当前位置:文档之家› 内燃机课程设计6200柴油机曲轴设计动力计算

内燃机课程设计6200柴油机曲轴设计动力计算

内燃机课程设计6200柴油机曲轴设计动力计算
内燃机课程设计6200柴油机曲轴设计动力计算

《内燃机学》课程设计设计计算说明书

题目6200柴油机曲轴设计

学院

专业

班级

姓名

学号

指导教师

年月日

目录

1 动力计算 (1)

初始条件 (1)

曲柄连杆机构运动质量的确定 (1)

P-φ示功图的求取 (1)

往复惯性力P j(α)计算 (2)

总作用力P(α)计算 (3)

活塞侧推力P H(α)计算 (3)

连杆力P C(α)计算 (4)

法向力P N(α)计算 (4)

切向力P T(α)计算 (5)

∑T p计算 (6)

总切向力)

曲柄销负荷R B(α)计算 (7)

准确性校核 (8)

2 曲轴设计计算 (9)

曲轴各部尺寸比例 (9)

曲轴船规验算 (10)

1 动力计算

初始条件

母型机参数:

四冲程六缸、废气涡轮增压、不可逆式、直接喷射、压缩空气启动。

D=200mm

S=270mm

n=600r/min Ne=440kW

增压压力P k =,压缩比ε=,机械效率ηm =,压缩复热指数n 1=,膨胀复热指数n 2=,Z 点利用系数ξz =,燃烧过量空气系数α=,中冷器出水温度t=250 ,原机配气定时:

进气门开——上死点前60度 进气门关——下死点后40度 排气门开——下死点前40度 排气门关——上死点后60度

行程失效系数可取约。

连杆长L=540mm ,质量为,活塞组质量m=,连杆组质量分配比,单位曲柄不平衡质量m=。

曲柄连杆机构运动质量的确定

将摆动的连杆用双质量系代替,一部分质量等价到做往复运动的活塞组中,另一部质量等价到做回转运动的曲柄组中,从而可以求出往复质量j m 和连杆组算到大端的质量B m 。由于连杆尺寸并未确定,先按照母型机的连杆质量分配比。

0.347*35.760.347*34.7647.8217()j L m M m kg =+=+=

0.653*0.653*34.7622.6983()B L m m kg ===

上式中,M 表示活塞组质量,为连杆组质量分配比,L m 为连杆质量,质量单位都用kg 。

P-φ示功图的求取

将所给的P-V 示功图,用发动机运动学公式将其展开,即得P-φ示功图。将活塞的位移

转换成对应的曲柄转角,以α代表曲柄转角,取145个点,对应0度到720度每隔5度取一次,由此可得各曲柄转角α下的气体力值Pg (α),单位为MPa 。用matlab 画成曲线见图1,其matlab 程序参见附录。图中实线表示的是气缸压力Pg 与曲柄转角a 的关系。

图1 P ,Pg,Pj 与曲柄转角a 的关系

往复惯性力P j (α)计算

232

()(cos cos 2)104

j

j m p a R a a D ωλπ

-=-

+ (MPa) (1)

往复惯性力按照公式1计算,图1中虚线即为往复惯性力与曲柄转角a 的关系。 式中:mj —往复运动质量,kg ; R —曲柄半径,mm ; D —气缸直径,mm ; ω—曲轴旋转角速度,rad/s ; β—连杆摆角,rad 。

)()()(a p p a p a p j B g +-= (MPa) (2)

总作用力P (a )按照公式2计算,式中P B 表示活塞底部气体压力,取大气压力,即P B =。图1中点划线表示总作用力与曲柄转角之间的关系。通过三者的比较可以看出气缸压力对总作用力影响较大。

活塞侧推力P H (α)计算

βtg a p a p H )()(= (MPa) (3)

活塞侧推力()H p a 按照公式3进行计算,式中β表示连杆摆角。连杆摆角与曲柄转角纯在下列关系:arcsin(*sin())a βλ=,活塞侧推力与曲柄转角的关系见图2。

图2 活塞侧推力与曲柄转角的关系

βcos /)()(a p a p C = (MPa) (4)

连杆力()c p a 按照公式4进行计算,连杆力()c p a 与曲柄转角的关系见图3。

图3 连杆力与曲柄转角的关系

法向力P N (α)计算

)cos()()(βα+=a p a p C N (MPa) (5)

法向力()N p a 按照公式5计算,法向力()N p a 与曲柄转角的关系见图4。

图4 法向力与曲柄转角的关系

切向力P T (α)计算

)sin()()(βα+=a p a p C T (MPa) (6)

切向力()T p a 按照公式6计算,切向力()T p a 与曲柄转角的关系见图5。

图5 曲柄转角与切向力的关系

总切向力)(α∑T p 计算

1

()(720/)z

T

T i p

a p a i z ==+?∑∑ (MPa) (7)

对于四冲程曲柄均匀排列情况的总切力按照公式6计算。气缸之间的间隔角为120deg ,

总切力与曲柄转角的关系见图6。

图6 总切力与曲柄转角之间的关系

曲柄销负荷R B (α)计算

22()()()B BH BV R a R a R a =+ (MPa) (8)

曲柄销合力按照公式8计算,

式中:()BH R α—曲柄销负荷水平分量,()()BH T R p a α=(MPa);

()BV R a —曲柄销负荷垂直分量()()BV N r R a p a p β=-,22p /()4

r B m R D βπ

ω=(MPa);

B m —连杆组算到大端的质量,kg 。 曲柄销合力()B R a 与曲柄转角的关系见图7。

图7 曲柄销负荷与曲柄转角的关系

准确性校核

6

10

)(ω

R F p N p cp T i ∑=

(KW) (9)

按照总切力曲线作准确性校核,根据总切曲线计算出平均切力,再按公式9进行计算,式中p F 表示活塞面积,单位是2

mm ;()

T cp

p ∑表示平均切力,单位是Mpa 。再将指示功

率与给定功率进行比较,计算出误差。

6

10

)(ω

R F p N p cp T i ∑=

=

i

i i N N N '-=

?= % 计算出来的误差在5%以内,符合要求。

2 曲轴设计计算

曲轴各部尺寸比例

在初步定出曲轴的尺寸后,应立即作曲柄销和主轴颈最大比压验算:

曲轴销

MPa

L

d

D

p

p

p

p

z

56

.

33

4

2

max

=

=

π

主轴颈

a

70

.

18

2

4

2

max

MP

L

d

D

qp

p

j

j

z

=

=

π

式中:Pz—最大燃烧压力,Mpa;

D—气径直径,mm;

dp,dj—曲柄销及主曲颈直径,mm;

L P ,Lj—曲柄销及主轴颈有效长度,mm(考虑了过渡圆角的影响);

q—考虑相邻缸的影响系数。四冲程q≤;二冲程q≤,式中q=。

曲轴船规验算

我国船舶检验局“钢质海船入级与建造规范(2006)”对船舶柴油机曲轴有如下规定:对整锻、铸造、半组合或全组合曲轴的主轴颈及曲柄销,其最小直径d 如下计算。曲轴材料选用铸钢。 对锻钢、铸钢、合金钢材料的曲轴: []mm S p Ca L L Pz Aa D d b i r P B 2.149)

590

160(65)(3

2=++-=σ

式中: D —气缸直径,D =200mm ;

S —活塞行程,S =270mm ;

L —相邻两主轴承中心线间的距离,L =320mm ; L P —曲柄销的有效长度,L P =90mm ; Pz —最高燃烧压力,Pz=;

Pi —平均指示压力,MPa ni

V ni

i 97.1120P s ==

Ni —由总切力得到的指示功率,Ni =; Vs —每缸的工作容积,L S

Vs 48.8104

270

2004

D 6-22=???=

=

ππ;

n —柴油机转速,n=600r/min ; i —气缸数,i=6;

σb —材料标定抗拉强度下限值,σb=500MPa ;

A —系数,对直列式单作用柴油机,A =; C —系数,对直列式单作用四冲程柴油机,C =;

αB —弯曲应力集中系数,对于原机型的曲轴,αB =3..39;

r p —过渡圆角半径,r p =10mm ; d p —曲柄销直径,dp =130mm ; b —曲臂宽,b =200mm ;

e —轴颈的重叠量,e=(dp+dj )/2-S/2=0; αr —扭转应力集中系数,

)

)/(8570.0)/(3482.5)/(654.108955.7()

/(923.032)

/1015.02205.0(r p p p d e p p d b d b d b d r p -+-?=--α=;

由计算结果可知,d=<150mm ,故设计的曲轴可用。

附录Matlab计算程序

>> %内燃机课程设计动力计算%

a1 =0 : 5 : 720;%曲柄转角%

Pg1=[3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,,,,,,,,,,,,,,4,,,,5,,,7,8,9,,1 3,15,18,,26,32,40,49,59,65,80,105,119,124,125,115,101,,,60,50,43,,32,28,25,22,,18,,,14,13,,12,1 1,,,10,,,9,,8,,7,,6,,5,4,,3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3];%气缸压力,kg/cm^2%

a = 0 : 1 : 720;

Pg = interp1(a1,Pg1,a,'spline');

>> Pg = Pg/;%气缸压力单位转化,Mpa%

Ne = 440;%单位是kw%

mj = + * ; %活塞组等效质量,kg%

mb = * ; %连杆组算到大端的质量,kg%

D = 200;%活塞直径,mm%

L = 540;%连杆长度,mm%

R = 135;%曲柄半径,mm%

z = 6;%气缸数;

x = R/L;%曲柄连杆比%

B = asin(x*sin(a*pi/180));%连杆摆角%

w = 600*pi/30;%转速,rad/s%

Pj = - mj * R * w^2 *(cos(a*pi/180) + x * cos(a*pi/90))/(pi * D^2/4 * 10^3);%往复惯性力,Mpa% Pb = ;%活塞底部气体压力,取为大气压力,Mpa%

P = Pj - Pb + Pg;%总作用力,Mpa%

figure(1);%打开新图版;

plot(a,Pg,a,Pj,'--',a,P,'-.');%蓝色的为气缸压力与曲轴转角的关系,黄色为往复惯性力与曲柄转角的关系,红色为总作用力与曲柄转角的关系%

xlabel('曲柄转角a/deg');%加横坐标%

ylabel('(P,Pg,Pj)/Mpa');%加纵坐标%

legend('Pg','Pj','P')

grid on ;%添加网格%

Ph = P .* tan(B);%活塞侧推力,单位是Mpa%

Pc = P./cos(B);%连杆力,单位是Mpa%

Pn = Pc .* cos(a*pi/180 + B);%法向力,单位是Mpa%

Pt = Pc .* sin(a*pi/180 + B);%切向力,单位是Mpa%

SumPt = Pt ;%为总切力,单位是Mpa;%

for i=1:721

for j=1:5

m=i+720*j/z;

if m>721

m=m-720;

end

SumPt(i)=SumPt(i)+Pt(m);

end

end

avePt = mean(SumPt);%平均切向力,单位是Mpa%

Rbh = Pt;%曲柄销负荷水平分量,单位是Mpa%

Prb = mb * R * w^2/(pi * D^2/4 * 10^3);

Rbv = Pn - Prb; %曲柄销负荷垂直分量,单位是Mpa%

Rb = (Rbh .* Rbh + Rbv .* Rbv).^; %曲柄销总负荷%

figure(2);%打开新图版%

plot(a,Ph);%画侧推力与曲柄转角的关系%

xlabel('曲柄转角a/deg');%加横坐标%

ylabel('侧推力Ph/Mpa');%加纵坐标%

grid on ;%添加网格%

figure(3);%打开新图版%

plot(a,Pc);%画连杆力与曲柄转角的关系%

xlabel('曲柄转角a/deg');%加横坐标%

ylabel('连杆力Pc/Mpa');%加纵坐标%

grid on ;%添加网格%

figure(4);%打开新图版%

plot(a,Pn);%画法向力与曲柄转角的关系%

xlabel('曲柄转角a/deg');%加横坐标%

ylabel('法向力Pn/Mpa');%加纵坐标%

grid on ;%添加网格%

figure(5);%打开新图版%

plot(a,Pt);%画切向力与曲柄转角的关系%

xlabel('曲柄转角a/deg');%加横坐标%

ylabel('切向力Pt/Mpa');%加纵坐标%

grid on ;%添加网格%

figure(6);%打开新图版%

A = 0 :1: 720;

plot(A,SumPt);%画总切向力与曲柄转角的关系%

xlabel('曲柄转角a/deg');%加横坐标%

ylabel('总切向力SumPt/Mpa');%加纵坐标%

grid on ;%添加网格%

figure(7);%打开新图版%

plot(a,Rb);%画曲柄销负荷与曲柄转角的关系%

xlabel('曲柄转角a/deg');%加横坐标%

ylabel('曲柄销负荷Rb/Mpa');%加纵坐标%

grid on ;%添加网格%

Ni = avePt * pi * D^2 * R * w / (4 * 10^6)%由总切力计算指示功率% d = ( Ni - Ne/ ) / Ni %计算误差%

发动机曲轴结构设计

2.1 曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图1.1所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图1.1 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等

于气缸数的一半。 曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 2.2 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产生裂纹的交变应力的性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹和弯曲一扭转疲劳裂纹【21】,如图2.1所示。

机械原理课程设计单缸四冲程内燃机

机械原理课程设计说明书题目:单缸四冲程内燃机机构设计及其运动分析 二级学院机械工程学院 年级专业 13材料本科班 学号 学生姓名 指导教师朱双霞 教师职称教授

目录 第一部分绪论 (2) 第二部分设计题目及主要技术参数说明 (3) 2.1 设计题目及机构示意图 (3) 2.2 机构简介 (3) 2.3 设计数据 (4) 第三部分设计内容及方案分析 (6) 3.1 曲柄滑块机构设计及其运动分析 (6) 3.1.1 设计曲柄滑块机构 (6) 3.1.2 曲柄滑块机构的运动分析 (7) 3.2 齿轮机构的设计 (11) 3.2.1 齿轮传动类型的选择 (12) 3.2.2 齿轮传动主要参数及几何尺寸的计算 (13) 3.3 凸轮机构的设计 (13) 3.3.1 从动件位移曲线的绘制 (14) 3.3.2 凸轮机构基本尺寸的确定 (15) 3.3.3 凸轮轮廓曲线的设计 (16) 第四部分设计总结 (18) 第五部分参考文献 (20) 第六部分图纸 (21)

第一部分绪论 1.本课程设计主要内容是单缸四冲程内燃机机构设计及其运动分析,在设计计算中运用到了《机械原理》、《理论力学》、《机械制图》、 《高等数学》等多门课程知识。 2. 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。通常所说的内燃机是指活塞式内燃机。活塞式内燃机以往复活塞式最为普遍。活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能是气缸内产生高温高压的燃气。燃气膨胀推动活塞做功。再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。内燃机的工作循环由进气、压缩、燃烧和膨胀、排气等过程组成。这些过程中只有膨胀过程是对外做功的过程。其他过程都是为更好的实现做功过程而需要的过程。四冲程是指在进气、压缩、膨胀和排气四个行程内完成一个工作循环,此间曲轴旋转两圈。进气行程时,此时进气门开启,排气门关闭;压缩行程时,气缸、内气体受到压缩,压力增高,温度上升;膨胀行程是在压缩上止点前喷油或点火,使混合气燃烧,产生高温、高压,推动活塞下行并做功;排气行程时,活塞推挤气缸内废气经排气门排出。此后再由进气行程开始,进行下一个工作循环。

汽车设计课程设计(货车)

沈阳航空工业学院 课程设计 (说明书) 课程名称汽车设计课程设计 专业机械设计制造及其自动化 班级 6406110 学号 200604061345 姓名刘大慧 指导教师王文竹

目录 1 汽车的总体设计- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1.1汽车总体设计的特点- - - - - - - - - - - - - - - - - - - - - 1 1.2汽车总体设计的一般顺序- - - - - - - - - - - - - - - - -- - - 1 1.3布置形式- - - - - - - - - - - - - - - - -- - -- - - - - - - -3 1.4轴数的选择- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4 1.5 驱动形式的选择- - - - - - - - - - - - - - - - - - - - - - - - - -- -4 2 载货汽车主要技术参数的确定- - - - - - - - - - - - - - - - - - - - -- - -5 2.1汽车质量参数的确定- - - - - - - - - - - - - - - - - - - - - - - - 5 2.1.1汽车载荷质量的确定- - - - - - - - - - - - - - - - - - - - - - - 5 2.1.2整车整备质量的预估- - - - - - - - - - - - - - - - - - - - - - - 5 2.1.3汽车总质量的确定- - - - - - - - - - - - - - - - - - - - - - - - 5 2.1.4汽车轴数和驱动形式的确定- - - - - - - - - - - - - - - - - - - - 5 2.1.5汽车的轴荷分配- - - - - - - - - - - - - - - - - - - - - - - - - 5 2.2汽车主要尺寸的确定- - - - - - - - - - - - - - - - - - - - - - - - 6 2.2.1汽车轴距L确定- - - - - - - - - - - - - - - - - - - - - - - - - 6 2.2.2汽车的前后轮距B1和B2- - - - - - - - - - - - - - - - - - - - - 6 2.2.3汽车前悬Lf和后悬LR的确定- - - - - - - - - - - - - - - - -- - 6 2.2.4汽车的外廓尺寸- - - - - - - - - - - - - - - - - - - - - - - - - - 6 2.3汽车主要性能参数的确定- - - - - - - - - - - - - - - - - - - - - --- - 7 2.3.1汽车动力性参数的确定- - - - - - - - - - - - - - - - - - - - - 7 2.3.2汽车燃油经济性参数的确定 - - - - - - - - - - - - - - - - - - 7 2.3.3汽车通过性性参数的确定- - - - - - - - - - - - - - - - -- - 8 2.3.4汽车制动性参数的确定 - - - - - - - - - - - - - - - - - - - - 8 3载货汽车主要部件的选择和布置- - - - - - - - - - - - - - - - - - - - - - - 9 3.1发动机的选择与布置- - - - - - - - - - - - - - - - - - - - - - -- --- 9 3.1.1发动机型式的选择- - - - - - - - - - - - - - - - - - - - - -- -- 9 3.1.2发动机主要性能指标的选择- - - - - - - - - - - - - - - - - - -- 9

推荐-柴油机曲轴加工工艺及夹具设计 精品

柴油机曲轴加工工艺及夹具设计

目录 摘要 1 Abstract 2 0 引言 1 1 R180柴油机曲轴工艺设计 3 1.1 分析零件图 3 1.2 确定生产类型 3 1.3 确定毛坯 3 1.4 机械加工工艺过程设计 3 1.5 选择加工设备与工艺装备 6 1.6 确定工序尺寸 7 1.7 确定切削用量及时间定额 9 1.8 填写工艺规程卡 15 2 R180柴油机曲轴第一套夹具设计 16 2.1 明确设计任务、收集分析原始资料 16 2.2 确定夹具的结构方案 17 2.3 绘制夹具结构草图 19 3 R180柴油机曲轴第二套夹具设计 21 3.1 明确设计任务、收集分析原始资料 21 3.2 确定夹具的结构方案 22 3.3 夹具定位误差分析 22 3.4 拟订夹具总装图的尺寸、公差与配合及技术要求 22 3.5 绘制夹具总装图 23

4 结论 24 致谢 25 26 附件清单 27 摘要 本文主要介绍了R180柴油机曲轴工艺设计及其中两道工序的夹具设计。本文作者是在保证产品质量、提高生产率、降低成本、充分利用现有生产条件、保证工人具有良好而安全劳动条件的前提下进行设计的。在工艺设计中,作者结合实际进行理论设计,对曲轴传统生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。在夹具设计部分,作者在收集加工所用机床、刀具及辅助工具等有关资料后,对工件材料、结构特点、技术要求及工艺分析的基础上,按照夹具设计步骤设计出符合曲轴生产工艺及夹具制造要求的夹具。 关键词:柴油机曲轴工艺夹具 Abstract This text introduce R180 diesel engine crankshaft technological design and two of them jig of process design mainly. The author of this text is guaranteeing product quality, boost productivity, lower costs, utilize existing working condition, guaranteeing worker to have good work prerequisite of terms to design . In technological design, the author bine carrying on theory design, improve the traditional production technology of the crankshaft actually, optimize craft course and craft equip, enable economy rational even more of production and processing of the crankshaft. Designing in the jig , the author collect the relevant materials, such as lathe, cutter and handling tool,etc. At the foundation of the analyse of work piece material, specification requirement and craft, and make jig of request according to jig measure design and cankshaft production technology and jig.

四冲程内燃机机械原理课程设计说明书

四冲程内燃机机械原理课程设计说明书 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

X X 大学 机械原理课程设计说明书 四冲程内燃机设计 院(系)机械工程学院 专业机械工程及自动化 班级××机械工程×班 学生姓名××× 指导老师××× 年月日 课程设计任务书 兹发给×××班学生×××课程设计任务书,内容如下: 1.设计题目:四冲程内燃机设计 2.应完成的项目: (1)内燃机机构运动简图1张(A4) (2)内燃机运动分析与动态静力分析图1张(A3) (3)力矩变化曲线图1张(A4) (4)进气凸轮设计图1张(A4) (5)工作循环图1张(A4) (6)计算飞轮转动惯量 (7)计算内燃机功率 (8)编写设计说明书1份 3.参考资料以及说明: (1)机械原理课程设计指导书 (2)机械原理教材 4.本设计任务书于20××年 1月4日发出,应于20××年1月15日前完成,然后进行答辩。

指导教师签发 201×年 12 月31日

课程设计评语: 课程设计总评成绩: 指导教师签字: 201×年1月15日

目录 摘要 (1) 第一章绪论 (2) 1.1 课程设计名称和要求 (2) 1.2 课程设计任务分析 (2) 第二章四冲程内燃机设计 (4) 2.1 机构设计 (4) 2.2 运动分析 (7) 2.3 动态静力分析 (11) 2.4 飞轮转动惯量计算 (16) 2.5 发动机功率计算 (18) 2.6 进排气凸轮设计 (18) 2.7 工作循环分析 (19) 设计小结 (21) 参考文献 (22)

摘要 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。四冲程内燃机是将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。燃气膨胀推动活塞作功,把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,驱动从动机械工作,完成一个工作循环的内燃机。本课程设计是对四冲程内燃机的运动过程进行运动分析、动态静力分析,计算飞轮转动惯量、发动机功率等,设计一款四冲程内燃机。 关键词:四冲程内燃机;运动分析;动态静力分析

汽车设计课程设计

XX大学 汽车设计课程设计说明书设计题目:轿车转向系设计 学院:X X 学号:XXXXXXXX 姓名:XXX 指导老师:XXX 日期:201X年XX月XX日

汽车设计课程设计任务书 题目:轿车转向系设计 内容: 1.零件图1张 2.课程设计说明书1份 原始资料: 1.整车性能参数 驱动形式4 2前轮 轴距2471mm 轮距前/后1429/1422mm 整备质量1060kg 空载时前轴分配负荷60% 最高车速180km/h 最大爬坡度35% 制动距离(初速30km/h) 5.6m 最小转向直径11m 最大功率/转速74/5800kW/rpm 最大转矩/转速150/4000N·m/rpm 2.对转向系的基本要求 1)汽车转弯行驶时,全部车轮应绕顺时转向中心旋转; 2)操纵轻便,作用于转向盘上的转向力小于200N; 3)转向系的角传动比在15~20之间,正效率在60%以上,逆效率在50%以上;4)转向灵敏; 5)转向器和转向传动机构中应有间隙调整机构; 6)转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

目录 序言 (4) 第一节转向系方案的选择 (4) 一、转向盘 (4) 二、转向轴 (5) 三、转向器 (6) 四、转向梯形 (6) 第二节齿轮齿条转向器的基本设计 (7) 一、齿轮齿条转向器的结构选择 (7) 二、齿轮齿条转向器的布置形式 (9) 三、设计目标参数及对应转向轮偏角计算 (9) 四、转向器参数选取与计算 (10) 五、齿轮轴结构设计 (12) 六、转向器材料 (13) 第三节齿轮齿条转向器数据校核 (13) 一、齿条强度校核 (13) 二、小齿轮强度校核 (15) 三、齿轮轴的强度校核 (18) 第四节转向梯形机构的设计 (21) 一、转向梯形机构尺寸的初步确定 (21) 二、断开式转向梯形机构横拉杆上断开点的确定 (24) 三、转向传动机构结构元件 (24) 第五节参考文献 (25)

内燃机设计课程设计大作业

第一部分:四缸机运动学分析 绘制四缸机活塞位移、速度、加速度随曲轴转角变化曲线(X -α,V -α,a -α)。 曲轴半径r=52.5mm 连杆长度l=170mm, 连杆比31.0==l r λ 1、位移:)]2cos 1(4 1 )cos 1[(αλα-+-=r x 2、速度:)2sin 2 (sin αλ αω+ =r v 3、加速度:)2cos (cos 2αλαω+=r a

第二部分:四缸机曲柄连杆机构受力分析 1、初步绘制四缸机气缸压力曲线(g F -α),绘制活塞侧击力变化曲线(N F -α),绘制连杆力变化曲线(L F -α),绘制曲柄销上的切向力(t F ),径向力(k F )的变化曲线(-α),(-α)。 平均大气压MPa p 09839.098.39kPa 0== 缸径D=95mm 则 活塞上总压力 6 010 )(?-=A P P F g g 24 D A π = 单缸活塞组质量:kg m h 277.1= 连杆组质量: 1.5kg =l m 则 往复运动质量:l h j m m m 3.0+= 往复惯性力:)2cos (cos 2αλαω+-=-=r m a m F j j j )sin arcsin(αλβ=又 合力:g j F F F += 侧击力:βtan F F N = 连杆力:β cos F F L = 切向力:)sin(βα+=L t F F 径向力:)cos(βα+=L k F F t F k F

2.四缸机连杆大头轴承负荷极坐标图,曲柄销极坐标图 连杆大头集中质量产生的离心力:2 227.0ωωr m r m F l rL == 连杆轴颈负荷: qy qx p F F arctan =α 连杆轴承负荷: ?+++=180βαααq P )sin(p P px F F α= 2m rL L q F F F +=k rL qx F F F -=t qy F F =q p F F -=)(p p py con F F α=

柴油机曲轴设计

1前言 1.1柴油机与曲轴 1.1.1柴油机的工作原理 柴油机的每个工作循环都要经历进气、压缩、做功和排气四个过程。 四行程柴油机的工作过程:柴油机在进气冲程吸入纯空气,在压缩冲程接近终了时,柴油经喷油泵将油压提高到10MPa以上,通过喷油器以雾状喷入气缸,在很短时间内与压缩后的高温空气混合,形成可燃混合气。压缩终了时气缸内空气压力可达3.5~4.5MPa,温度高达476.85℃~726.85℃,极大地超过柴油的自燃温度,因此柴油喷人气缸后,在很短的时间内即着火燃烧,燃气压力急剧达到6~9MPa,温度升高到1726.85℃~2226.85℃。在高压气体推动下,活塞向下运动并带动曲轴旋转做功。废气同样经排气门、排气管等处排出。 四行程柴油机的每个工作循环均经过如下四个行程: (1)进气行程在这个行程中,进气门开启,排气门关闭,气缸与化油器相通,活塞由上止点向下止点移动,活塞上方容积增大,气缸内产生一定的真空度。可燃混合气被吸人气缸内。活塞行至下止点时,曲轴转过半周,进气门关闭,进气行程结束。 由于进气道的阻力,进气终了时气缸内的气体压力稍低于大气压,约为0.07~0.09MPa。混合气进入气缸后,与气缸壁、活塞等高温机件接触,并与上一循环的高温残余废气相混合,所以温度上升到96.85℃~126.85℃。 (2)压缩行程进气行程结束后,进气门、排气门同时关闭。曲轴继续旋转,活塞由下止点向上止点移动,活塞上方的容积缩小,进入到气缸中的混合气逐渐被压缩,使其温度、压力升高。活塞到上止点时,压缩行程结束。 压缩终了时鼓,混合气温度约为326.85℃~426.85℃,压力一般为0.6~ 1.2MPa。 (3)做功行程活塞带动曲轴转动,曲轴通过转动把扭矩输出。 (4)排气行程进气口关闭,排气口打开,排除废气。 由上可知,四行程汽油机或柴油机,在一个工作循环中,只有一个行程作功,其余三个行程作为辅助行程都是为作功行程创造条件的。因此,单缸发动机工作不平稳。现代汽车都采用多缸发动机,在多缸发动机中,所有气缸的作功行程并不同时进行,而尽可能有一个均匀的作功间隔,因而多缸发动机曲轴运转均匀,工作平稳,并可获得足够大的功率。例如六缸发动机,在一个工作循环中,曲轴要旋转720°,曲轴转角每隔120°就有一个气缸作功。

(完整)四冲程内燃机-机械原理课程设计说明书

(完整)四冲程内燃机-机械原理课程设计说明书 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)四冲程内燃机-机械原理课程设计说明书)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)四冲程内燃机-机械原理课程设计说明书的全部内容。

X X 大学 机械原理课程设计说明书 四冲程内燃机设计 院(系)机械工程学院 专业机械工程及自动化 班级××机械工程×班 学生姓名××× 指导老师××× 年月日 课程设计任务书 兹发给×××班学生×××课程设计任务书,内容如下: 1.设计题目:四冲程内燃机设计 2.应完成的项目: (1)内燃机机构运动简图1张(A4) (2)内燃机运动分析与动态静力分析图1张(A3) (3)力矩变化曲线图1张(A4)

(5)工作循环图1张(A4) (6)计算飞轮转动惯量 (7)计算内燃机功率 (8)编写设计说明书1份 3.参考资料以及说明: (1)机械原理课程设计指导书 (2)机械原理教材 4.本设计任务书于20××年 1月4日发出,应于20××年1月15日前完成,然后进行答辩。 指导教师签发 201×年 12 月31日

课程设计评语: 课程设计总评成绩: 指导教师签字: 201×年1月15日

目录 摘要 (1) 第一章绪论 (2) 1.1 课程设计名称和要求 (2) 1.2 课程设计任务分析 (2) 第二章四冲程内燃机设计 (4) 2.1 机构设计 (4) 2.2 运动分析 (7) 2.3 动态静力分析 (11) 2.4 飞轮转动惯量计算 (16) 2.5 发动机功率计算 (18) 2.6 进排气凸轮设计 (18) 2.7 工作循环分析 (19) 设计小结 (21) 参考文献 (22)

柴油机曲轴工艺过程及夹具毕业设计论文

重庆大学网络教育学院 毕业设计(论文) 柴油机曲轴零件加工工艺及夹具设计 学生所在校外学习中心江苏张家港校处学习中心批次层次专业111 专升本机械设计制造及其自动化学号 w11107861 学生 指导教师 起止日期 2013.1.21--2013.4.14

摘要 曲轴是发动机上的一个重要的旋转机件,装上连杆后,可承接活塞的上下(往复)运动变成循环运动。曲轴主要有两个重要加工部位:主轴颈和连杆颈。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。发动机工作过程就是:活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。而曲轴加工的好坏将直接影响着发动机整体性能的表现。曲轴的材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈。 这次毕业设计介绍柴油机曲轴加工工艺规程及相关夹具的设计,及曲轴的规程制定中遇到问题的分析,经济性分析,工时定额,切削用量的计算。同时还介绍曲轴加工中用到的两套夹具的设计过程。在工艺设计中,结合实际进行设计,对曲轴生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。 根据现阶段机械零件的制造工艺和技术水平,本着以制造技术的先进性,合理性,经济性进行零件的形状、尺寸、精度等级、表面粗糙度、材料等技术分析。并根据以上分析来选择合理的毛坯制造方法,设计工艺规程,夹具设计。 关键词:柴油机曲轴工艺夹具

目录 中文摘要…………………………………………………………………………………………I 1.引言 (1) 2.曲轴的生产纲领 (2) 3.零件的分析 (2) 3.1曲轴的用途及工作条件 (2) 3.2分析零件上的技术要求,确定要加工的表面 (3) 3.3加工表面的尺寸和形状精度 (4) 3.4尺寸和位置精度 (4) 3.5加工表面的粗糙度及其它方面的质量要求 (4) 3.6热处理要求 (4) 4.曲轴材料和毛坯的定 (4) 4.1确定毛坯的类型 (4) 4.2确定毛坯的生产方法 (4) 4.3确定毛坯的加工余量 (4) 5.曲轴的工艺过程设计 (5) 5.1粗、精加工的定位基准 (5) 5.1.1粗加工 (5) 5.1.2粗加工 (5) 5.2工件表面加工方法的选择 (5) 5.3曲轴机械加工的基本路线 (5) 5.4加工余量及毛坯尺寸 (6) 5.5工序设计 (6) 5.5.1加工设备与工艺装备的选择 (8) 5.5.2机械加工余量、工序尺寸及公差的确定 (9) 5.6确定工时定额 (11) 5.7机械加工工艺规程卡片和机械加工工序卡片 (12) 5.7.1机械加工工艺过程卡片 (12) 5.7.2机械加工工序卡片 (12) 6.柴油机曲轴加工键槽夹具设计 (13) 6.1.1夹具类型的分析 (13) 6.1.2工装夹具定位方案的确定 (13) 6.1.3工件夹紧形式的确定 (13) 6.1.4对刀装置 (13) 6.1.5分度装置的确定以及补补助装置 (14) 6.1.6夹具定位夹紧方案的分析论证 (14) 6.1.7夹具结构类型的设计 (15) 6.2夹具总图设计 (16) 6.4绘制夹具零件图 (16)

汽车设计课程设计

西安交通大学 汽车设计课程设计说明书 载货汽车汽车动力总成匹配与总体设计 姓名: 班级: 学号: 专业名称: 指导老师: 日期:2104/12/1

题目: 设计一辆用于长途运输固体物料,载重质量20t 的重型货运汽车。 整车尺寸:11980mm×2465mm×3530mm 轴数:4;驱动型式:8×4;轴距:1950mm+4550mm+1350mm 额定载质量:20000kg 整备质量:11000kg 公路最高行驶速度:90km/h 最大爬坡度:大于30% 设计任务: 1) 查阅相关资料,根据题目特点,进行发动机、离合器、变速箱传动轴、 驱动桥、车轮匹配和选型; 2) 进行汽车动力性、经济性估算,实现整车的优化匹配; 3) 绘制车辆总体布置说明图; 4) 编写设计说明书。 本说明书将从整车主要目标参数的初步确定、传动系各总成的选型、整车性能计算、发动机与传动系部件的确定四部分来介绍本课程设计的设计过程。

1.整车主要目标参数的初步确定 1.1发动机的选择 1.1.1发动机的最大功率及转速的确定 汽车的动力性能在很大程度上取决于发动机的最大功率。设计要求该载货汽车的最高车速是90km/h ,那么发动机的最大功率应该大于等于以该车速行驶时的行驶阻力功率之和,即: )76140 3600( 1 3 max max max a D a a T e u A C u f g m P ?+??≥ η (1-1) 式中 max e P ——发动机最大功率,kW ; T η——传动系效率(包括变速器、传动轴万向节、主减速器的传动效率),参考传动部件传动效 率计算得:95%95%98%96%84.9%T η=???=,各传动部件的传动效率见表1-1; 表1-1传动系统各部件的传动效率 a m ——汽车总质量,a m =31 000kg (整备质量11 000kg,载重20 000kg ); g ——重力加速度,g =9.81m /s 2 ; f ——滚动阻力系数,由试验测得,在车速不大于100km/h 的情况下可认为是常数。轮胎结构、 充气压力对滚动阻力系数有较大影响,良好路面上常用轮胎滚动阻力系数见表1-2。取0.012f =。 表1-2良好路面上常用轮胎滚动阻力系数 D C ——空气阻力系数,取D C =0.9;一般中重型货车可取0.8~1.0;轻型货车或大客车0.6~0.8;

柴油发动机曲轴机械加工工艺规程设计及夹具(毕业设计)

柴油发动机曲轴机械加工工艺规程设计及夹具设计 由吴祖德t053329 于星期五, 2009/06/19 - 12:41下午发表 ?学士学位 ?机电与汽车工程学院 学号: 05120332 专业: 机械设计制造及其自动化 研究方向: 机械设计与制造 导师姓名: 曾宏达 中图分类号: TH16 论文总页码: 47 参考文献总数: 20 曲轴是柴油发动机的重要零件。它的作用是把活塞的往复直线运动变成旋转运动,将作用在活塞的气体压力变成扭矩,用来驱动工作机械和柴油发动机各辅助系统进行工作。曲轴在工作时承受着不断变化的压力、惯性力和它们的力矩作用,因此要求曲轴具有强度高、刚度大、耐磨性好,轴颈表面加工尺寸精确,且润滑可靠。 本设计是根据被加工曲轴的技术要求,进行机械工艺规程设计,然后运用夹具设计的基本原理和方法,拟定夹具设计方案,完成夹具结构设计。主要工作有:绘制产品零件图,了解零件的结构特点和技术要求;根据生产类型和所在企业的生产条件,对零件进行结构分析和工艺分析;确定毛坯的种类及制造方法;拟定零件的机械加工工艺过程,选择各工序的加工设备和工艺设备,确定各工序的加工余量和工序尺寸,计算各工序的切削用量和工时定额;填写机械加工工艺过程卡片、机械加工工序卡片等工艺卡片;设计指定的专用夹具,绘制装配总图和主要零件图。 中文关键字: 机械制造,加工工艺,曲轴,夹具 英文题目: Technological process design and fixture design of diesel engine crankshaft 英文摘要: Crankshaft is a very important parts of diesel engine. Ist action is change the to

内燃机课程设计

课程设计说明书 2011年12月

目录一.柴油机工作过程的热力学分析 1.原始参数及选取参数 2.热力分析计算参数 二.活塞组的设计 1.概述 2.活塞的选型 3.活塞的基本设计 3.1活塞的主要尺寸 3.2活塞头部设计 3.3活塞销座的设计 3.4活塞裙部及其侧表面形状设计 3.5活塞与缸套的配合间隙 3.6活塞重量 3.7活塞强度计算 4.活塞的冷却 5.活塞的材料及工艺 6.活塞销的设计 6.1活塞销的结构及尺寸 6.2轴向定位 6.3活塞销和销座的配合 6.4活塞销的强度校核 6.5活塞销材料及强化工艺 7.活塞环的设计 7.1活塞环的选择 7.2活塞环主要参数选择

7.3活塞环的材料选择及成型方法 7.4活塞环的间隙 7.5环槽尺寸 三.连杆组的设计 1.概述 2.连杆的结构类型 3.连杆的基本设计 3.1主要尺寸比例 3.2连杆长度 4.连杆小头设计 4.1连杆小头结构 4.2小头结构尺寸 4.3连杆衬套 5.连杆杆身 6.连杆大头 6.1连杆大头结构 6.2大头尺寸 6.3大头定位 7.连杆强度的计算校核 7.1连杆小头 7.2连杆杆身 7.3连杆大头 8.连杆螺栓的设计 四.曲轴组的设计 1. 曲轴的概述 1.1曲轴的工作条件和设计要求

1.2曲轴的结构型式 1.3曲轴的材料 2. 曲轴的主要尺寸确定 2.1主轴颈 2.2曲柄销 2.3曲柄臂 2.4曲轴圆角 2.5提高曲轴疲劳强度方法 3. 曲轴油孔位置 4. 曲轴端部结构 5. 曲轴平衡块 6. 曲轴的轴向定位 7. 曲轴疲劳强度计算 7.1强度计算已知条件 7.2强度计算已知曲轴载荷 7.3 圆角疲劳强度校核 7.4 油孔疲劳强度校核 8.飞轮的设计 五.参考文献

汽车设计(课程设计)钢板弹簧(DOC)

汽车设计——钢板弹簧课程设计 专业:车辆工程 教师:R老师 姓名:XXXXXX 学号:200XYYYY 2012 年7 月3 日

课程设计任务书 一、课程设计的性质、目的、题目和任务 本课程设计是我们在完成基础课、技术基础课和大部分专业课学习后的一个教学环节,是培养我们应用已学到的理论知识来解决实际工程问题的一次训练,并为毕业设计奠定基础。 1、课程设计的目的是: (1)进一步熟悉汽车设计理论教学内容; (2)培养我们理论联系实际的能力; (3)训练我们综合运用知识的能力以及分析问题、解决问题的能力。 2、设计题目: 设计载货汽车的纵置钢板弹簧 (1) 纵置钢板弹簧的已知参数 序号弹簧满载载荷静挠度伸直长度U型螺栓中心距有效长度 1 19800N 9.4cm 118cm 6cm 112cm 材料选用60Si2MnA ,弹性模量取E=2.1×105MPa 3、课程设计的任务: (1)由已知参数确定汽车悬架的其他主要参数; (2)计算悬架总成中主要零件的参数; (3)绘制悬架总成装配图。 二、课程设计的内容及工作量 根据所学的机械设计、汽车构造、汽车理论、汽车设计以及金属力学性能等课程,完成下述涉及内容: 1.学习汽车悬架设计的基本内容 2.选择、确定汽车悬架的主要参数 3.确定汽车悬架的结构 4.计算悬架总成中主要零件的参数 5.撰写设计说明书 6.绘制悬架总成装配图、零部件图共计1张A0。 设计要求: 1. 设计说明书 设计说明书是存档文件,是设计的理论计算依据。说明书的格式如下: (1)统一稿纸,正规书写; (2) 竖订横写,每页右侧画一竖线,留出25mm空白,在此空白内标出该页中所计算的主要数据; (3) 附图要清晰注上必要的符号和文字说明,不得潦草; 2. 说明书的内容及计算说明项目 (1)封面;(2)目录;(3)原始数据及资料;(4)对设计课题的分析;(5)汽车纵置钢板弹簧简图;(6)设计计算;(7)设计小结(设计特点及补充说明,鉴别比较分析,个人体会等);(8)参考文献。 3. 设计图纸 1)装配总图、零件图一张(0#);

发动机曲轴结构设计

发动机曲轴结构设计 Document number:PBGCG-0857-BTDO-0089-PTT1998

曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等于气缸数的一半。

曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产

冲程内燃机机械原理课程设计说明书

机械原理课程设计说明书 四冲程内燃机设计 院(系)机械工程学院 专业机械工程及自动化 班级××机械工程×班 学生姓名××× 指导老师××× 年月日 课程设计任务书 兹发给×××班学生×××课程设计任务书,内容如下:1.设计题目:四冲程内燃机设计 2.应完成的项目: (1)内燃机机构运动简图1张(A4) (2)内燃机运动分析与动态静力分析图1张(A3) (3)力矩变化曲线图1张(A4) (4)进气凸轮设计图1张(A4) (5)工作循环图1张(A4) (6)计算飞轮转动惯量 (7)计算内燃机功率 (8)编写设计说明书1份 3.参考资料以及说明: (1)机械原理课程设计指导书

(2)机械原理教材 4.本设计任务书于20××年 1月4日发出,应于20××年1月15日前完成,然后进行答辩。 指导教师签发 201×年 12 月31日

课程设计评语: 课程设计总评成绩: 指导教师签字: 201×年1月15日

目录 摘要 (1) 第一章绪论 (2) 1.1 课程设计名称和要求 (2) 1.2 课程设计任务分析 (2) 第二章四冲程内燃机设计 (4) 2.1 机构设计 (4) 2.2 运动分析 (7) 2.3 动态静力分析 (11) 2.4 飞轮转动惯量计算 (16) 2.5 发动机功率计算 (18) 2.6 进排气凸轮设计 (18) 2.7 工作循环分析 (19) 设计小结 (21) 参考文献 (22)

摘要 内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。四冲程内燃机是将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。燃气膨胀推动活塞作功,把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,驱动从动机械工作,完成一个工作循环的内燃机。本课程设计是对四冲程内燃机的运动过程进行运动分析、动态静力分析,计算飞轮转动惯量、发动机功率等,设计一款四冲程内燃机。 关键词:四冲程内燃机;运动分析;动态静力分析

四冲程内燃机设计机械原理课程设计报告书

目录 一、四冲程内燃机的运动分析及总体设计思路 (1) 二、绘制内燃机机构简图 (3) 三、绘制连杆机构位置图 (4) 四、作出机构15个位置的速度和加速度多边形 (4) 五、动态静力分析 (8) 六、计算飞轮转动惯量(不计构件质量) (14) 七、计算发动机功率 (16) 八、对曲柄滑块进行机构部分平衡 (17) 九、排气凸轮(凸轮Ⅱ)的轮廓设计 (17) 十、四冲程工作内燃机的循环图 (24) 参考文献 (26) 一、四冲程内燃机的运动分析及总体设计思路 根据设计任务书,我们需要解决以下问题:凸轮的参数是多少?如何能让机构正常循环工作?为了解决这个问题,我们需要对整个机构从运动及力学的角度分析。 首先,需要明确四冲程内燃机的工作原理:内燃机是通过吸气、压缩、燃烧、排气四个过程不断重复进行的。如果在四个冲程里完成吸气、压缩、做功(燃烧、膨胀)、排气的循环动作,就叫做四冲程。相应的内燃机叫四冲程内燃机。 第一冲程,即吸气冲程。这时曲轴向下转动,带动活塞向下,同时通过齿轮带动凸轮向下旋转,是凸轮的突起部分顶开进气阀门,雾状汽油和空气混合的燃料被吸入气缸。 第二冲程,即压缩冲程。曲轴带动活塞向上,凸轮的突起部分已经转两个过去,进气阀门被关闭,由于凸轮只转了1/4周,所以排气阀门仍然处于关闭状态。活塞向上运动时,将第一冲程吸入的可燃气体压缩,被压缩的气体的压强达到0.6~1.5兆帕,温度升高到300摄氏度左右。 第三冲程是做功冲程。在压缩冲程末火花塞产生电火花,混合燃料迅速燃烧,温度骤然升高到2000摄氏度左右,压强达到3~5兆帕。高温高压烟气急剧膨胀,推动活塞向下做功,此时曲柄转动半周而凸轮转过1/4周,两个气阀仍然紧闭。 第四冲程是排气冲程。由于飞轮的惯性,曲柄转动,使活塞向上运动,这时由于凸轮顶开排气阀,将废气排出缸外。 四个冲程是内燃机的一个循环,每一个循环,活塞往复两次,曲柄转动两周,进排气

汽车发动机曲轴材料的选择及工艺设计

专业课程设计任务书 学生姓名:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计内容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足 (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献 (15) 8 工艺卡 (16)

相关主题
文本预览
相关文档 最新文档