当前位置:文档之家› 音频信号处理

音频信号处理

音频信号处理
音频信号处理

一、问题的提出:数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢?信号是传递信息的函数。

一、问题的提出:

数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢?

信号是传递信息的函数。离散时间信号%26mdash;%26mdash;序列%26mdash;%26mdash;可以用图形来表示。

按信号特点的不同,信号可表示成一个或几个独立变量的函数。例如,图像信号就是空间位置(二元变量)的亮度函数。一维变量可以是时间,也可以是其他参量,习惯上将其看成时间。信号有以下几种:

(1)连续时间信号:在连续时间范围内定义的信号,但信号的幅值可以是连续数值,也可以是离散数值。当幅值为连续这一特点情况下又常称为模拟信号。实际上连续时间信号与模拟信号常常通用,用以说明同一信号。

(2)离时间信号:时间为离散变量的信号,即独立变量时间被量化了。而幅度仍是连续变化的。

(3)数字信号:时间离散而幅度量化的信号。

语音信号是基于时间轴上的一维数字信号,在这里主要是对语音信号进行频域上的分析。在信号分析中,频域往往包含了更多的信息。对于频域来说,大概有8种波形可以让我们分析:矩形方波,锯齿波,梯形波,临界阻尼指数脉冲波形,三角波,余旋波,余旋平方波,高斯波。对于各种波形,我们都可以用一种方法来分析,就是傅立叶变换:将时域的波形转化到频域来分析。

于是,本课题就从频域的角度对信号进行分析,并通过分析频谱来设计出合适的滤波器。当然,这些过程的实现都是在MATLAB软件上进行的,MATLAB软件在数字信号处理上发挥了相当大的优势。

二、设计方案:

利用MATLAB中的wavread命令来读入(采集)语音信号,将它赋值给某一向量。再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。对于波形图与频谱图(包括滤波前后的对比图)都可以用

MATLAB画出。我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。

选择设计此方案,是对数字信号处理的一次实践。在数字信号处理的课程学习过程中,我们过多的是理论学习,几乎没有进行实践方面的运用。这个课题正好是对数字语音处理的一次有利实践,而且语音处理也可以说是信号处理在实际应用中很大众化的一方面。

这个方案用到的软件也是在数字信号处理中非常通用的一个软件%26mdash;%26mdash;MATLAB软件。所以这个课题的设计过程也是一次数字信号处理在MATLAB中应用的学习过程。课题用到了较多的MATLAB语句,而由于课题研究范围所限,真正与数字信号有关的命令函数却并不多。

三、主体部分:

(一)、语音的录入与打开:

[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。[N1

N2]表示读取从N1点到N2点的值(若只有一个N的点则表示读取前N点

的采样值)。

sound(x,fs,bits);

用于对声音的回放。向量y则就代表了一个信号(也即一个复杂的%26ldquo;函数表达式%26rdquo;)也就是说可以像处理一个信号表达式一样处理这个声音信号。

FFT的MATLAB实现

在MATLAB的信号处理工具箱中函数FFT和IFFT用于快速傅立叶变换和逆变换。下面介绍这些函数。

函数FFT用于序列快速傅立叶变换。

函数的一种调用格式为 y=fft(x)

其中,x是序列,y是序列的FFT,x可以为一向量或矩阵,若x为一向量,y是x的FFT。且和x相同长度。若x为一矩阵,则y是对矩阵的每一列向量进行FFT。

如果x长度是2的幂次方,函数fft执行高速基-2FFT算法;否则fft 执行一种混合基的离散傅立叶变换算法,计算速度较慢。

函数FFT的另一种调用格式为 y=fft(x,N)

式中,x,y意义同前,N为正整数。

函数执行N点的FFT。若x为向量且长度小于N,则函数将x补零至长度N。若向量x的长度大于N,则函数截短x使之长度为N。若x

为矩阵,按相同方法对x进行处理。

经函数fft求得的序列y一般是复序列,通常要求其幅值和相位。MATLAB 提供求复数的幅值和相位函数:abs,angle,这些函数一般和FFT同时使用。

函数abs(x)用于计算复向量x的幅值,函数angle(x)用于计算复向量的相角,介于和之间,以弧度表示。

函数unwrap(p)用于展开弧度相位角p ,当相位角绝对变化超过时,函数把它扩展至。

用MATLAB工具箱函数fft进行频谱分析时需注意:

(1)函数fft返回值y的数据结构对称性

若已知序列x=[4,3,2,6,7,8,9,0],求X(k)=DFT[x(n)]。

利用函数fft计算,用MATLAB编程如下:

N=8;

n=0:N-1;

xn=[4 3 2 6 7 8 9 0]';

XK=fft(xn)

结果为:

XK =

39.0000

-10.7782 + 6.2929i

0 - 5.0000i

4.7782 - 7.7071i

5.0000

4.7782 + 7.7071i

0 + 5.0000i

-10.7782 - 6.2929i

由程序运行所得结果可见,X(k)和x(n)的维数相同,共有8个元素。X(k)的第一行元素对应频率值为0,第五行元素对应频率值为Nyquist频率,即标准频率为1.因此第一行至第五行对应的标准频率为0~1。而第五行至第八行对应的是负频率,其X(k)值是以Nyquist频率为轴对称。(注:通常表示为Nyquist 频率外扩展,标以正值。)

一般而言,对于N点的x(n)序列的FFT是N点的复数序列,其点n=N/2+1对应Nyquist频率,作频谱分析时仅取序列X(k)的前一半,即前N/2点即可。X(k)的后一半序列和前一半序列时对称的。

(2)频率计算

若N点序列x(n)(n=0,1,…,N-1)是在采样频率

下获得的。它的FFT也是N点序列,即X(k)(k=0,1,2,…,N-1),则第k 点所对应实际频率值为f=k*f /N.

(3)作FFT分析时,幅值大小与FFT选择点数有关,但不影响分析结果。

2、设计内容:

(1)下面的一段程序是语音信号在MATLAB中的最简单表现,它实现了语音的读入打开,以及绘出了语音信号的波形频谱图。

[x,fs,bits]=wavread('ding.wav',[1024 5120]);

sound(x,fs,bits);

X=fft(x,4096);

magX=abs(X);

angX=angle(X);

subplot(221);plot(x);title('原始信号波形');

subplot(222);plot(X); title('原始信号频谱');

subplot(223);plot(magX);title('原始信号幅值');

subplot(224);plot(angX);title('原始信号相位');

程序运行可以听到声音,得到的图形为:

(2)定点分析:已知一个语音信号,数据采样频率为100Hz,试分别绘制N=128点DFT的幅频图和N=1024点DFT幅频图。

编程如下:

x=wavread('ding.wav');

sound(x);

fs=100;N=128;

y=fft(x,N);

magy=abs(y);

f=(0:length(y)-1)'*fs/length(y);

subplot(221);plot(f,magy);

xlabel('频率(Hz)');ylabel('幅值');

title('N=128(a)');grid

subplot(222);plot(f(1:N/2),magy(1:N/2));

xlabel('频率(Hz)');ylabel('幅值');

title('N=128(b)');grid

fs=100;N=1024;

y=fft(x,N);

magy=abs(y);

f=(0:length(y)-1)'*fs/length(y);

subplot(223);plot(f,magy);

xlabel('频率(Hz)');ylabel('幅值');

title('N=1024(c)');grid

subplot(224);plot(f(1:N/2),magy(1:N/2));

xlabel('频率(Hz)');ylabel('幅值');

title('N=1024(d)');grid

运行结果如图:

上图(a)、(b)为N=128点幅频谱图,(c)、(d)为N=1024点幅频谱图。由于采样频率f =100Hz,故Nyquist频率为

50Hz。(a)、(c)是0~100Hz频谱图,(b)、(d)是0~50Hz频谱图。由(a)或(c)可见,整个频谱图是以Nyquist频率为轴对称的。因此利用fft对信号作频谱分析,只要考察0~Nyquist频率(采样频率一半)范围的幅频特性。比较(a)和(c)或(b)和(d)可见,幅值大小与fft选用点数N有关,但只要点数N足够不影响研究结果。从上图幅频谱可见,信号中包括15Hz和40Hz的正弦分量。

(3)若信号长度T=25.6s,即抽样后x(n)点数为T/Ts=256,所得频率分辨率为 Hz,以此观察数据长度N的变化对DTFT分辨率的影响:

编程如下:

[x,fs,bits]=wavread('ding.wav');

N=256;

f=0:fs/N:fs/2-1/N;

X=fft(x);

X=abs(X);

subplot(211)

plot(f(45:60),X(45:60));grid

xlabel('Hz'),ylabel('|H(ejw)|')

%数据长度N扩大4倍后观察信号频谱

N=N*4;

f=0:fs/N:fs/2-1/N;

X=fft(x);

X=abs(X);

subplot(212)

plot(f(45*4:4*60),X(4*45:4*60));grid

xlabel('Hz'),ylabel('|H(ejw)|')

结果如图:

(三)、滤波器设计:

1、相关原理:

设计数字滤波器的任务就是寻求一个因果稳定的线性时不变系统,并使系统函数H(z)具有指定的频率特性。

数字滤波器从实现的网络结构或者从单位冲激响应分类,可以分成无限长单位冲激响应(IIR)数字滤波器和有限长单位冲激响应(FIR)数字滤波器。

数字滤波器频率响应的三个参数:

(1)幅度平方响应:

(2)相位响应

其中,相位响应

(3)群时延响应

IIR数字滤波器:

IIR数字滤波器的系统函数为的有理分数,即

IIR数字滤波器的逼近问题就是求解滤波器的系数和

,使得在规定的物理意义上逼近所要求的特性的问题。如果是在s平面上逼近,就得到模拟滤波器,如果是在z平面上逼近,则得到数字滤波器。

FIR数字滤波器:

设FIR的单位脉冲响应h(n)为实数,长度为N,则其z变换和频率响应分别为

按频域采样定理FIR数字滤波器的传输函数H(z)和单位脉冲响应h(n)可由它的N个频域采样值H(k)唯一确定。

MATLAB中提供了几个函数,分别用于实现IIR滤波器和FIR滤波器。

(1)卷积函数conv

卷积函数conv的调用格式为 c=conv(a,b)

该格式可以计算两向量a和b的卷积,可以直接用于对有限长信号采用FIR滤波器的滤波。

(2)函数filter

函数filter的调用格式为 y=filter(b,a,x)

该格式采用数字滤波器对数据进行滤波,既可以用于IIR滤波器,也可以用于FIR滤波器。其中向量b和a分别表示系统函数的分子、分母多项式的系数,若a=1,此时表示FIR滤波器,否则就是IIR滤波器。该函数是利用给出的向量b和a,对x中的数据进行滤波,结果放入向量y。

(3)函数fftfilt

函数fftfilt的调用格式为 y=fftfilt(b,x)

该格式是利用基于FFT的重叠相加法对数据进行滤波,这种频域滤波技术只对FIR滤波器有效。该函数是通过向量b描述的滤波器对x数据进行滤波。

关于用butter函数求系统函数分子与分母系数的几种形式。

[b,a]=butter(N,wc,'high'):设计N阶高通滤波器,wc为它的3dB边缘频率,以为单位,故。

[b,a]=butter(N,wc):当wc为具有两个元素的矢量wc=[w1,w2]时,它设计2N阶带通滤波器,3dB通带为,w的单位为。

[b,a]=butter(N,wc,'stop'):若wc=[w1,w2],则它设计2N阶带阻滤波器,3dB通带为,w的单位为。

如果在这个函数输入变元的最后,加一个变元%26ldquo;s%26rdquo;,表示设计的是模拟滤波器。这里不作讨论。

为了设计任意的选项巴特沃斯滤波器,必须知道阶数N和3dB边缘频率矢量wc。这可以直接利用信号处理工具箱中的buttord函数来计算。如果已知滤波器指标

,,和,则调用格式为

[N,wc]=buttord(wp,ws,Rp,As)

对于不同类型的滤波器,参数wp和ws有一些限制:对于低通滤波器,

wp%26lt;ws;对于高通滤波器,wp%26gt;ws;对于带通滤波器,wp和ws分别为具有两个元素的矢量,wp=[wp1,wp2]和ws=[ws1,ws2],并且

ws1%26lt;wp1%26lt;wp2%26lt;ws2;对于带阻滤波器wp1%26lt;ws1%26lt;ws2%26lt;wp2。

2、设计内容:

(1)滤波器示例:

在这里为了说明如何用MATLAB来实现滤波,特举出一个简单的函数信号滤波实例(对信号x(n)=sin( n/4)+5cos(

n/2)进行滤波,信号长度为500点),从中了解滤波的实现过程。程序如下:

Wn=0.2*pi;

N=5;

[b,a]=butter(N,Wn/pi);

n=0:499;

x=sin(pi*n/4)+5*cos(pi*n/2);

X=fft(x,4096);

subplot(221);plot(x);title('滤波前信号的波形');

subplot(222);plot(X);title('滤波前信号的频谱');

y=filter(b,a,x);

Y=fft(y,4096);

subplot(223);plot(y);title('滤波后信号的波形');

subplot(224);plot(Y);title('滤波后信号的频谱');

在这里,是采用了butter命令,设计出一个巴特沃斯低通滤波器,从频谱图中可以很明显的看出来。下面,也就是本课题的主要内容,也都是运用到了butter函数,以便容易的得到系统函数的分子与分母系数,最终以此来实现信号的滤波。

(2)N阶高通滤波器的设计(在这里,以5阶为例,其中wc为其3dB边缘频率,以为单位),程序设计如下:

x=wavread('ding.wav');

sound(x);

N=5;wc=0.3;

[b,a]=butter(N,wc,'high');

X=fft(x);

subplot(321);plot(x);title('滤波前信号的波形');

subplot(322);plot(X);title('滤波前信号的频谱');

y=filter(b,a,x);

Y=fft(y);

subplot(323);plot(y);title('IIR滤波后信号的波形');

subplot(324);plot(Y);title('IIR滤波后信号的频谱');

z=fftfilt(b,x);

Z=fft(z);

subplot(325);plot(z);title('FIR滤波后信号的波形');

subplot(326);plot(Z);title('FIR滤波后信号的频谱');

得到结果如图:

(3)N阶低通滤波器的设计(在这里,同样以5阶为例,其中wc为其3dB 边缘频率,以为单位),程序设计如下:

x=wavread('ding.wav');

sound(x);

N=5;wc=0.3;

[b,a]=butter(N,wc);

X=fft(x);

subplot(321);plot(x);title('滤波前信号的波形');

subplot(322);plot(X);title('滤波前信号的频谱');

y=filter(b,a,x);

Y=fft(y);

subplot(323);plot(y);title('IIR滤波后信号的波形');

subplot(324);plot(Y);title('IIR滤波后信号的频谱');

z=fftfilt(b,x);

Z=fft(z);

subplot(325);plot(z);title('FIR滤波后信号的波形');

subplot(326);plot(Z);title('FIR滤波后信号的频谱');

得到结果如图:

(4)2N阶带通滤波器的设计(在这里,以10阶为例,其中wc为其3dB 边缘频率,以为单位,wc=[w1,w2],w1 wc w2),程序设计如下:

x=wavread('ding.wav');

sound(x);

N=5;wc=[0.3,0.6];

[b,a]=butter(N,wc);

X=fft(x);

subplot(321);plot(x);title('滤波前信号的波形');

subplot(322);plot(X);title('滤波前信号的频谱');

y=filter(b,a,x);

Y=fft(y);

subplot(323);plot(y);title('IIR滤波后信号的波形');

subplot(324);plot(Y);title('IIR滤波后信号的频谱');

z=fftfilt(b,x);

Z=fft(z);

subplot(325);plot(z);title('FIR滤波后信号的波形');

subplot(326);plot(Z);title('FIR滤波后信号的频谱');

得到结果如图:

(5)2N阶带阻滤波器的设计(在这里,以10阶为例,其中wc为其3dB 边缘频率,以为单位,wc=[w1,w2],w1 wc w2),程序设计如下:

x=wavread('ding.wav');

sound(x);

N=5;wc=[0.2,0.7];

[b,a]=butter(N,wc,'stop');

X=fft(x);

subplot(321);plot(x);title('滤波前信号的波形');

subplot(322);plot(X);title('滤波前信号的频谱');

y=filter(b,a,x);

Y=fft(y);

subplot(323);plot(y);title('IIR滤波后信号的波形');

subplot(324);plot(Y);title('IIR滤波后信号的频谱');

z=fftfilt(b,x);

Z=fft(z);

subplot(325);plot(z);title('FIR滤波后信号的波形');

subplot(326);plot(Z);title('FIR滤波后信号的频谱');

得到结果如图:

(6)小结:以上几种滤波,我们都可以从信号滤波前后的波形图以及频谱图上看出变化。当然,也可以用sound()函数来播放滤波后的语音,从听觉上直接感受语音信号的变化,但由于人耳听力的限制,有些情况下我们是很难听出异同的。

同样,通过函数的调用,也可以将信号的频谱进行%26ldquo;分离观察%26rdquo;,如显出信号的幅值或相位。下面,通过改变系统函数的分子与分母系数比,来观察信号滤波前后的幅值与相位。并且使结果更加明显,使人耳得以很容易的辨听。

x=wavread('ding.wav');

sound(x);

b=100;a=5;

y=filter(b,a,x);

X=fft(x,4096);

subplot(221);plot(x);title('滤波前信号的波形');

subplot(222);plot(abs(X));title('滤波前信号的幅值');

Y=fft(y,4096);

subplot(223);plot(y);title('滤波后信号的波形');

subplot(224);plot(abs(Y));title('滤波后信号的幅值');

结果如图:

%26gt;%26gt; sound(y);

可以听到声音明显变得高亢了。从上面的波形与幅值(即幅频)图,也可看出,滤波后的幅值变成了滤波前的20倍。

%26gt;%26gt; figure,

subplot(211);plot(angle(X));title('滤波前信号相位');

subplot(212);plot(angle(Y));title('滤波后信号相位');

得图:

可以看到相位谱没什么变化。

(四)、界面设计:

直接用M文件编写GUI程序很繁琐,而使用GUIDE设计工具可以大大提高工作效率。GUIDE相当于一个控制面板,从中可以调用各种设计工具以辅助完成界面设计任务,例如控件的创建和布局、控件属性的编辑和菜单设计等。

使用GUIDE设计GUI程序的一般步骤如下:

1. 将所需控件从控件面板拖拽到GUIDE的设计区域;

2. 利用工具条中的工具(或相应的菜单和现场菜单),快速完成界面布局;

3. 设置控件的属性。尤其是tag属性,它是控件在程序内部的唯一标识;

4. 如果需要,打开菜单编辑器为界面添加菜单或现场菜单;

5.

保存设计。GUIDE默认把GUI程序保存为两个同名文件:一个是.fig文件,用来保存窗体布局和所有控件的界面信息;一个是.m文件,该文件的初始内容是GUIDE自动产生的程序框架,其中包括了各个控件回调函数的定义。该M文件与一般的M文件没有本质区别,但是鉴于它的特殊性,MATALAB把这类文件统称为GUI-M文件。保存完后GUI-M文件自动在编辑调试器中打开以供编辑。

6. 为每个回调函数添加代码以实现GUI程序的具体功能。这一步与一般函数文件的编辑调试过程相同。

设计过程及内容:

在MATLAB版面上,通过键入GUIDE弹出一个菜单栏进入gui制作界面(或者在File到new来进入gui),从而开始应用界面的制作。

该界面主要实现了以下几个功能:

①打开wav格式的音频文件,并将该音频信号的值读取并赋予某一向量;

②播放音频文件,可以选择性的显示该音频信号的波形、频谱、幅值以及相位;

③对音频信号进行IIR与FIR的5阶固定滤波处理,可以选择性的显示滤波前后信号的波形、频谱、幅值以及相位,以及播放滤波后的声音。

界面如图所示:

通过该界面,可以方便用户进行语音信号的处理。

界面主程序见附件。

(五)、校验:

1、本设计圆满的完成了对语音信号的读取与打开,与课题的要求十分相符;

2、本设计也较好的完成了对语音信号的频谱分析,通过fft变换,得出了语音信号的频谱图;

3、在滤波这一块,课题主要是从巴特沃斯滤波器入手来设计滤波器,也从一方面基本实现了滤波;

4、初略的完成了界面的设计,但也存在相当的不足,只是很勉强的达到了打开语音文件、显示已定滤波前后的波形等图。

四、结论:

语音信号处理是语音学与数字信号处理技术相结合的交叉学科,课题在这里不讨论语音学,而是将语音当做一种特殊的信号,即一种%26ldquo;复杂向量%26rdquo;来看待。也就是说,课题更多的还是体现了数字信号处理技术。

从课题的中心来看,课题是希望将数字信号处理技术应用于某一实际领域,这里就是指对语音的处理。作为存储于计算机中的语音信号,其本身就是离散化了的向量,我们只需将这些离散的量提取出来,就可以对其进行处理了。

在这里,用到了处理数字信号的强有力工具MATLAB,通过MATLAB里几个命令函数的调用,很轻易的在实际化语音与数字信号的理论之间搭了一座桥。

课题的特色在于它将语音看作了一个向量,于是语音数字化了,则可以完全利用数字信号处理的知识来解决。我们可以像给一般信号做频谱分析一样,来给语音信号做频谱分析,也可以较容易的用数字滤波器来对语音进行滤波处理。

最后,还利用了MATLAB的另一强大功能%26mdash;%26mdash;gui界面设计。设计出了一个简易的用户应用界面,可以让人实现界面操作。更加方便的进行语音的频谱分析与滤波处理。

语音信号分析与处理系统设计

语音信号分析与处理系统设计

语音信号分析与处理系统设计 摘要 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 关键字:Matlab;语音信号;傅里叶变换;信号处理;

目录 1 绪论 (1) 1.1课题背景及意义 (1) 1.2国内外研究现状 (1) 1. 3本课题的研究内容和方法 (2) 1.3.1 研究内容 (2) 1.3.2 运行环境 (2) 1.3.3 开发环境 (2) 2 语音信号处理的总体方案 (3) 2.1 系统基本概述 (3) 2.2 系统基本要求 (3) 2.3 系统框架及实现 (3) 2.4系统初步流程图 (4) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6) 3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (6) 3.4数字滤波器设计原理 (7) 3.5倒谱的概念 (7) 4 语音信号处理实例分析 (8) 4.1图形用户界面设计 (8) 4.2信号的采集 (8) 4.3语音信号的处理设计 (8) 4.3.1 语音信号的提取 (8) 4.3.2 语音信号的调整 (10)

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论 (3) 1.1课题背景及意义 (3) 1.2国内外研究现状 (3) 1.3本课题的研究内容和方法 (4) 1.3.1 研究内容 (4) 1.3.2 开发环境 (4) 2 语音信号处理的总体方案 (4) 2.1 系统基本概述 (4) 2.2 系统基本要求与目的 (4) 2.3 系统框架及实现 (5) 2.3.1 语音信号的采样 (5) 2.3.2 语音信号的频谱分析 (5) 2.3.3 音乐信号的抽取 (5) 2.3.4 音乐信号的AM调制 (5) 2.3.5 AM调制音乐信号的同步解调 (5) 2.4系统设计流程图 (6) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6)

3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (7) 3.4切比雪夫滤波器 (7) 3.5数字滤波器设计原理 (8) 4 语音信号实例处理设计 (8) 4.1语音信号的采集 (8) 4.3.1高频调制与低频调制 (10) 4.3.2切比雪夫滤波 (11) 4.3.3 FIR滤波 (11) 5 总结 (12) 参考文献 (13) 语音信号的处理与分析 【摘要】语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 【关键词】Matlab 语音信号傅里叶变换低通滤波器

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是:

如何利用matlab处理音频信号

Matlab处理音频信号 一、问题的提出:数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢?信号是传递信息的函数。 一、问题的提出: 数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢? 信号是传递信息的函数。离散时间信号%26mdash;%26mdash;序 列%26mdash;%26mdash;可以用图形来表示。 按信号特点的不同,信号可表示成一个或几个独立变量的函数。例如,图像信号就是空间位置(二元变量)的亮度函数。一维变量可以是时间,也可以是其他参量,习惯上将其看成时间。信号有以下几种: (1)连续时间信号:在连续时间范围内定义的信号,但信号的幅值可以是连续数值,也可以是离散数值。当幅值为连续这一特点情况下又常称为模拟信号。实际上连续时间信号与模拟信号常常通用,用以说明同一信号。 (2)离时间信号:时间为离散变量的信号,即独立变量时间被量化了。而幅度仍是连续变化的。 (3)数字信号:时间离散而幅度量化的信号。 语音信号是基于时间轴上的一维数字信号,在这里主要是对语音信号进行频域上的分析。在信号分析中,频域往往包含了更多的信息。对于频域来说,大概有8种波形可以让我们分析:矩形方波,锯齿波,梯形波,临界阻尼指数脉冲波形,三角波,余旋波,余旋平方波,高斯波。对于各种波形,我们都可以用一种方法来分析,就是傅立叶变换:将时域的波形转化到频域来分析。 于是,本课题就从频域的角度对信号进行分析,并通过分析频谱来设计出合适的滤波器。当然,这些过程的实现都是在MATLAB软件上进行的,MATLAB软件在数字信号处理上发挥了相当大的优势。

信号处理实验七音频频谱分析仪设计与实现

哈尔滨工程大学 实验报告 实验名称:离散时间滤波器设计 班级:电子信息工程4班 学号: 姓名: 实验时间:2016年10月31日18:30 成绩:________________________________ 指导教师:栾晓明 实验室名称:数字信号处理实验室哈尔滨工程大学实验室与资产管理处制

实验七音频频谱分析仪设计与实现 一、 实验原理 MATLAB 是一个数据分析和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数命令。本实验要求基于声卡和MTLAB 实现音频信号频谱分析仪的设计原理与实现,功能包括: (1)音频信号输入,从声卡输入、从WAV 文件输入、从标准信号发生器输入; (2)信号波形分析,包括幅值、频率、周期、相位的估计、以及统计量峰值、均值、均方值和方差的计算。 (3)信号频谱分析,频率、周期的统计,同行显示幅值谱、相位谱、实频谱、虚频谱和功率谱的曲线。 1、频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T ,由于能够求得多个T 值(ti 有多个),故采用它们的平均值作为周期的估计值。 2、幅值检测 在一个周期内,求出信号最大值ymax 与最小值ymin 的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A 值,但第1个A 值对应的ymax 和ymin 不是在一个周期内搜索得到的,故以除第1个以外的A 值的平均作为幅值的估计值。 3、相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x 的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图1所示。 4、数字信号统计量估计 (1) 峰值P 的估计 在样本数据x 中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。 P=0.5[max(yi)-min(yi)] (2)均值估计 i N i y N y E ∑== 1 )( 式中,N 为样本容量,下同。 (3) 均方值估计 () 20 2 1 ∑== N i i y N y E (4) 方差估计 ∑=-=N i i Y E y N y D 0 2))((1)(

数字信号处理综合分析报告--数字音频信号的分析与处理

数字信号处理综合报告--数字音频信号的分析与处理

————————————————————————————————作者:————————————————————————————————日期:

数字信号处理实验 题目数字音频信号的分析与处理 班级 姓名 学号 日期 2013.06.10-2013.06.24

一、实验目的 1.复习巩固数字信号处理的基本理论; 2.利用所学知识研究并设计工程应用方案。 二、实验原理 数字信号处理技术在音频信号处理中的应用日益增多,其灵活方便的优点得到体现。分频器即为其中一种音频工程中常用的设备。 人耳能听到的声音频率范围为20Hz~20000Hz,但由于技术所限,扬声器难以做到在此频率范围内都有很好的特性,因此一般采用两个以上的扬声器来组成一个系统,不同的扬声器播放不同频带的声音,将声音分成不同频带的设备就是分频器。下图是一个二分频的示例。 图8.1 二分频示意图 高通滤波器和低通滤波器可以是FIR或IIR类型,其中FIR易做到线性相位,但阶数太高, 不仅需要耗费较多资源,且会带来较长的延时;IIR阶数低,但易出现相位失真及稳定性问题。 对分频器的特性,考虑最多的还是两个滤波器合成的幅度特性,希望其是平坦的,如图8.2所示: 图8.2 分频器幅度特性 分频 低频放 高频放 声 音 High Low-

由于IIR 的延时短,因此目前工程中大量应用的还是Butterworth 、Bessel 、Linkwitz-Riley 三种IIR 滤波器。其幅频特性如图8.3所示: 图8.3 三种常用IIR 分频器的幅度特性 巴特沃斯、切比雪夫、椭圆等类型的数字滤波器系数可通过调用MATLAB 函数很方便的计算得到,但Bessel 、Linkwitz-Riley 数字滤波器均无现成的Matlab 函数。 并联系统的系统函数为 级联系统的系统函数为 宁可瑞滤波器(Linkwitz-Riley ),由两个巴特沃斯滤波器级联而成。 N 阶巴特沃夫滤波器等效宁可瑞滤波器的设计 l h h l l h ()()()()()()()()()()()()()()()B=conv(B ,A )+conv(B ,A )A=conv(A ,A ) l h l h l h l h h l l h B z B z H z H z H z A z A z B z A z B z A z B z A z A z A z =+=++==????121212l 212()()()()()()()()() B=conv(B ,B )A=conv(A ,A ) B z B z B z H z H z H z A z A z A z ===?????

语音信号处理系统设计

课题六语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是:

录音合成技术教案-音频信号处理

第四章:音频信号处理-1 信号在时间范畴内的处理 第13 –16 学时

内容 ?混响的概念 ?决定混响的因素?混响时间的选择?时空 ?声源、麦克与环境?术语概念?反射的顺序?条件 ?参数

混响的概念 ◆乐器停止发音后,声音并不马上消失,而是伴有余音的,即分贝 数渐渐下降,这种现象称为混响。 ◆声学上把声音衰减60dB的时间称为混响时间。 ◆混响是由于声音在室内反射造成的,室外是没有混响的。 ◆反映音乐厅质量的主要因素是混响。

决定混响的因素 ◆房间的体积:通常体积越大,混响时间越长; ◆房间内壁的材质:如果内壁是粗糙柔软的吸声材质,那么混响时间会短 些,如果内壁是坚硬光滑的反射材质,那么混响时间会长些,房间的内壁指的是墙壁、天花板、地板,以及音乐厅内一切影响声音传播的障碍物,特别是坐椅,增加有软垫的坐椅数量会缩短混响时间; ◆声音的频率:由于高频声音的反射和衍射能力比低频声音差,所以高频 声音的混响时间比低频声音短。

混响时间的选择 ◆混响时间太短会使声音变得干涩,太长则会使音乐失去清晰的线条,两 者都不利于音乐的欣赏。实践表明,适合乐队演奏的音乐厅,混响时间应在1.5到2秒之间。 ◆最佳的混响时间并不是唯一的,它取决于听众的爱好、音乐的类型、乐 队的规模等诸多因素。 ◆例如:重视音响效果的听众希望混响时间长些(交响乐) ,重视音乐细节 (旋律、节奏等)的欣赏者希望混响时间短些(歌剧)。

时空主题词:干音、湿音、时间、空间、直达、反射、混响、延时 ?我们熟悉的时间与空间 ?室内 ?室外 ?混响 ?反射 ?时间与空间的概念 ?早期反射与后期混响 ?延时与延迟 ?空间尺寸

基于MATLAB的语音信号分析与处理系统的设计

数字信号处理大作业 基于MATLAB的语音信号分析与处理系统的设计 班级:物联网1401 学号: 姓名:zk 目录 一、设计目的 (2)

二、设计内容及要求 (2) 2.1设计内容 (2) 2.2设计要求 (3) 三、详细设计过程 (3) 3.1语音信号的采集 (3) 3.2 原始语音信号的时域频域分析 (3) 3.3原始语音信号加噪 (5) 3.4设计滤波器 (6) 3.5 MATLAB语音信号处理界面设计 (8) 3.6 利用C语言得出声音带宽 (11) 四、调试结果 (11) 五、结论 (12) 参考文献 (13) 一、设计目的 综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用 MATLAB和C语言作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。 二、设计内容及要求 2.1设计内容 ①录制一段自己的语音信号(我是物联网1401班的张坤),并对录制的信号进行采样。

②画出采样后语音信号的时域波形和频谱图。 ③给定滤波器的性能指标,采用窗函数法或双线性变换设计滤波器,并画出滤波器的频率响应。 ④利用设计的滤波器对采集的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化,回放语音信号。 ⑤用 MATLAB 设计一信号处理系统界面。 ⑥利用C语言对录制语音信号进行FFT变换(取其中的1024进行),计算出自己声带的带宽。 2.2设计要求 ①学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法。 ②掌握在 Windows 环境下语音信号采集的方法。 ③掌握数字信号处理的基本概念、基本理论和基本方法。 ④掌握 MATLAB 设计 FIR 和 IIR 数字滤波器的方法。 ⑤学会用 MATLAB 对信号进行分析和处理。 ⑥学会用C语言进行FFT程序的编写和算法效果的仿真。 三、详细设计过程 3.1语音信号的采集 利用PC 机上的声卡和Windows 操作系统实现语音信号的的采集。打开“开始”菜单,选择“程序\附件\娱乐\录音机”项,打开Windows中自带的录音机程序,点击录音机程序界面中的录音按钮,开始声音录制。录完后点击放音按钮,可以实现所录音的重现。以文件名“zhangkun”保存入D:\ 中。文件存储器的后缀默认为.wav ,这是Windows 操作系统规定的声音文件存的标准。 3.2 原始语音信号的时域频域分析 利用MATLAB中的“audioread”命令来读入(采集)语音信号,将它赋值给某一向量。再对其进行采样,记住采样频率和采样点数。根据help文档,下面介绍audioread函数三种调用格式。

音频信号处理

摘要 在机器人技术领域,由于嵌入式处理器的运算能力有限,在某些情况下,尤其是在处理音频信号时,可将一些运算转移至一个远程桌面或服务器上完成。例如,在一个远程处理器上完成话语识别往往效率更高,更加迅速、准确。大多数现代智能手机均以远程方式处理语音识别。 此外,用户可能会希望在机器人上直接使用自己的信号处理算法。例如,用户会希望通过分析输入信号来探测诸如音乐、铃声、语音等不同发声事件。 本文将介绍机器人NAO 上的音频模块的组织方式、如何访问NAO 扩音器声音数据以及如何以本地或远程方式将数据输送至NAO 的扬声器。相关研究成果 ● 随着互联网的不断发展,研究人员成功实现了 众多研究项目,使人们可以通过网络传送大量(音频或视频)数据。为此开发出的许多使用协议还可优化数据传输质量。NAOqi 框架使用的正是其中的一种协议(即“SOAP ”,全称为“Simple Object Access Protocol ”),可以通过网络收发音频信号。● 在NAO 上生成和记录声音时,使用的是ALSA (Advanced Linux Sound Architecture )库。 原理 目前,NAOqi 中包含六个相互关联的音频模块。其组织方式如图1所示。 ALAudioDevice 模块管理音频输入与输出。 因此,所有试图向NAO 的扬声器发送声音的模块,或是处理来自NAO 扩音器声音的模块,都必须与ALAudioDevice 模块交流信息。 图1NAOqi 音频模块 构架 关键性能音频信号处理

实时声音处理 为了实时处理扩音器输入信号,首先需要创建一个“Aud io in”模块。随后,该模块必须订阅至ALAudioDevice 模块。后者将通过一个调回函数发送输入缓冲。ALAudioDevice 按顺序发送缓冲,即输入缓冲首先发送至第一个订阅模块,待第一个模块完成处理后再发送至第二个订阅模块,以此类推。该工作模式请见图2。 ALAudioDevice 模块按照由inputBufferSize 的设定值及输入样本率(48kHz )确定的时间间隔定期读取输入缓冲。因此,订阅模块的总处理用时不得超过这一时间间隔,否则会错失音频缓冲,从而无法实现实时处理。优点 远程处理声音信号的优点在于用户可较为轻松地调试或优化其声音处理算法,而且,与在机器人上运行相比,这些算法可占用更多CPU 负荷。然而,如果用户的模块直接在NAO 上运行,音频缓冲的输送速度会较快。局限 ● 通过ALAudioDevice 模块可获得的最大输入缓冲大小为65536(每个扩音器频道为16384个16位样本)。 因此,一个缓冲的最长处理时间为341ms 。 ● 通过ALAudioDevice 模块可发送的最大缓冲大小为32768(16384个16位立体声样本)。 ● 由于输入样本率为48kHz ,远程声音处理所需的最低链接比特率为384kBits/s 。如果用户使用的网络链接速度过低,或链接质量不佳,就会导致错失音频缓冲。 图2输入缓冲 发送与处理的工作模式

1.4音频信号处理电路

模块1 CRT电视机的维修 任务1.4音频信号处理电路 知识能力 电视机的伴音解调电路的任务是完成电视伴音的解调和放大,使声音信号有足够的功率推动扬声器。伴音电路是由伴音中频滤波器(带通滤波器)、第二伴音中放限幅放大器、鉴频器、前置放大器、音量控制、功率放大器等电路组成。通常把伴音中频放大器、鉴频器和电子音量衰减器做在一块集成电路中,或与图像中频电路做在一起。 1.4.1 音频处理电路的原理

视频检波输出的视频全电视信号(其中包含有6.5MHz的第二伴音中频信号,也有单独供出这一信号的电路方式)进入6.5MHZ滤波器,取出6.5MHz调频伴音中频信号。然后由伴音中放电路作限幅放大,送到鉴频器,解调出伴音音频信号。至此已还原出伴音信号,但它的功率小,不足以推动扬声器,所以这种小音频信号还要经前置音频放大器和功率放大器放大后才最后送扬声器。为了能控制音量,在前置放大和功率放大器之间还插入音量控制电路。音量控制的方法有多种,最简单的是电位器分压法,用电位器做音频前置放大器音频输出的负载,从活动滑臂上取出信号送功率放大级。在集成电路电视机中目前多采用直流电压音量控制法,其方法是在音频前放置放大器与功率器之间设一个电子衰减器。图4-1所示是一个采用电子衰减器的彩电的整机方框图。图中的虚线框即是电子衰减器。它有一个信号输入端和一个直流电压控制输入端,其衰减量的大小决定于输入的直流电压的大小,有的电路是该电压越高,信号衰减越大,输出信号电子越低;有的电路则与此相反。产生控制用直流电压的 方法有两种:1)电位器调节法,如图中的R 2。12V电压加在电位器R 2 两端,调节滑臂,即可 调节直流控制电压;2)键控法。键控信号送入微电脑,再由微电脑控制电路输出直流音量控制电压控制电子衰减器(当然其间还插入接口电路)。由于采用电子衰减器具有直流电压控制衰减功能,故易于开发伴音静噪和静音功能。静音功能是使微电脑控制电路产生一高电位——静音控制电压,送至衰减器音量控制端暂停伴音输出。电子衰减器一般随伴音中频电路或功放电路制作在集成电路中,其直流电压衰减控制端由引脚引出与外电路连接。 目前大多数彩电的伴音通道中,还有两个附属电路:一种是AV接口电路。为了使电视机具有连接录像机、VCD、DVD机等视频设备播放视频节目的功能,设置了AV接口电路。它的主电路是集成化的电子开关,图4-1中给出了音频切换的示意图(视频部分未画)。伴音解调器(鉴频器)输出的音频信号不直接送往音频预置放大电路,而先送往AV接口电路中的模拟开关的一个输入端。外部来的音频信号送往开关的另一个输入端,电子开关可以选择这两路输入信号之一并将它送至音频放大电路。 还有一种是伴音中频制式转换电路。由于世界各地区电视广播的制式的差别,第二伴音中频信号的频率有4.5MHz、5.5MHz、6.0MHz、6.5MHz等多种。因此在多制式电路的机型中,有必要增加伴音中频制式转换电路或多通道鉴频电路。这一电路的本质是使用电子开关、带通滤波器及变频技术,使伴音解调电路适应各制式的伴音中频,而其转换过程则由微电脑来自动控制(也有人工控制的)。 1.4.2、音频处理电路的检修

基于FPGA的音频处理系统设计(毕业设计开题报告)

基于FPGA的音频处理系统设计 1 课题来源: 随着数字记录技术和大规模集成电路技术的迅速发展,消费类电子产品正以日新月异的新姿展现在当代人的面前,音响类娱乐产品的多样化、小型化与数字化及品种的琳琅满目丰富了音响产品市场,满足了多层次消费者的不同需要。在这些科技产品的快速发展过程中,数字音频技术在其中扮演着重要的角色。 现在音频处理技术的任务越来越复杂,对信号处理的效果要求不断提高,音频处理技术的算法也越来越复杂,要求在几十ms甚至几ms的时间内完成音频信号大量的数据采集、处理、存储、传输,这就对音频处理系统处理器的运算速度提出了更高的要求。 2 研究的目的和意义: 随着消费电子的快速发展,数字音频技术的应用显得越来越重要,对数字音频技术的研究符合市场与科技需求。数字音频处理技术涉及生活的方方面面,包括滤波器技术、数字信号处理、人工智能、模式识别、编码学、等多个学科的知识,是信息化技术类学科当中发展极为迅速的一个方向之一。音频信号处理技术包含的内容非常多,主要有信号存储、语音合成、语音识别、音频压缩、语音理解、音频编码、语音识别、语音增强等多个分支,总而言之,音频信号处理技术包括音频信号的数字化处理、数字化实现、数字化变换、数字化存储、数字化传播、及音频的变换、语音的处理、语音的识别等自然科学多个领域的综合运用。 传统的数字滤波器采用乘法和累加结构,需要进行多次的乘法和加法运算。由于乘法器庞大的结构,占用了系统芯片上的大部分面积,消耗了大部分功率,使得音频处理系统在体积和处理速度上存在着不足,所以传统的数字滤波器不能很好的满足家用和便携式音频处理器对体积小、功耗小信号处理速度高的要求。而近些年来使用范围越来越广泛,技术越来越成熟的FPGA器件对于解决对于解决音频信号的高标准、高要求有着其独特的优势。基于FPGA器件的音频信号处理的实现方案,在于对声音信号的收集、处理及应用,工作的重点是在噪声环境中如何

matlab音频信号处理技术

实验一Matlab的音频信号处理技术 一.目的要求 掌握Matlab处理.wav的基本原理和方法。 二.实验内容 【实验题1】音量标准化 (说明:如果有几段音频的电平有大有小,这样的音频保存后,播放时就有的声音大、有的声音小,音量标准化就是把电平大小不同的音频文件,量化到一个既不失真、又有一定标准(100%)的、统一的音量电平,这样就不会出现声音有大有小的情况了。)现以微软自带的“Alarm09.wav”音频信号为例: 1.将Alarm09.wav复制到Matlab当前目录中(或者改变当前目录); 2.再通过音量标准化处理后保存为Alarm09new.wav文件。 实现程序如下: clear; close all; clc [Y, FS, NBITS]=wavread('Alarm09.wav');%将WAV文件转换成变量 FS,NBITS %显示采样频率和量化比特数 Ym=max(max(max(Y)),max(abs(min(Y))));%找出双声道极值 X=Y/Ym;%归一化处理 wavwrite(X,FS,NBITS, 'Alarm09new.wav');%将变量转换成WAV文件 【思考题】 1. 试听标准化处理后的声音,其有何变化? 标准化处理后音量变得稍大。 2. 简单描述“%找出双声道极值”中每一个max和min的意义。 找出wav文件转换为变量后的有最大绝对值的数值,用以归一化处理。

【实验题2】声道分离合并与组合 (说明:立体声或双声道音频信号有左右两个声道利用Matlab实现双声道分离两路声道合并和两个单声道组合成一个双声道等效果这些操作实际利用了Matlab的矩阵抽取、相加和重组运算) 现以“荷塘月色.wav”音频信号为例: clear; close all; clc [X, FS, NBITS]=wavread('荷塘月色.wav'); %将WAV文件转换成变量 X1=X(:,1);%抽取第1声道 X2=X(:,2);%抽取第2声道 wavwrite(X1,FS,NBITS, '荷塘月色1.wav'); wavwrite(X2,FS,NBITS, '荷塘月色2.wav'); X12=X1+X2;%两路单声道合并 X12m=max(max(max(X12)),max(abs(min(X12))));%找出极值 Y12=X12/X12m;%归一化 wavwrite(Y12,FS,NBITS, '荷塘月色12.wav'); X3=[X1,X2];%两路单声道变量组合 wavwrite(X3,FS,NBITS, '荷塘月色3.wav'); 【思考题】 1.比较各种处理后的文件大小。 荷塘月色1和2以及归一化后的12文件较小,只有原来的一半,荷塘月色3和原来一样大。 2.试听处理后的文件,简述有何不同? 效果不明显。本以为可以听到男声和女声的单独声道,但是没有听出区别。

语音信号变声处理系统

数字信号处理课程设计报告 课设题目:语音信号变声处理系统学院:信息与电气工程学院专业:电子信息工程 班级:1102502 姓名:王珂 学号:110250217 指导教师:周志权、赵占锋 哈尔滨工业大学(威海) 2015年1月5日

1.设计任务 电视台经常针对某些事件的知情者进行采访,为了保护知情者,经常改 变说话人的声音,请利用所学的知识,将其实现。 (1)自己录制一段正常的声音文件,或者通过菜单选择的方式选择一段正常声音文件;(2)能够播放该文件; (3)对语音信号进行处理,要求处理后的语音信号基本不影响正常收听与理解; (4)对处理参数能够通过matlab 界面进行调节,以对比不同处理效果;(5)能够对处理后的声音文件与原始声音文件的频谱进行观察、分析。 (6)编制GUI 用户界面。 2.课程设计原理及设计方案 语音科学家将人类发声过程视作一个由声门源输送的气流经以声道、口、鼻腔组成的滤波器调制而成的。人类语音可分为有声语音和无声语音,前者是由声带振动激励的脉冲信号经声腔调制变成不同的音,它是人类语言中元音的基础,声带振动的频率称为基频。无声语音则是声带保持开启状态,禁止振动引发的。一般来说,由声门振动决定的基频跟说话人的性别特征有关,如下表,而无声语音则没有体现这个特征。说话人的个性化音色和语音的另外一个声学参数——共振峰频率的分布有关。儿童由于声道短,其共振峰频率高于成年人,成年女性的声道一般短于成年男性,所以女性的共振峰频率一般高于男性。在进行性别变声时,主要考虑基频和共振峰频率的变化。当基频伸展,共振峰频率也同时伸展时,可由男声变成女声,女声变成童声;反之,基频收缩,共振峰频率也同时收缩时,则由童声变女声,女声变男声。为了获得自然度、真实感较好的变声效果,基频和共振峰频率通常必须各自独立地伸缩变化 图1基频和共振峰频率分布的变化 共振峰频率的改变是基于重采样实现的,从重采样原理知道,这也同时引发了基频的变化,为保证基频变化和共振峰频率变化的独立、互不相关,

语音信号处理综述

语音信号处理综述 摘要:随着信息技术的发展,语音信号处理技术不断地融入到各个领域。作为21世纪信息技术领域最重要的科学技术之一,它成为了人机接口的关键技术,并且越来越受到人们的重视。本文介绍了国内外语音技术的相关发展及该技术在通讯,家具,导航等领域的应用。并对他们的语音技术的优缺点进行了总结。 关键词:语音技术通讯 Review of Speech Signal Processing Abstract: With the development of information technology, the Automatic Speech Recognition (ASR) constantly into the fields. The ASR which is one the most important technology in information fields and it is the key technology of the man-machine interface, and which is more and more appreciated by people. The text introduces the development and application in communication, household and navigation of the ASR. I summer the advantages and disadvantages of their ASR. Key words: ASR communication 一、研究语音信号处理技术的背景及其意义 随着人们进入信息时代,人们的生活、学习、工作领域也越来越智能化。作为人和这些领域沟通的关键接口,语音信号处理技术自然引起里人们的足够重视。该技术就是让机器通过识别和理解把语音信号转变为相应的文本或命令的高级技术。通过该技术人们可以不通过键盘的输入过程而直接通过语音进行操作,并且语音技术的应用已经成为一个具有竞争性的新兴高技术产业。如今,语音技术相关产品已经成为了我们生活的一部分,它的作用越来越被重视,人们对当前语音技术的提高也是越来越期待。 二、语音处理系统的分类 (1)按发音方式分为孤立词、连接词和连续语音的语音识别系统。语音识别系统可能要求说话者以单字、单词、或是短语为发音单位,其间就必须要略微停顿,否则识别就会有问题。以前的语音识别系统,几乎都是以单字或单词为

音频信号处理

一、问题的提出:数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢?信号是传递信息的函数。 一、问题的提出: 数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢? 信号是传递信息的函数。离散时间信号%26mdash;%26mdash;序列%26mdash;%26mdash;可以用图形来表示。 按信号特点的不同,信号可表示成一个或几个独立变量的函数。例如,图像信号就是空间位置(二元变量)的亮度函数。一维变量可以是时间,也可以是其他参量,习惯上将其看成时间。信号有以下几种: (1)连续时间信号:在连续时间范围内定义的信号,但信号的幅值可以是连续数值,也可以是离散数值。当幅值为连续这一特点情况下又常称为模拟信号。实际上连续时间信号与模拟信号常常通用,用以说明同一信号。 (2)离时间信号:时间为离散变量的信号,即独立变量时间被量化了。而幅度仍是连续变化的。 (3)数字信号:时间离散而幅度量化的信号。 语音信号是基于时间轴上的一维数字信号,在这里主要是对语音信号进行频域上的分析。在信号分析中,频域往往包含了更多的信息。对于频域来说,大概有8种波形可以让我们分析:矩形方波,锯齿波,梯形波,临界阻尼指数脉冲波形,三角波,余旋波,余旋平方波,高斯波。对于各种波形,我们都可以用一种方法来分析,就是傅立叶变换:将时域的波形转化到频域来分析。 于是,本课题就从频域的角度对信号进行分析,并通过分析频谱来设计出合适的滤波器。当然,这些过程的实现都是在MATLAB软件上进行的,MATLAB软件在数字信号处理上发挥了相当大的优势。 二、设计方案: 利用MATLAB中的wavread命令来读入(采集)语音信号,将它赋值给某一向量。再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。对于波形图与频谱图(包括滤波前后的对比图)都可以用 MATLAB画出。我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 选择设计此方案,是对数字信号处理的一次实践。在数字信号处理的课程学习过程中,我们过多的是理论学习,几乎没有进行实践方面的运用。这个课题正好是对数字语音处理的一次有利实践,而且语音处理也可以说是信号处理在实际应用中很大众化的一方面。 这个方案用到的软件也是在数字信号处理中非常通用的一个软件%26mdash;%26mdash;MATLAB软件。所以这个课题的设计过程也是一次数字信号处理在MATLAB中应用的学习过程。课题用到了较多的MATLAB语句,而由于课题研究范围所限,真正与数字信号有关的命令函数却并不多。 三、主体部分: (一)、语音的录入与打开: [y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。[N1 N2]表示读取从N1点到N2点的值(若只有一个N的点则表示读取前N点

数字信号处理实验内容 音频信号分析与处理

数字信号处理实验内容—— 音频信号采集、分析及处理 一、实验目的 1.以音频信号为例,熟悉模拟信号数字处理过程,进一步理解数字信 号处理概念。 2.掌握运用Matlab实现对音频信号的时频分析方法; 3.初步掌握数字音频信号合成的方法。 4.掌握运用Matlab设计IIR和FIR滤波系统的方法; 5.掌握运用Matlab实现对加噪的音频信号进行去噪滤波的方法。锻 炼学生运用所学知识独立分析问题解决问题的能力,培养学生创新能力。 二、实验性质 综合分析、设计性实验 三、实验任务 实验内容一:windows系统中的“ding”音频信号的采集、分析、合成

1.音频信号的采集 编写Matlab程序,采集windows系统中的“ding”声,得到*.wav音频文件,而后实现音频信号回放。 2.音频信号的频谱分析 运用Matlab软件实现对音频信号的时域分析和频域分析,并打印相应的图形,完成在实验报告中。 注意:此音频信号的频谱包含两条主要谱线,在进行频谱分析时,注意频谱的完整性,利用MATLAB实现对两条主要谱线的定位并计算谱线所对应的模拟频率。 3.音频信号的分解和合成 运用Matlab软件实现音频信号的分解与合成,将音频信号的频谱中两部分频谱成分进行分解,分别绘制出分解后的两个信号的频谱图;然后将分解后的两个信号再合成为一个新的信号,将合成后的新信号的时域、频域图与原来的信号时域、频域图相比较,绘制出对比效果图。 4.音频信号的回放 运用Matlab软件实现音频信号的回放,将合成后的新信号和原音频信号分别进行回放,对比两个信号的声音效果。

5.音频信号分段傅里叶分析(选作) 分析对一般音频.wav信号进行一次性傅里叶分析时存在的主要问题,利用分段傅里叶变换对该音频信号重新分析并合成。对比一次傅里叶分析结果并进行总结。 实验内容二:任意音频信号的时域和频域分析及数字滤波器设计 1.音频信号的采集 音频信号的采集可以通过Windows自带的录音机也可以用专用的录制软件录制一段音频信号(尽量保证无噪音、干扰小),也可以直接复制一段音频信号(时间为1s),但必须保证音频信号保存为.wav的文件。 2.音频信号的时域、频域分析 运用Matlab软件实现对音频信号的打开操作以及时域分析和频域分析,并画出相应的图形,打印在实验报告中。 3.引入干扰信号 在原有的音频信号上,叠加一个频率为100KHz的正弦波干扰信号(幅度自定,可根据音频信号幅度情况而定)。 4.数字滤波器设计

声音信号处理基本原理

声音信号处理基本原理 一、声音信号之特性 声音是一维信号研究的重要对象,最常见的传播声音的介质是空气,声波和电磁波有很大的不同,例如声波的速度显然比光波慢的多,声音传播的速度与介质的性质和温度有关,例如在空气温度为0 度时,声波的速度为331.5m/s,如果空气温度每升高 1 度时,则声音传播的速度约增加0.6m/s。电磁波是利用电磁感应的方式来传播,而声波的传播方式则通常是机械式的,当介质如空气受到某处震源的压迫时,被压迫的空气分子,就对其平衡位置产生位移,并引起附近空气分子也对其平衡位置产生位移。如所受的压迫是周期性的,而且其频率在声波范围内,此时,空气中就产生声波。声波通常是指振动频率在人能感应范围以内的波动,称为可闻波(Audiblesound)。当频率高于可闻声时称超音波(Ultrasound),其能量较高,一般可用于医学或工程之检测或塑料等材料加工,至于频率比可闻波低时称为低音波(Infrasound),例如地震所引起的地震波。 至于目前声音信号与数字信号处理关系最大的,首推通信方面,由于多媒体信息普及,其数据内容除了文字就是图片与声音,尤其是结合数字电子声音技术的因特网电话,它利用数字信号处理将语音加以数字化压缩,转成数据的形式之后再用线路一部分的频宽移作声音传送,透过因特网传送到通话的彼端,再解压缩回复成为原来的声音,在现在的计算机配备中,计算机音效早已从以往的PC 喇叭变为Adlib 卡、声霸卡等输入及输出的装置,因此使得因特网电话出现广泛的热潮﹐目前已有在网络上面点播歌曲的应用案例。一般电话的语音与电视讯号都是模拟的形式﹐不经过压缩与编码就能传送,但是在频宽与多任务能力方面却远不如因特网﹐因此数字信号处理将掀起未来通信方面的革命。 数字电子声音技术中有一项很重要的工作就是编码的方法,常见的编码方法为脉波码调制(pulse code modalation; PCM) 及高阶脉波数字码调制(advanced pulse code modulation; ADPCM),目前像雷射唱盘、数字录音带、通信卫星、电话通信,都是各式各样的PCM 技术应用的具体例子。影响PCM 的效果的一个因素一为取样频率,一为取样位数,由于这两者其值大小都与人类的听觉与语音能力有关,因此我们先介绍人耳及嘴唇方面的特性。 二、人耳及嘴唇方面的特性 如果我们把人类的语音转到频谱上来分析,可以看到在频谱上人类语音信号大都集中于某一个区段有较高的能量,这也意味着这个能量较高的频带就是人类声腔的共鸣区域,我们通常称这个频带为基本频率(fundamental frequency),每个人的基本频率因为天生的口腔结构而有所不同,通常小孩子的基本频率在250~400HZ 左右,而成年女子约在200~300HZ左右,而成年男子则约在100~150HZ 左右,因此男高音较为少见,也就是这个原因。 当人类发出声音时,如果有利用到声带振动来发音,则称为有声音(Voiced Sound),否则称之为无声音(unvoiecd sound),而语音中又可分为具有稳定声道激发共鸣振动及音源振动变化较多较杂乱的子音。

相关主题
文本预览
相关文档 最新文档