当前位置:文档之家› 《电路分析基础》习题解答

《电路分析基础》习题解答

运筹学试题及答案

运筹学A卷) 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分) 1.线性规划具有唯一最优解就是指 A.最优表中存在常数项为零 B.最优表中非基变量检验数全部非零 C.最优表中存在非基变量的检验数为零 D.可行解集合有界 2.设线性规划的约束条件为 则基本可行解为 A.(0, 0, 4, 3) B.(3, 4, 0, 0) C.(2, 0, 1, 0) D.(3, 0, 4, 0) 3.则 A.无可行解 B.有唯一最优解medn C.有多重最优解 D.有无界解 4.互为对偶的两个线性规划, 对任意可行解X 与Y,存在关系 A.Z > W B.Z = W C.Z≥W D.Z≤W 5.有6 个产地4个销地的平衡运输问题模型具有特征 A.有10个变量24个约束

B.有24个变量10个约束 C.有24个变量9个约束 D.有9个基变量10个非基变量 6、下例错误的说法就是 A.标准型的目标函数就是求最大值 B.标准型的目标函数就是求最小值 C.标准型的常数项非正 D.标准型的变量一定要非负 7、m+n-1个变量构成一组基变量的充要条件就是 A.m+n-1个变量恰好构成一个闭回路 B.m+n-1个变量不包含任何闭回路 C.m+n-1个变量中部分变量构成一个闭回路 D.m+n-1个变量对应的系数列向量线性相关 8.互为对偶的两个线性规划问题的解存在关系 A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解 9、有m个产地n个销地的平衡运输问题模型具有特征 A.有mn个变量m+n个约束…m+n-1个基变量 B.有m+n个变量mn个约束 C.有mn个变量m+n-1约束 D.有m+n-1个基变量,mn-m-n-1个非基变量 10.要求不超过第一目标值、恰好完成第二目标值,目标函数就是

应用多元统计分析试题及答案

一、填空题: 1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法. 2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著. 3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。通常聚类分析分为 Q型聚类和 R型聚类。 4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。 5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。 6、若 () (,), P x N αμα ∑=1,2,3….n且相互独立,则样本均值向量x服从的分布 为_x~N(μ,Σ/n)_。 二、简答 1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。 在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。 2、简述相应分析的基本思想。 相应分析,是指对两个定性变量的多种水平进行分析。设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。相应分析即是通过列联表的转换,使得因素A

和因素B 具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。 3、简述费希尔判别法的基本思想。 从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数: 确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。 5、简述多元统计分析中协差阵检验的步骤 第一,提出待检验的假设 和H1; 第二,给出检验的统计量及其服从的分布; 第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。 协差阵的检验 检验0=ΣΣ 0p H =ΣI : /2 /21exp 2np n e tr n λ???? =-?? ? ???? S S 00p H =≠ΣΣI : /2 /2**1exp 2np n e tr n λ???? =-?? ? ???? S S

行程问题典型例题及答案详解

行程问题典型例题及答案详解 行程问题是小学奥数中的重点和难点,也是西安小升初考试中的热点题型,纵观近几年试题,基本行程问题、相遇追及、多次相遇、火车、流水、钟表、平均速度、发车间隔、环形跑道、猎狗追兔等题型比比皆是,以下是一些上述类型经典例题(附答案详解)的汇总整理,有疑问可以直接联系我。 例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间? 分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则 回来时的时间为:,即回来时用了3.5小时。评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。 例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少? 分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。 解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。 答:汽车在后半段路程时速度加快8千米/时。 例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时? 分析:求时间的问题,先找相应的路程和速度。 解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时) 答:行驶这段路程逆水比顺水需要多用10小时。

运筹学习题精选

运筹学习题精选

运筹学习题精选 第一章线性规划及单纯形法 选择 1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C ) A.多余变量 B.松弛变量 C.自由变量 D.人工变量 2.约束条件为0 AX的线性规划问题的可行解集 b ,≥ =X 是………………………………………( B ) A.补集 B.凸集 C.交集 D.凹集 3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。 A.内点 B.外点 C.顶点 D.几何点 4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B) A.正数 B.非负数 C.无约束 D.非零的 5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D) A.外点 B.所有点 C.内点 D.极点 6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解 7.满足线性规划问题全部约束条件的解称为…………………………………………………( C ) A.最优解 B.基本解 C.可行解 D.多重解 8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。 A.和 B.差 C.积 D.商 9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A ) 第 2 页共 30 页

第 3 页 共 30 页 A .多重解 B .无解 C .正则解 D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。 A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空 计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。 2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量, 表中的解代入目标函数中得Z=14,求出a~g 的值,并判断→j c 0 0 0 28 1 2 B C 基 b 1x 2x 3x 4x 5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G

运筹学典型考试试题及答案

二、计算题(60分) 1、已知线性规划(20分) MaxZ=3X1+4X2 X1+X2≤5 2X1+4X2≤12 3X1+2X2≤8 X1,X2≥0 其最优解为: 基变量X1X2X3X4X5 X33/2 0 0 1 -1/8 -1/4 X25/2 0 1 0 3/8 -1/4 X1 1 1 0 0 -1/4 1/2 σj 0 0 0 -3/4 -1/2 1)写出该线性规划的对偶问题。 2)若C2从4变成5,最优解是否会发生改变,为什么? 3)若b2的量从12上升到15,最优解是否会发生变化,为什么? 4)如果增加一种产品X6,其P6=(2,3,1)T,C6=4该产品是否应该投产?为什么?解: 1)对偶问题为 Minw=5y1+12y2+8y3 y1+2y2+3y3≥3 y1+4y2+2y3≥4 y1,y2≥0 2)当C2从4变成5时, σ4=-9/8 σ5=-1/4 由于非基变量的检验数仍然都是小于0的,所以最优解不变。 3)当若b2的量从12上升到15 X=9/8 29/8 1/4 由于基变量的值仍然都是大于0的,所以最优解的基变量不会发生变化。 4)如果增加一种新的产品,则 P6’=(11/8,7/8,-1/4)T σ6=3/8>0 所以对最优解有影响,该种产品应该生产 2、已知运输问题的调运和运价表如下,求最优调运方案和最小总费用。(共15分)。 B1B2B3产量销地 产地 A1 5 9 2 15 A2 3 1 7 11 A3 6 2 8 20 销量18 12 16 解:初始解为

计算检验数 由于存在非基变量的检验数小于0,所以不是最优解,需调整 调整为: 重新计算检验数 所有的检验数都大于等于0,所以得到最优解 3、某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者,规定每个承包商只能且必须承包一个项目,试在总费用最小的条件下确定各个项目的承包者,总费用为多少?各承包商对工程的报价如表2所示: (15分) 项目 投标者 A B C D 甲 15 18 21 24 乙 19 23 22 18 丙 26 17 16 19 丁 19 21 23 17 答最优解为: X= 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 总费用为50 4. 考虑如下线性规划问题(24分) B 1 B 2 B 3 产量/t A 1 15 15 A 2 11 11 A 3 18 1 1 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 5 13 0 15 A 2 -2 0 0 11 A 3 0 0 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 15 15 A 2 11 11 A 3 7 12 1 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 5 13 0 15 A 2 0 2 2 11 A 3 0 0 0 20 销量/t 18 12 16

聚类分析练习题20121105

聚类分析和判别分析练习题 一、选择题 1.需要在聚类分析中保序的聚类分析是( )。 A.两步聚类 B.有序聚类 C.系统聚类 D.k-均值聚类 2.在系统聚类中2R 是( )。 A.组内离差平方和除以组间离差平方和 B.组间离差平方和除以组内离差平方和 C.组间离差平方和除以总离差平方和 D.组间均方除以总均方。 3.系统聚类的单调性是指( )。 A.每步并类的距离是单调增的 B.每步并类的距离是单调减的 C.聚类的类数越来越少 D.系统聚类2R 会越来越小 4.以下的系统聚类方法中,哪种系统聚类直接利用了组内的离差平方和。( ) A.最长距离法 B.组间平均连接法 C.组内平均连接法 D.WARD 法 5.以下系统聚类方法中所用的相似性的度量,哪种最不稳健( )。 A.2 1()p ik jk k x x =-∑ B. 1p ik jk k ik jk x x x x =-+∑ C. 21p k =∑ D. 1()()i j i j -'x -x Σx -x 6. 以下系统聚类方法中所用的相似性的度量,哪种考虑了变量间的相关性( )。A.2 1()p ik jk k x x =-∑ B. 1 p ik jk k ik jk x x x x =-+∑ C. 21 p k =∑ D. 1()()i j i j -'x -x Σx -x 7.以下统计量,可以用来刻画分为几类的合理性统计量为( )? A.可决系数或判定系数2R B. G G W P P -

C.()/(1) /() G G W P G P n G -- - D.() G W P W - 8.以下关于聚类分析的陈述,哪些是正确的() A.进行聚类分析的统计数据有关于类的变量 B.进行聚类分析的变量应该进行标准化处理 C.不同的类间距离会产生不同的递推公式 D.递推公式有利于运算速度的提高。D(3)的信息需要D(2)提供。 9.判别分析和聚类分析所要求统计数据的不同是() A.判别分析没有刻画类的变量,聚类分析有该变量 B.聚类分析没有刻画类的变量,判别分析有该变量 C.分析的变量在不同的样品上要有差异 D.要选择与研究目的有关的变量 10.距离判别法所用的距离是() A.马氏距离 B. 欧氏距离 C.绝对值距离 D. 欧氏平方距离 11.在一些条件同时满足的场合,距离判别和贝叶斯判别等价,是以下哪些条件。 () A.正态分布假定 B.等协方差矩阵假定 C.均值相等假定 D.先验概率相等假定 12.常用逐步判别分析选择不了的标准是() A.Λ统计量越小变量的判别贡献更大 B.Λ统计量越大变量的判别贡献更大 C.判定系数越小变量的判别贡献更大 D.判定系数越大变量的判别贡献更大 二、填空题 1、聚类分析是建立一种分类方法,它将一批样本或变量按照它们在性质上的_______________进行科学的分类。 2.Q型聚类法是按_________进行聚类,R型聚类法是按_______进行聚类。 3.Q型聚类相似程度指标常见是、、,而R型聚类相似程度指标通常采用_____________ 、。 4.在聚类分析中需要对原始数据进行无量纲化处理,以消除不同量纲或数量级的影响,达到数据间

五年级行程问题经典例题

行程问题(一) 专题简析: 行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。 例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇,东、西两地相距多少千米 分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。两车同时出发,为什么甲车会比乙车多行64千米呢因为甲车每小时比乙车多行56-48=8(千米)。64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。 32×2÷(56-48)=8(小时) (56+48)×8=832(千米) 答:东、西两地相距832千米。 练习一 》 1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。学校到少年宫有多少米 2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。甲、乙两地相距多少千米

例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。慢车每小时行多少千米 分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。 [ (40×3-25×2-7)÷3=21(千米) 答:慢车每小时行21千米。 练习二 1,兄弟二人同时从学校和家中出发,相向而行。哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。弟弟每分钟行多少米 2,汽车从甲地开往乙地,每小时行32千米。4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地 & 例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。求东、西两村相距多少千米 分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米/小时)。 因此,东西两村的距离是15×(5-1)=60(千米)

运筹学试题

运筹学试题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

运筹学试题 一、填空题(本大题共8小题,每空2分,共20分) 1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。 2.线性规划模型有三种参数,其名称分别为价值系数、___和___。 3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。 4.求最小生成树问题,常用的方法有:避圈法和 ___。 5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。 6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。 7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。 8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。 二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。多选无分。 9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】 A.有唯一的最优解 B.有无穷多最优解 C.为无界解 D.无可行解 10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】 A.b列元素不小于零 B.检验数都大于零 C.检验数都不小于零 D.检验数都不大于零

11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】 A.3 B.2 C.1 D.以上三种情况均有可能 12.如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足【】 13.在运输方案中出现退化现象,是指数字格的数目【】 A.等于 m+n B.等于m+n-1 C.小于m+n-1 D.大于m+n-1 14.关于矩阵对策,下列说法错误的是【】 A.矩阵对策的解可以不是唯一的 C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失 D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值 【】 A.2 8.—l C.—3 D.1 16.关于线性规划的原问题和对偶问题,下列说法正确的是【】 A.若原问题为元界解,则对偶问题也为无界解

运筹学试题及答案汇总

3)若问题中 x2 列的系数变为(3,2)T,问最优解是否有变化; 4)c2 由 1 变为 2,是否影响最优解,如有影响,将新的解求出。 Cj CB 0 0 Cj-Zj 0 4 Cj-Zj 3 4 Cj-Zj 最优解为 X1=1/3,X3=7/5,Z=33/5 2对偶问题为Minw=9y1+8y2 6y1+3y2≥3 3y1+4y2≥1 5y1+5y2≥4 y1,y2≥0 对偶问题最优解为 y1=1/5,y2=3/5 3 若问题中 x2 列的系数变为(3,2)T 则P2’=(1/3,1/5σ2=-4/5<0 所以对最优解没有影响 4)c2 由 1 变为2 σ2=-1<0 所以对最优解没有影响 7. 求如图所示的网络的最大流和最小截集(割集,每弧旁的数字是(cij , fij )。(10 分) V1 (9,5 (4,4 V3 (6,3 T 3 XB X4 X5 b 9 8 X1 6 3 3 X4 X3 1 8/5 3 3/5 3/5 X1 X3 1/3 7/5 1 0 0 1 X2 3 4 1 -1 4/5 -11/5 -1/3 1 - 2 4 X 3 5 5 4 0 1 0 0 1 0 0 X4 1 0 0 1 0 0 1/3 -1/ 5 -1/5 0 X5 0 1 0 -1 1/5 -4/5 -1/3 2/5 -3/5 VS (3,1 (3,0 (4,1 Vt (5,3 V2 解: (5,4 (7,5 V4 V1 (9,7 (4,4 V3 (6,4 (3,2 Vs (5,4 (4,0 Vt (7,7 6/9 V2 最大流=11 (5,5 V4 8. 某厂Ⅰ、Ⅱ、Ⅲ三种产品分别经过 A、B、C 三种设备加工。已知生产单位各种产品所需的设备台时,设备的现有加工能力及每件产品的预期利润见表:ⅠⅡⅢ设备能力(台.h A 1 1 1 100 B 10 4 5 600 C 2 2 6 300 单

应用多元统计分析习题解答_第五章

第五章 聚类分析 判别分析和聚类分析有何区别 答:即根据一定的判别准则,判定一个样本归属于哪一类。具体而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。聚类分析是分析如何对样品(或变量)进行量化分类的问题。在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。 试述系统聚类的基本思想。 答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。 对样品和变量进行聚类分析时, 所构造的统计量分别是什么简要说明为什么这样构造 答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。因为我们把n 个样本看作p 维空间的n 个点。点之间的距离即可代表样品间的相似度。常用的距离为 (一)闵可夫斯基距离:1/1 ()() p q q ij ik jk k d q X X ==-∑ q 取不同值,分为 (1)绝对距离(1q =) 1 (1)p ij ik jk k d X X ==-∑ (2)欧氏距离(2q =) 21/2 1 (2)() p ij ik jk k d X X ==-∑ (3)切比雪夫距离(q =∞) 1()max ij ik jk k p d X X ≤≤∞=- (二)马氏距离 (三)兰氏距离 对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。 将变量看作p 维空间的向量,一般用 2 1()()()ij i j i j d M -'=--X X ΣX X 11()p ik jk ij k ik jk X X d L p X X =-=+∑

七年级行程问题经典例题

第十讲:行程问题分类例析 主讲:何老师 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流, 回时则为逆流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设 甲车共 行使了 xh ,则乙车行使了h x )(60 25-.(如图1) 依题意,有72x+48)(60 25-x =360+100,

解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有6425 57525575.=-++x x 解得:x=1320. 答:这架飞机最远飞出1320km 就应返回. 解法二: 设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2.

运筹学例题

某昼夜服务的公交线路 解:设x i 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 s.t. x1 + x6≥60 x1 + x2≥70 x2 + x3≥60 x3 + x4≥50 x4 + x5≥20 x5 + x6≥30 x1,x2,x3,x4,x5,x6 ≥0 解得50,20,50,0,20,10(x1到x6)一共需要150人 一家中型的百货商场 解:设x i ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 + x7 s.t. x1 + x2 + x3 + x4 + x5 ≥28 x2 + x3 + x4 + x5 + x6≥15 x3 + x4 + x5 + x6 + x7≥24 x4 + x5 + x6 + x7 + x1≥25 x5 + x6 + x7 + x1 + x2≥19 x6 + x7 + x1 + x2 + x3≥31 x7 + x1 + x2 + x3 + x4≥28 x1,x2,x3,x4,x5,x6,x7 ≥0 解得12.0.11.5.0.8.0(x1到x7) 最小值36 某工厂要做100套钢架 设x1,x2,x3,x4,x5 分别为5 种方案下料的原材料根数。这样我们建立如下的数学模型。 目标函数:Min x1 + x2 + x3 + x4 + x5 s.t. x1 + 2x2 +x4≥100 2x3+2x4 +x5≥100 3x1+x2+2x3+3x5≥100 x1,x2,x3,x4,x5≥0 解得30,10,0,50,0 只需要90根原料造100钢架某工厂要用三种原料1、2、3 设设x ij 表示第i 种(甲、乙、丙)产品中原料j 的含量。 目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 s.t. 0.5 x11-0.5 x12 -0.5 x13≥0 -0.25x11+0.75x12 -0.25x13≤0 0.75x21-0.25x22 -0.25x23≥0 -0.5 x21+0.5 x22 -0.5 x23≤0 x11+x21 +x31≤100 x12+x22 +x32≤100 x13+x23+x33≤60 x ij≥0 , i = 1,2,3; j = 1,2,3 解得x11=100,x12=50,x13=50原料分别为第1种100 第2种50 第3种50 资源分配 解:将问题按工厂分为三个阶段,甲、乙、丙三个厂分别编号为1、2、3厂。设sk= 分配给第k个厂至第3个厂的设备台数(k=1、2、3)。xk=分配给第k个工厂的设备台数。 已知s1=5, 并有S2=T1(s1,x1)=s1-x1,S3=T2(s2,x2)=s2-x2从Sk与Xk的定义,可知s3=x3 以下我们从第三阶段开始计算。Maxr3(s3,x3)=r3(s3,x3)即F3(s3)= Maxr3(s3,x3)=r3(s3,x3). 第二阶段F2(s2)=max[r2(s2,x2)+f3(s3)]第一阶段当s1=5时最大盈利为f1(5)=max[r1(5,x1)+f2(5-x1)] 得出2个方案⑴分配给甲0台乙0台丙3台⑵分配甲2台乙2台丙1台,他们的总盈利值都是21. 背包 设Sk=分配给第k种咨询项目到第四种咨询项目的所有客户的总工作日Xk=在第k种咨询项目中处理客户的数量已知s1=10,有S2=T1(s1,x1)=s1-x1. S3=T2(s2,x2)=s2-3x2. S4=T3(s3,x3)=s3-4x3,第四阶段F4(s4)=maxr4(s4,x4)=r4(s4,[s4/7])第三阶段F3(s3)=max[r3(s3,x3)+f4(s3-4x3)]第二阶段F2(s2)=max[r2(s2,x2)+f3(s2-3x2)]第一阶段已知s1=10,又因s2=s1-x1有F1(10)=max[r1(10,x1)+f2(10-x1)] 综上当x1*=0,x2*=1,x3*=0,x4*=1,最大盈利为28 京城畜产品 解:设:0--1变量xi = 1 (Ai 点被选用)或0 (Ai 点没被选用)。这样我们可建立如下的数学模型:Max z =36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t. 100x1+120x2+150x3+80x4+70x5+90x6+80x7+140x8+160x9+180x10 ≤720 x1 + x2 + x3 ≤2 x4 + x5 ≥1 x6 + x7 ≥1 x8 + x9 + x10 ≥2 xi≥0 且xi为0--1变量,i = 1,2,3,……,10 函数值245 最优解1,1,0,0,1,1,0,0,1,1(x1到x10的解) 高压容器公司

五年级行程问题典型练习题

行程问题(一) 【知识分析】 相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。 【例题解读】 例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米, 两地相距多少千米? 【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。 (1)两车经过几小时相遇?8×2÷(90-85)=3.2小时 (2)两地相距多少千米?(90+85)×3.2=560(千米) 例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地 相距多少千米? 【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离 1.5×2×8÷(10-8)×=120千米 【经典题型练习】

1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车 每小时都比原来多行10千米,则2小时就相遇,求两地的距离? 2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8 分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?

【知识分析】 两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题 【例题解读】 例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米? 【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米 从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离 95×3—55=230千米 【经典题型练习】 1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相 遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离 2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站 80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?

运筹学习题答案

第一章习题 1.思考题 (1)微分学求极值的方法为什么不适用于线性规划的求解? (2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点? (4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用? (5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数? (6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算? (8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。 (10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么? 2.建立下列问题的线性规划模型: (1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示: 润最大的模型。 (2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。 如何安排配方,使成本最低? (3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20 假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解? (4)某工地需要30套三角架,其结构尺寸如图1-6所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少? 图1-6 3. 用图解法求下列线性规划的最优解: ?????? ?≥≤+-≥+≥++=0 ,425.134 1 2 64 min )1(21212 12121x x x x x x x x x x z ?????? ?≥≤+≥+-≤++=0 ,82 5 1032 44 max )2(21212 12121x x x x x x x x x x z ????? ????≥≤≤-≤+-≤++=0 ,6 054 4 22232 96 max )3(2122 1212121x x x x x x x x x x x z ??? ??≥≤+-≥+ +=0,1 12 34 3 max )4(2 12 12121x x x x x x x x z

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线 z=2 x 1+x 2与约 束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

聚类分析实例分析题(推荐文档)

5.2酿酒葡萄的等级划分 5.2.1葡萄酒的质量分类 由问题1中我们得知,第二组评酒员的的评价结果更为可信,所以我们通过第二组评酒员对于酒的评分做出处理。我们通过excel计算出每位评酒员对每支酒的总分,然后计算出每支酒的10个分数的平均值,作为总的对于这支酒的等级评价。 通过国际酿酒工会对于葡萄酒的分级,以百分制标准评级,总共评出了六个级别(见表5)。 在问题2的计算中,我们求出了各支酒的分数,考虑到所有分数在区间[61.6,81.5]波动,以原等级表分级,结果将会很模糊,不能分得比较清晰。为此我们需要进一步细化等级。为此我们重新细化出5个等级,为了方便计算,我们还对等级进行降序数字等级(见表6)。 通过对数据的预处理,我们得到了一个新的关于葡萄酒的分级表格(见表7):

考虑到葡萄酒的质量与酿酒葡萄间有比较之间的关系,我们将保留葡萄酒质量对于酿酒葡萄的影响,先单纯从酿酒葡萄的理化指标对酿酒葡萄进行分类,然后在通过葡萄酒质量对酿酒葡萄质量的优劣进一步进行划分。 5.2.2建立模型 在通过酿酒葡萄的理化指标对酿酒葡萄分类的过程,我们用到了聚类分析方法中的ward 最小方差法,又叫做离差平方和法。 聚类分析是研究分类问题的一种多元统计方法。所谓类,通俗地说,就是指相似元素的集合。为了将样品进行分类,就需要研究样品之间关系。这里的最小方差法的基本思想就是将一个样品看作P 维空间的一个点,并在空间的定义距离,距离较近的点归为一类;距离较远的点归为不同的类。面对现在的问题,我们不知道元素的分类,连要分成几类都不知道。现在我们将用SAS 系统里面的stepdisc 和cluster 过程完成判别分析和聚类分析,最终确定元素对象的分类问题。 建立数据阵,具体数学表示为: 1111...............m n nm X X X X X ????=?????? (5.2.1) 式中,行向量1(,...,)i i im X x x =表示第i 个样品; 列向量1(,...,)'j j nj X x x =’,表示第j 项指标。(i=1,2,…,n;j=1,2,…m) 接下来我们将要对数据进行变化,以便于我们比较和消除纲量。在此我们用了使用最广范的方法,ward 最小方差法。其中用到了类间距离来进行比较,定义为: 2||||/(1/1/)kl k l k l D X X n n =-+ (5.2.2) Ward 方法并类时总是使得并类导致的类内离差平方和增量最小。 系统聚类数的确定。在聚类分析中,系统聚类最终得到的一个聚类树,如何确定类的个数,这是一个十分困难但又必须解决的问题;因为分类本身就没有一定标准,人们可以从不同的角度给出不同的分类。在实际应用中常使用下面几种

行程问题经典例题

8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此 圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次 相遇.求此圆形场地的周长. 【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完 12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32 圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路 程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为 32 圈,所以此圆形场地的周长为480米. 行程问题分类例析 欧阳庆红 行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上 分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离 和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追 及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流. 一、相遇问题 例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25 分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续 行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程.

解答:设甲车共行使了xh,则乙车行使了h x) ( 60 25 -.(如图1) 依题意,有72x+48) ( 60 25 - x=360+100, 解得x=4. 因此,甲车共行使了4h. 说明:本题两车相向而行,相遇后继续行使100km,仍属相遇问题中的距离,望读者仔细体会. 例2:一架战斗机的贮油量最多够它在空中飞行 4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回? 分析:列方程求解行程问题中的顺风逆风问题. 顺风中的速度=静风中速度+风速 逆风中的速度=静风中速度-风速 解答:解法一:设这架飞机最远飞出xkm就应返回. 依题意,有6 4 25 575 25 575 . = - + + x x 解得:x=1320. 答:这架飞机最远飞出1320km就应返回. 解法二:设飞机顺风飞行时间为th. 依题意,有(575+25)t=(575-25)(4.6-t), 解得:t=2.2. (575+25)t=600×2.2=1320. 答:这架飞机最远飞出1320km就应返回. 说明:飞机顺风与逆风的平均速度是575km/h,则有6 4 575 2 . = x ,解得x=1322.5.错误原因在于飞机平均速度不是575km/h,而是) / (h km v v v v v x v x x 574 550 600 550 600 2 2 2 ≈ + ? ? = + ? = +逆 顺 逆 顺 逆 顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km,甲、乙两人的速度分别为21 km/h、14 km/h. (1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇? (2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 分析:这是环形跑道的行程问题. 解答:(1)设经过xh两人首次相遇. 依题意,得(21+14)x=42, 解得:x=1.2. 因此,经过1.2小时两人首次相遇. (3)设经过xh两人第二次相遇. 依题意,得21x-14x=42×2, 图1

相关主题
文本预览
相关文档 最新文档