设置是否正确; 提供印刷工序可信的SPC数据,证实印刷工艺的稳定性。 二、适用范围: SMT技术人员。 三、操作步骤: 1、检查电脑与测量系统连接良好,电源连接正常。 2、开启电脑主机及测量系统。 3、当操作系统正常启动后,用鼠标双击桌面ASM图标,开启测试程序。 4、将待测PCB板放在工作台适当位置,找到要测试点,调节光源及镜头使图 像清淅。开启激光线并旋转调整机构,调整激光本和水平框線重叠达到适当焦距。 5、上下移动调整杆,当调整杆移到激光线反射光线中间处,可进行直接测量。 6、冻结影像 [冻结影像]键,冻结影像,影像转换 7、窗口设定/单点量测设定检测窗口或以以鼠标点出两点,两点定出位移 量作成点量测纪录表 8、检测参数设定T-High / T-Low / SMA /SMD 9、显示与否Check Box [Display]

10、Open/Close Image Check Box [Open]/[Close] 11、厚度计算T-Low = 100~150, T-High=255 12、面积计算T-Low = 100~150, T-High=180~220 13、显示结果结果键/点量测纪录表/厚度分布结果 14、打印结果打印/点量测纪录表/厚度分布结果/影像 15、储存结果档案 储存点量测结果/工作文件/影像文件 四、关机 结束 STRONG,关闭操作窗口,退出控制软件,关闭电脑主机。 五、注意事项 非指定人员严禁操作此机器,不可随意去触动机器各部件。 六、保养事项 1、使用完毕后要把鼠标、键盘摆放在规定的位置,台面上要保持整洁,不可 有杂物。 2、每班须对机器的表面进行清洁,除去灰尘等其它异物。 7.使用表单 设备履历卡 设备保养点检记录表 设备维修申请单 仪器、设备报废申请单

光纤接续方法及操作步骤

光纤接续方法及操作步骤 光纤接续是一项细致的工作,特别在端面制备、熔接、盘纤等环节,要求操作者仔细观察,周密考虑,操作规范。本文为您详细介绍了其中的步骤和实际操作技巧。 1.端面的制备 光纤端面的制备包括剥覆、清洁和切割这几个环节。合格的光纤端面是熔接的必要条件,端面质量直接影响到熔接质量。 1.1光纤涂面层的剥除 光纤涂面层的剥除,要掌握平、稳、快三字剥纤法。“平”,即持纤要平。左手拇指和食指捏紧光纤,使之成水平状,所露长度以5cm为准,余纤在无名指、小拇指之间自然打弯,以增加力度,防止打滑。“稳”,即剥纤钳要握得稳。“快”即剥纤要快,剥纤钳应与光纤垂直,上方向内倾斜一定角度,然后用钳口轻轻卡住光纤右手,随之用力,顺光纤轴向平推出去,整个过程要自然流畅,一气呵成。 1.2裸纤的清洁 裸纤的清洁,应按下面的两步操作:

1)观察光纤剥除部分的涂覆层是否全部剥除,若有残留,应重新剥除。如有极少量不易剥除的涂覆层,可用绵球沾适量酒精,一边浸渍,一边逐步擦除。 2)将棉花撕成层面平整的扇形小块,沾少许酒精(以两指相捏无溢出为宜),折成“V”形,夹住以剥覆的光纤,顺光纤轴向擦拭,力争一次成功,一块棉花使用2~3次后要及时更换,每次要使用棉花的不同部位和层面,这样即可提高棉花利用率,又防止了探纤的两次污染。 1.3裸纤的切割 裸纤的切割是光纤端面制备中最为关键的部分,精密、优良的切刀是基础,而严格、科学的操作规范是保证。 1)切刀的选择。 切刀有手动(如日本CT—07切刀)和电动(如爱立信FSU—925)两种。前者操作简单,性能可靠,随着操作者水平的提高,切割效率和质量可大幅度提高,且要求裸纤较短,但该切刀对环境温差要求较高。后者切割质量较高,适宜在野外寒冷条件下作业,但操作较复杂,工作速度恒定,要求裸纤较长。熟练的操作者在常温下进行快速光缆接续或抢险,采用手动切刀为宜;反之初学者或在野外较寒冷条件下作业时,采用电动切刀。 2)操作规范

光纤跳线接口-详细图解上课讲义

光纤跳线接口-详细图解 作者:管理员发布于:2013-06-19 03:20:49 文字:【大】【中】【小】 摘要:本文介绍:光纤跳线接口类型,接口图片等知识 光纤跳线就是两头有连接器的光纤,它的作用是做为从设备到光纤布线链路的路接线,一般在光端机,光模块,光纤收发器等设备和终端盒之间的连接。而尾纤是只有一头有连接器的光纤,下面对网络工程中几种常用的光纤连接器进行详细的说明: 光纤跳线的接口类型常见的有FC、SC、ST、PC、APC、LC这几种,FC接头的光纤跳线多用于配线架上,而SC接头的光纤跳线多用于路由器交换机上。另外还有MTRJ、MPO、MU、SMA、FDDI、E2000、D4等各种形式的光纤接口类型。常见的几种光纤跳线接口类型含义如下: FC 圆型带螺纹常用于光端机等设备 ST 卡接式圆型常用于终端盒设备 SC 卡接式方型常用于光纤收发器 PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 光纤跳线接口图解:

光纤跳线接头是用户在选购光纤跳线时必要考虑的一个问题,弄明白各种光纤跳线接头的含义能帮助用户更快的找到自己想要的产品。 ①FC型光纤跳线:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ②SC型光纤跳线:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ST型光纤跳线:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) ④LC型光纤跳线:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用) ⑤MT-RJ型光纤跳线:收发一体的方形光纤连接器,一头双纤收发一体

光纤连接器的型号

光纤连接器的型号 (1)FC型光纤连接器 这种连接器最早是由日本NTT研制。FC是Ferrule Connector的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC类型的连接器,。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。 (2)SC型光纤连接器 这是一种由日本NTT公司开发的光纤连接器。其外壳呈矩形,所采用的插针与耦合套筒的结构尺寸与FC型完全相同,。其中插针的端面多采用PC或APC型研磨方式;紧固方式是采用插拔销闩式,不需旋转。此类连接器价格低廉,插拔操作方便,介入损耗波动小,抗压强度较高,安装密度高。 ST和SC接口是光纤连接器的两种类型,对于10Base-F连接来说,连接器通常是ST类型的,对于100Base-FX来说,连接器大部分情况下为SC类型的。ST连接器的芯外露,SC连接器的芯在接头里面。 (5) MT-RJ型连接器 MT-RJ起步于NTT开发的MT连接器,带有与RJ-45型LAN电连接器相同的闩锁机构,通过安装于小型套管两侧的导向销对准光纤,为便于与光收发信机相连,连接器端面光纤为双芯(间隔0.75mm)排列设计,是主要用于数据传输的下一代高密度光纤连接器。 (6) LC型连接器 LC型连接器是著名Bell(贝尔)研究所研究开发出来的,采用操作方便的模块化插孔(RJ)闩锁机理制成。其所采用的插针和套筒的尺寸是普通SC、FC等所用尺寸的一半,为1.25mm。这样可以提高光纤配线架中光纤连接器的密度。目前,在单模SFF方面,LC类型的连接器实际已经占据了主导地位,在多模方面的应用也增长迅速。 (7) MU型连接器 MU连接器是以目前使用最多的SC型连接器为基础,由NTT研制开发出来的世界上最小的单芯光纤连接器,。该连接器采用1.25mm直径的套管和自保持机构,其优势在于能实现高密度安装。利用MU的l.25mm直径的套管,NTT已经开发了MU连接器系列。它们有用于光缆连接的插座型连接器(MU-A系列);具有自保持机构的底板连接器(MU-B系列)以及用于连接LD/PD模块与插头的简化插座(MU-SR系列)等。随着光纤网络向更大带宽更大容量方向的迅速发展和DWDM技术的广泛应用,对MU型连接器的需求也将迅速增长。LC接头与SC接头形状相似,较SC接头小一些。 FC 圆型带螺纹(配线架上用的最多) 接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。 ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) 接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体

图解常见光纤尾纤(推荐文档)

图解常见尾纤型号 光纤这东西有时候挺烦人的,总结了常用的几种光纤接头。1. 上面这个图是LC到LC的,LC就是路由器常用的SFP,mini GBIC所插的线头。

2. FC转SC,FC一端插光纤步线架,SC一端就是catalyst也好,其他也好上面的GBIC所插线缆。

3. ST到FC,对于10Base-F连接来说,连接器通常是ST类型,另一端FC连的是光纤步线架。

Sc到Sc两头都是GBIC的

SC到LC,一头GBIC,另一头MINI-GBIC

各种光纤接口类型介绍 ! 各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型 SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤 -------------------------------------------------------------------------------- 在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 “/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。 在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 “/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头“LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要 连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等. “/”后面表明光纤接头截面工艺,即研磨方式。 “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。 “SC”表示尾纤接头型号为SC接头,业界传输设备侧光接口一般用用SC接头,SC接头是工程塑料的,具有耐高温,不容易氧化优点; ODF侧光接口一般用FC接头,FC是金属接头,但ODF 不会有高温问题,同时金属接头的可插拔次数比塑料要多,维护ODF尾纤比光板尾纤要多。其它常见的接头型号为:ST、DIN 、FDDI。 “PC”表示光纤接头截面工艺,PC是最普遍的。在广电和早期的CATV中应用较多的是APC型号。尾纤头采用了带倾角的端面,斜度一般看不出来,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号。表现在画面上就是重影。尾纤头带倾角可使

相关主题
文本预览
相关文档 最新文档