当前位置:文档之家› 气相色谱技术的研究进展及其应用

气相色谱技术的研究进展及其应用

气相色谱技术的研究进展及其应用
气相色谱技术的研究进展及其应用

气相色谱技术的研究进展及其应用

摘要:气相色谱技术是现代仪器分析的重要组成部分,由于其独特、高效、快速的分离特性,已成为化工、药物、石油化工等领域的重要研究工具。本文阐述了

气相色谱系统的主要组成部分,介绍了全二维气相色谱技术、快速气相色谱技术、和气相色谱/质谱联用技术的研究进展及特点,探讨了气相色谱技术在石化分析、环境分析、生物药剂学研究分析及白酒分析中的应用。并概述了气相色谱技术的

前景与展望。

关键词:气相色谱技术;原理;研究进展;应用

1 引言

气相色谱法(gas chromatography, GC)是一种以气体为流动相,采用冲洗法

的柱色谱分离技术。由于它能分离气体及在操作温度下能成为气体,但又不分解的物质,而且分离效能高、灵敏度高、分析速度快,故已成为广泛应用的分离分

析手段之一[1]。进入21世纪以来,气相色谱技术的发展已渐趋成熟,基础性的创新成果十分有限,但技术性的进步一直在进行着,尤其是与行业相关的应用性研究仍然十分恬跃,以微柱阀切换、专用色谱柱和自控技术为基础发展起来的各类试样预处理系统和专用分析系统的标准化与商品化结果,使得这些新技术和新方法的应用变得越来越便利。目前,气相色谱技术已在石油、化工、环保、药物等方面有广泛应用。

2 气相色谱技术的原理及其系统组成

2.1气相色谱技术的原理

色谱法又叫层析法,它是一种物理分离技术。它的分离原理是使混合物中各组分在两相间进行,其中一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。当流动相中所含的混合物经过固定相时,就会与固定相发生相互作用。由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组

分获得分离的技术,称为色谱分离技术或色谱法。当用液体作为流动相时,称为液相色谱,当用气体作为流动相时,称为气相色谱。气相色谱的分离原理是利用不同物质在两相问具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。然后再进入检测器对各组分进行鉴定。2.2气相色谱系统的组成

放大器

恒温

记录器

图1 气相色谱流程图

图1[1]是典型的气象色谱仪示意图,从做到右依次是高压气瓶、减压阀、净化器、气流调节阀、转子流量计、气化室、色谱柱、检测器。

气相色谱系统组成包括气源、进样系统、气路控制系统、色谱分离系统、检测器、记录仪表、温度控制器、检测器电路等。

气源一般采用高压气瓶,常用有:H2、N2、He、空气等气体钢瓶;也可采用气体发生器,如氢气发生器、氮气发生器、无油空气泵等。进样系统可根据不同的分析要求和不同的进样器内衬确定。对于气体样品,最好采用六通阀进样,可获得良好的进样重复性;做高纯Ar分析,最好采用特殊设计的进样压力调节气体进样系统;液体样品采用微量注射器进样;固体样品采用裂解炉与脉冲炉配合使用。气路控制系统由开关阀、稳压阀、针型阀、切换阀和气阻、压力表、流量计等组成。色谱分离系统主要是指色谱柱,它是解决样品组分分离的关键,色谱柱分为填充柱和毛细管柱两大类。检测器是将样品中的化学组分转化为电讯号,实现非电量转移的检测装置,其灵敏度和稳定性关系到整个仪器的性能。记录仪表包括有记录仪和数据处理机两大类,后者有专用机和PC机发展出来的色谱工作站。温度控制器有恒温控制和程序升温控制两种方式,它是保证进样器、色谱柱、检测器能在正常温度条件下工作的基本元件。检测器电路是各种类型的检测器必须配备的控制及检测电路,用来实现非电量转换。

3 气相色谱技术的研究进展

3.1 全二维气相色谱

在分析含有150~250种或更多相关化合物的样品时,单柱气相色谱的分离能力往往达不到实验要求,许多分析问题需要一维色谱技术所不能提供的更高的分辨率,因此传统的二维色谱(GC+GC)应运而生。全二维气相色谱(GC×GC)作为一门新技术,是在传统的二维色谱技术的基础上发展起来的新技术,具有峰容量大、分辨率高、族分离和瓦片效应等特点,因此在复杂体系的分离分析中发挥出越来越重要的作用[1]。

传统的多维气相色谱发展到今天,无论在理论上还是应用上,均已相当成熟,而全二维气相色谱则是20世纪90年代初出现的新方法。首先,Jorgenson等[2]于1990年提出全二维液相色谱毛细管电泳联用的方法,强调二维正交分离的重要性。其后,Phillips等[3]利用他们以前在快速气相色谱中使用的在线热解析调制器开发出全二维气相色谱法。在该方法中,第1支柱为非极性柱,第2支柱为极性柱,通过极性和温度的改变实现气相色谱分离特性的正交化。从第1支柱中流出的组分按保留大小依次进人调制器进行聚焦,然后通过快速加热的方法把聚焦后的组分快速发送到第2支柱中进行再分离。由于发送频率很高,聚焦后再往第2根柱发送。连接两支柱的桥梁可以是1支厚膜毛细管,也可以是1支冷阱控制的毛细管。全二维气相色谱技术的关键部件是调制器。

全二维气相色谱分析技术的特点[4,5]如下:

(1)灵敏度高。组分在流出第一根色谱柱后,经过调制器聚焦后,提高了在检测器上的浓度,因而提高检测器的灵敏度,町比通常一维色谱灵敏度提高20-70倍。

(2)分辨率高、峰容量大。一般的二维气相色谱峰容量是二柱峰容量之和,而全二维气相色谱的峰容量是二柱峰容量之乘积,分辨率为二柱各自分辨率平方和的平方根。

(3)分析时间短、工作效率高。由于该系统能提供高的峰容量和好的分辨率,

总分析时间比一维色谱短。

(4)定性分析可靠性显著增强。主要有3个因素:①大多数目标化合物和化合物组群可达到基线分离减少干扰;②峰被分离成为容易识别的模式;③其中某一个峰相对于同族的其他成员来说,在每次运动中其位置是稳定的。

(5)由于系统能提供高峰容量和好分辨率,一个方法便可完成原来要几个美国测试和材料协会(ASTM)方法才能完成的任务。

3.2 快速气相色谱技术

最近几年国内不断有文献[6,7]报道有关快速和便携式气相色谱技术和应用,说明气相色谱的快速化和小型化已经受到人们的卜分重视。我国科技部在“九五”期间曾组织分析仪器开发研究课题,北京分析仪器厂等单位已经研制“高压快速气相色谱” ,分析时间可缩短到常规毛细管色谱的1/3到1/5[8]。北京石油勘探研究院的武杰曾对高压快速气相色谱的理论与在石油方面的应用有过很深入的研究。要实现快速气相色谱就要使用内径要细、长度要短的色谱柱,目前许多研究者都是使用细内径短毛细管柱进行快速气相色谱分析。因为使用细内径色谱柱可减少分析时问,另外还可提高柱效,但是使用短柱,色谱柱的总柱效就降低,而柱效是样品分离的首要因素,所以必须提高色谱柱单位柱长的柱效,这样既满足快速气相色谱要求的细内径短柱又满足分离所需的高柱效。

3.4 气相色谱和质谱联用技术

在色谱联用仪中,气相色谱和质谱联用仪(GC—MS)是开发最早的色谱联用仪器。自1957年霍姆斯(Holmes JC)和莫雷尔(Morrell FA)首次实现气相色谱和质谱联用以后,这一技术得到长足的发展。由于从气相色谱柱分离后的样品呈气态,流动相也是气体,与质谱的进样要求相匹配,最容易将这两种仪器联用,而且气一质联用法综合了气相色谱和质谱的优点,弥补了各自的缺陷,因而具有灵敏度高、分析速度快和鉴别能力强的特点,可同时完成待测组分的分离和鉴定,特别适用于多组分混合物中未知组分的定性和定量分析,判断化合物的分子结构;准确地测定化合物的分子量;是目前能够为皮克级试样提供结构信息的工具。

4 气相色谱技术的应用

4.1 气相色谱技术在石化分析中的应用

徐广通等[9]对基于汽油单体烃分析的各类物性数据的计算进行了研究,提出了一套新的辛烷值计算方法,对一些具有加和性的物性参数,如:密度、蒸气压、折光等也进行了预测。且进一步推出了一套可用于SOA和苯含量分析的双柱箱、双气路多维色谱系统,并进行了相关的标准化工作。由于较好地解决了烯烃捕集阱对烯烃的选择性保留和定量解析等困难,所开发的专用分析系统和方法有很好的应用前景。杨永坛等[10]建立了汽油馏分、煤/柴油馏分中各种硫化物类型分布的GC—AED分析方法,采用一非极性色谱柱,可对汽油馏分中的80多个硫化物、柴油馏分中的130多个硫化物进行检测,并开发了相应的分析软件。结合国内加工油的特点,研究了不同来源汽油、柴油中的硫化物类型分布,并研究了不同脱硫催化剂和工艺中各种硫化物的变化规律,为脱硫催化剂和相关工艺的选择提供了必要的基础数据。

4.2 气相色谱技术在环境分析中的应用

环境中多氯联苯(PCIN)、氯化硼烷和氯化莰烯的分析对分析化学家具有很大的挑战性。PCBs共有209个氯代联苯化合物,仅150个在商用产品中出现。

De Geus等[10]使用半GCxGC分离了非一邻位氯苯CBs77、126和l69及一个工艺PCB混合物Aroclorl254,结果表明,一次分离就可分析出所有感兴趣的组分。

大连物化所得许国旺等用GCxGC与TOF.MS飞行时间质谱联用表征卷烟主流烟气中的酚类化合物[12],采用TOF.MS谱图图库检索以二维“结构谱图”的定性手段,初步鉴定出250个酚类化合物,包括66个烷基苯酚、47个烯基苯酚、57个萘酚、1 7个苯基苯酚、32个甲氧基苯酚、9个酚酮和15个酚醛化合物。刘文民等[13]采用In—tube和SPME—GC和SBSE—GC对水中的正构烷烃以及农药污染物进行了分析,结果表明所设计的In—tube和SPME—GC接口装置中微三通的引入避免了解吸下来的分析物经过六通阀而造成残留,同时还避免了高温六通阀的使用,从而降低了新装置的成本,适宜水体中有机污染物的分析;SBSE方法中搅拌棒的制作方法可靠,重复性好,热解吸装置中传输线的加热由气相色谱进样口完成,操作简单。卢凯[14]对天津市东郊污水处理厂沼气成分及含量采用气相色谱技术进行分析利用,气相色谱仪数据处理器的编程功能编制程序,输入甲烷、二氧化碳、污泥浓度、污泥有机分和消化率的数据后,可以直接得到产气率。此程序计算的产气率虽高于实际产气率,但实践证明,这套程序在生产中发挥了积极作用,不仅提高了分析速度,而且给出了量化数据,使污泥处理工艺得以在最佳条件下运行。

4.3 气相色谱技术在在生物药剂学研究分析中的应用

根据国际奥委会医学委员会的要求,体育运动中的兴奋剂检测唯一能用作确认的仪器是GC~Ms。段宏瑾等[15]采用气相色谱一质谱联用系统对此药进行了研究。实验发现,PEN原药在尿中的代谢很快,2 h后的尿中已检测不到,因而检测其代谢物十分重要。在实验中共检出了6种代谢产物,其中有5种在72 h的尿中仍能检出。大大增加了检测的可靠性。与此同时,还建立了血中PEN的检测方法。此方法现已用于对运动员兴奋剂的检查。

4.4 气相色谱在白酒分析中的应用[16]

白酒的主要成分是乙醇和水(占总量的98%~99%),而溶于其中的醇、醛、酸、酯等众多有机化合物(占总量的1%~2%)作为白酒的呈香呈味物质,却决定着白酒的质量和风格。因此,气相色谱分析在白酒内在质量监控上起着关键作用。它在白酒分析中的应用主要包括以下几个方面。

4.4.1 对卫生指标甲醇和杂醇油的控制

白酒中甲醇、杂醇油是酒类卫生监控指标中的两项重要指标,GB2757和GB10345对甲醇、杂醇油的含量和检验方法作了严格的规定。用气相色谱仪可直接进样,并可快速、准确地测定出酒样中甲醇和杂醇油的含量。

4.4.2 对主体香含量的测定

白酒是多种香味成分的集合体,独特香型既取决于主体香味成分在酒中的含量,也取决于某些特征性香味成分的种类和含量。浓香型白酒的主体香是己酸乙酯,清香型白酒的主体香是乙酸乙酯,在GB10781.1—2006和GB10781.2-2006中严格规定了优级高度酒的己酸乙酯和乙酸乙酯最高不能超过2.80 L和2.60 g/L。米香型高度优级酒的乳酸乙酯不能低于0.50 g/L。用气相色谱可快速、准确地测定主体香含量,以判断其是否合格。

4.4.3 白酒骨架成分的测定

白酒中用常规色谱定量分析得到的二十种左右的成分称为色谱骨架成分。这二十种左右的色谱骨架成分是中国白酒中占优势的成分(乙醇和水除外),是中国白酒的主干成分,是组合生产技术环节必须倚重和十分注意的核心要素之一,它们在构成中国白酒时起主干作用,它们构成了中国白酒的骨架。白酒香型不同,风格不同,其色谱骨架成分的构成情况亦不同。利用气相色谱分析白酒的骨架成

分对基础酒的组合将起到事半功倍的效果。

4.4.4 白酒复杂成分的测定

白酒香味成分中含量小于20 mg/L 的所有成分称为复杂成分。复杂成分决定着白酒的质量和档次。利用气相色谱仪与其他仪器相配合使用,如气质联用等开展多种复杂成分的分析研究,可以为稳定和不断提高白酒特别是名优白酒产品质量提供更广泛、准确的科学依据。

4.4.5 酒用香料的测试

随着国家白酒产业政策的调整和人们消费观念的改变,白酒低度化已成为一种发展趋势,因此,食用香料的使用越来越广泛,对其质量要求也越来越高,用气相色谱可快速准确地测定出各种香料成分的含量。

5 前景与展望

随着气相色谱技术研究的不断深入及应用领域的日趋广泛,使其朝者更高灵敏度、更高选择性、更方便快捷的方向发展,不断推出新的方法来解决可能遇到的新的分析难题。其发展主要体现在以下几个方面:

(1) 满足各种应用需求的专用色谱柱的开发。高选择性和寿命、低应用成本及齐全规格尺寸是对这类色谱柱的基本要求。

(2) 针对各类具体需求开发的与标准分析方法相配套的专用分析系统的普

遍应用。小型(芯片化、模块化)、快速、可靠和自动化、网络化将是这类专用系统的主要技术特征。

(3) 基于各类应用系统或分析方法开发的专用分析软件也是一个值得关注

的方向。专业化、网络化和远程技术支持性能将是对这类应用软件的基本要求。

(4) 基于网络的广义并行多维色谱分析系统有望进入实用阶段。广义并行多维色谱分析系统是指以普通单一气相色谱作为一个基本分析单元,通过网络将多台具有这类单一分析功能的气相色谱组合成一个分析系统,共同完成特定分析任务的组合系统。

参考文献:

[1] 曾泳淮,林树昌。分析化学(仪器分析部分)第二版[M]。北京:高等教育

出版社,2004:364。

[2] 鹿洪亮,赵明月。全二维气相色谱-飞行时间质谱法测定烟草的中性化学成

分[J]。色谱,2007,125 (1):30-34,。

[3] M M Bushey, J W Jorgenson. Comprehensive Three—Dimensional Gas

Chromatography with Parallel Factor Analysis[J]. Anal Chem, 1990, 62:

161-167.

[4] J B Phillips, D Luu, J B Pawliszyn, et al. Multiplex Gas Chromatography by

Thermal Modulation of a Fused Silica Capillary Column[J]. Anal Chem,1985, 57: 2779-2787.

[5] 花瑞香。全二维气相色谱法用于不同石油馏分的族组成分布研究[J]。化学

学报,2002,60(12):2185。

[6] 苏凤仙。气相色谱技术的新进展及应用[J]。合成技术及应用,2006,21(3):

30-34。

[7] 王兆基。快速气相色谱法测定蔬菜中菊酯类农药残留量[J]。分析化学研究

简报,1998,26(10):

[8]史平,侯定远。水中硝基苯的快速气相色谱鉴定[J]。环境工程,1998,16(6):

56。

[9]傅若农。国内气相色谱近年进展[J]。分析试验室,2003,22(2):95—96。

[10]徐广通,杨玉蕊,陆婉珍。多维气相色谱快速测定汽油中的烯烃、芳烃和

苯含量[J]。石油炼制与化工,2003,34(3):61。

[11]杨永坛,杨海鹰,陆婉珍。催化柴油中硫化物的气相色谱一原子发射光谱

分析方法及应用[J]。色谱,2002,20(6):493。

[12] H De Geus, J De Boer, U A Th Bfinkman. Development of a thermal

desorption modulator for gas chromatography[J]. Journal of Chromatography A.

1997, 767: 137-151.

[13] 许国旺。全二维气相色谱/飞行时问质谱用于卷烟主流烟气中酚类化合物的

表征[J]。化学学报,2004,62(8):804.

[14] 刘文民,徐媛,赵景红,等。固相微萃取新技术在水分析中的应用[J].生

命科学仪器,2004,2(5):12-16.

[15] 卢凯。气相色谱分析技术在污水厂的应用[J]。中国给水排水,2005,21:

44。

[16] 段宏瑾。兴奋剂检测中β-受阻滞剂的检测[J]。药物分析杂志,1991,l1:272

[17] 程劲松。气相色谱法测定白酒中的香味组分研究进展[J]。酿酒技术,2006,8:1

04-107。

气相色谱技术的新进展及应用

气相色谱技术的新进展及应用张胜旺 (华宇橡胶有限责任公司化验室:张胜旺) 摘要:气相色谱技术室现代仪器分析的重要研究领域之一,由于其高效快速的分离特点,现在已成为物理化学分析不可缺少的重要工具,本文主要介绍了气相色谱在石油化工、环保行业中的应用。 关键词:气相色谱技术、应用。 一、气相色谱的发展历史:从茨维特1903年发现色谱算起,气相色谱已经有了100多年的历史,从马丁和辛格1941年提出分配色谱和1952年发明气-液色谱而获得诺贝尔化学奖也有50多年的历史了。自1952年世界上第1次创建实用气液色谱法以来,气相色谱仪作为现代分析检测仪器的代表,已发展成为一个有相当生产规模的产业,并形成了具有相当丰富的检测技术知识的学科。气相色谱法由于其具有分离效能高、分析速度快、选择性好等优点而被广泛应用于环境样品中的污染物分析、药品质量检验、天然产物成分分析、食品中农药残留量测定、工业产品质量监控等领域。随着新型气相色谱仪器、检测器、数据分析方法的出现,气相色谱的应用领域必将越来越广阔。 二、气相色谱的机构原理及特点: 色相色谱仪技术的基本原理是:当气体样品通过一定的进样方式送入色谱系统后,样品中混合物的各组分在流动相(载气)的带动下,通过称为色谱柱的固定相,利用各组分在流动相中具有不同的吸附能力,当二相作相对运动时,样品中各组分就会在二相中反复多次受到上述各种作用力的作用,从而使混合物中各组分获得分离,被分离后的单一组分随载气进入检测器的系统,获得非电量转换,将化学成分转变成与其浓度成正比的电信号,然后通过这些电信号的不同来分析样品成分。

2.1载气系统:包括气源、净化器干燥管和载气流速控制 2.2进样系统:进样器和汽化室 2.3色谱柱:填充柱或毛细管柱 2.4检测器:可连接各种检测器,以热导检测器或氢火焰检测器为常见 2.5记录系统:放大器、记录仪或数据处理仪 2.6温度控制系统:柱室、汽化室的温度控制 2.7气相色谱在石油化工行业中的应用 气相色谱法的特点:三高一快一广 2.8高选择性----能分离性质极为接近的物质,如:异构体、同位素 2.9高效能----在很短的时间内能分离测定性质极为复杂的混合物 3.0高灵敏度----微量、痕量组分,样品用量较少 3.1分析速度快----样品准备好后,几分或者几十分钟即可完成分析 3.2应用范围广----可广泛应用到环保,石油化工、食品、农药等方面的测定 三、气相色谱在石油化工行业中的应用 在石油和石油化工行业,气相色谱技术的应用相当普及,从石油勘探、石油加工研究到生产控制和产品质量把关等。气相色谱技术之所以得到石油和石化行业分析化学家们的欢迎,是由于它的分离和定量能力以及出色的性价比,目前尚无其它类型的仪器分析技术能与之匹敌。 1气体分析 1.1永久性气体分析

气相色谱仪原理及应用实验指导书

气相色谱仪原理及应用实验指导书 贵州大学精细化工研究开发中心(绿色农药与生物工程重点实验室) 1. 实验类型:设计型实验(研究性实验) 2.课时安排:6课时。并运用其数据资料的能力以及归纳总结的能力等。 3.实验目的和意义 通过学习气相色谱仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 4. 实验原理 气相色谱分离是利用试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组分就在其中的两相间进行反复多次(103-106)的分配(吸附-脱附-放出)由于固定相对各种组分的吸附能力不同(即保存作用不同),因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组分的色谱峰。 5.实验设备 气相色谱仪、色谱柱、容量瓶、分析实验室常用玻璃仪器、氮气、农药标准品。 6.实验内容 了解并初步掌握气相色谱仪的基本原理与构造;了解气相色谱仪常用的几种检测器工作原理和使用范围;学习气相色谱法分离化合物和检测化合物的含量的方法;通过测定对样品的定性、定量测定,初步掌握获得气相色谱谱图和数据的一般操作程序与技术;学习样品制备的方法;了解影响分析测定的重要因素,学会优化分析条件;学习谱图和数据的处理方法;结合实验室项目,完成一个分析检测项目。 1)样品制备

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

气相色谱法的基本知识及应用

高效液相色谱法(HPLC) 概述: 色谱法是一种应用范围相当广泛的分离分析技术,它已有近百年的发展史。 二十世纪五、六十年代石油及石油化工的突起促使了GC技术大发展,而七、八十年代生命科学、生化、制药工业的发展推动了HPLC的迅速发展。 目前除分析化学外,生物化学,石油化学,有机化学,无机化学等学科都普遍采用色谱技术。现代高效液相色谱仪,以其高效,快速和自动化等特点成为当代分析仪器中发展最快的仪器。HPLC已成为操作方便、准确、快速并能解决困难分离问题的强有力的分析手段。 适用范围广: 已知有机物中仅20%不经预先化学处理,可用GC分析;而其余80%有机物可用HPLC分析。HPLC适于分离生物、医学大分子和离子化合物,不稳定的天然产物,种类繁多的其它高分子及不稳定化合物。 第一课色谱法概述 色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分 配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反 复分配而实现分离。在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫 液相色谱。固定相可以装在柱内,也可以做成薄层。前者叫柱色谱,后者叫薄层色谱。 根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。 色谱法的创始人是俄国的植物学家茨维特。1905年,他将从植物色素提取的石油 醚提取液倒人一根装有碳酸钙的玻璃管顶端,然后用石油醚淋洗,结果使不同色素得 到分离,在管内显示出不同的色带,色谱一词也由此得名。这就是最初的色谱法。后 来,用色谱法分析的物质已极少为有色物质,但色谱一词仍沿用至今,在50年代,色 谱法有了很大的发展。1952年,詹姆斯和马丁以气体作为流动相分析了脂肪酸同系物 并提出了塔板理论。1956年范第姆特总结了前人的经验,提出了反映载气流速和柱效 关系的范笨姆特方程,建立了初步的色谱理论。同年,高莱(Golay)发明了毛细管拄, 以后又相继发明了各种检测器,使色谱技术更加完善。50年代末期,出现了气相色谱 和质谱联用的仪器,克服了气相色谱不适于定性的缺点。则年代,由于检测技术的提 高和高压泵的出现,高效液相色谱迅远发展,使得色谱法的应用范围大大扩展。目前 ,由于高效能的色谱往、高灵敏的检测器及微处理机的使用,使得色谱法已成为一种 分析速度快、灵敏度高、应用范围广的分析仪器。 在这里主要介绍气相色谱分析法。同时也适当介绍液相色谱法。气相色谱法的 基本理论和定性定量方法也适用于液相色谱法。其不同之处在液相色谱法中介绍。 第二课气相色谱仪 典型的气相色谱仪具有稳定流量的载气,将汽化的样品由汽化室 带入色谱柱,在色谱柱中不同组分得到分离,并先后从色谱柱中流出, 经过检测器和记录器,这些被分开的组分成为一个一个的色谱峰。色 谱仪通常由下列五个部分组成: 1.载气系统(包括气源和流量的调节与测量元件等) 2.进样系统(包括进样装置和汽化室两部分)

气相色谱法附答案

气相色谱法(附答案) 一、填空题1. 气相色谱柱的老化温度要高于分析时最高柱温_____℃,并低于固定液的最高使用温度,老化时,色谱柱要与_____断开。答案:5~10 检测器 2. 气相色谱法分离过程中,一般情况下,沸点差别越小、极性越相近的组分其保留值的差别就_____,而保留值差别最小的一对组分就是_____物质对。答案:越小难分离3.气相色谱法分析非极性组分时应首先选用_____固定液,组分基本按沸点顺序出峰,如烃和非烃混合物,同沸点的组分中_____大的组分先流出色谱柱。答案:非极性极性4.气相色谱法所测组分和固定液分子间的氢键力实际上也是一种_____力,氢键力在气液色谱中占有_____地位。答案:定向重要 5.气相色谱法分离中等极性组分首先选用_____固定液,组分基本按沸点顺序流出色谱柱。答案:中极性 6.气相色谱分析用归一化法定量的条件是______都要流出色谱柱,且在所用检测器上都能_____。 答案:样品中所有组分产生信号 7.气相色谱分析内标法定量要选择一个适宜的__,并要求它与其他组分能__。答案:内标

物完全分离 8.气相色谱法常用的浓度型检测器有_____和_____。答案:热导检测器(TCD) 电子捕获检测器(ECD) 9. 气相色谱法常用的质量型检测器有_____和_____。答案:氢火焰检测器(FID) 火焰光度检测器(FPD) 10. 电子捕获检测器常用的放射源是_____和_____。答案:63Ni 3H 11. 气相色谱分析中,纯载气通过检测器时,输出信号的不稳定程度称为_____。答案:噪音 12. 顶空气体分析法是依据___原理,通过分析气体样来测定__中组分的方法。答案:相平衡平衡液相 13. 毛细管色谱进样技术主要有_____和______。答案:分流进样不分流进样 14. 液—液萃取易溶于水的有机物时,可用______法。即用添加_____来减小水的活度,从而降低有机化合物的溶解度。答案:盐析盐 15.气相色谱载体大致可分为______和______。答案:无机载体有机聚合物载体

谈气相色谱方法原理与应用现状以及发展前景

谈气相色谱方法原理与应用现状以及发展前景 摘要 气相色谱技术是现代仪器分析的重要研究领域之一,由于其独特、高效、快速的分离特性,已成为物理、化学分析不可缺少的重要工具。进入2l世纪以来,气相色谱技术的发展已渐趋成熟,基础性的创新成果十分有限,但技术性的进步一直在进行着,尤其是与行业相关的应用性研究仍然十分活跃,以微柱阀切换、专用色谱柱和自控技术为基础发展起来的各类试样预处理系统和专用分析系统的标准化与商品化结果,使得这些新技术和新方法的应用变得越来越便利。目前,气相色谱技术已在石油、化工、环保、药物等方面有广泛应用。 关键词:气相色谱(GC)仪器分析应用现状发展前景 正文 近年来由于分析仪器的迅速发展以及食品科学本身的发展,仪器分析在食品研究上应用日趋广泛。仪器分析法即是用精密分析仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,大致包括:色谱分析法、电化学分析法、光学分析法、质谱分析法和核磁共振波谱法。其中,色谱分析法以其具有高分离效能、高检测性能、分析快速而成为现代仪器分析方法中应用最广泛的一种方法。它的分离原理是,使混合物中各组分在两相间进行分配,其中一相是不动的,为固定相,另一相是携带混合物流过此固定相的流体,为流动相。当流动相中所含混合物经过固定相时,就会与固定相发生作用。由于各组分在性质和结构上的差异,与固定相发生作用的大小、强弱也有差异,因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后不同的次序从固定相中流出。而气相色谱法是采用气体作为流动相的一种色谱法。 1.气相色谱法基本原理 (1)分离:当试样由载气携带进入色谱柱与固定相接触时,被固定相溶解或吸附;随着载气的不断通入,被溶解或吸附的组分又从固定相中挥发或脱附;挥发或脱附下的组分随着载气向前移动时又再次被固定相溶解或吸附,于是,随着载气的流动,溶解、挥发,或吸附、脱附的过程反复地进行,较难被吸附的组分随载气较快地向前移动,较易被吸附的组分则随载气较慢地移动,经过一定时间后,各组分就彼此分离。 (2)检测:质量型检测——氢火焰离子化检测(FID)、火焰光度检测(FPD),浓度型检测——热导检测(TCD)、电子捕获检测(ECD)。 2.气相色谱技术的发展历史 古代罗马人曾采用一块布或一片纸来分析染料与色素,大约在100多年前,德国的化学家Runge 对此方法作了重要的改进,使其具有更好的重现性与定量能力,这项技术后来发展成了今天的纸色谱技术。 1901年俄国植物学家Mikhail Tswett 采用碳酸钙作吸附剂,石油醚为洗脱剂,分离了植物色素,1903 年他发表了题为“一种新型吸附现象及在生化分析上的应用”的研究论文,文中第一次提出了应用吸附原理分离植物色素的新方法,1906 年,他命名这种方法为色谱法,但由于分离速度慢,分离效率低,长时间内未引起重视。 1931年德国的Kuhn 和Lederer 采用类似方法分离了胡萝卜素等60 多种色素,色谱方法才被广泛应用。 1940年Martin 和Synge 提出了液液分配色谱法,1941 年他们提出了用气体作流动相的可能性。 1952年James 和Martin 发明了气相色谱法,因而获得1952 年的诺贝尔化学奖。 1957年Golay 开创了毛细管气相色谱法。

气相色谱仪的及如何应用

气相色谱仪的简介及如何应用 气相色谱仪 气相色谱法适用于分析具有一定蒸气压且热稳定性好的组分,对气体试样和受热易挥发的有机物可直接进行分析,而对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 一、仪器的组成 气相色谱仪由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 二、对仪器的基本要求 1.对仪器的一般要求 (1)载气源气体氦、氮和氢可用作气相色谱法的流动相,可根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 (2)进样部分进样方式一般可采用溶液直接进样或顶空进样。采用溶液直接进样时,进样口温度应高于柱温30~50℃。顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。 (3)色谱柱根据需要选择。新填充柱和毛细管柱在使用前需老化以除去残留溶剂及低分子量的聚合物,色谱柱如长期未用,使用前应老化处理,使基线稳定。 (4)柱温箱柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。 (5)检测器适合气相色谱法的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、氮磷检测器(NPD)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、质谱检测器(MS)等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度高;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证。除另有规定外,火焰离子化检测器一般用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 (6)数据处理系统目前多用计算机工作站。 药典规定,各品种项下规定的色谱条件,除载气、检测器、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并符合系统适用性试验

色谱连用技术

色谱联用技术在生药学研究中的应用 摘要:本文介绍了近年来HPLC–MS联用技术在中药指纹图谱建立、结构鉴定以及定量分析等方面的应用及其发展前景。以及GC/ MS在中药材鉴定、中成药分析、药效学研究和药动学研究中的应用极其发展前景。 关键词:HPLC–MS GC/ MS 鉴定分析 Abstract :In recent years were introduced in this article and HPLC - MS detection in traditional Chinese medicine (TCM) fingerprint is established, the structure identification and quantitative analysis of the application and development prospect. And the analysis of the GC/MS in the identification of Chinese medicinal materials, proprietary Chinese medicine, the application of the pharmacodynamic and pharmacokinetic research prospects. Keywords: HPLC - MS analysis of GC/MS identification 色谱联用技术,就是采用色谱技术将复杂体系加以分离,再用红外光谱、质谱或核磁共振等波谱学或光谱学等的技术分别提供其结构信息,这为复杂体系的分离分析研究提供了一种具有发展前景的新技术。色谱联用技术包含了多种联用方式和技术,色谱方法主要包括高效液相色谱(HPLC)、气相色谱(GC)、毛细管电色谱(CEC)和高效毛细管电泳(HPCE)等几种分离手段同四大谱即质谱、核磁共振、红外、紫外光谱的分别联用组成了色谱联用技术的丰富内涵,此外还有与其他技术的联用应用。由于对复杂体系分析信息量的要求日益增高,各种联用均得到较大发展,其中最引人注目的是色谱与质谱的成功联用,主要包括气相色谱—质谱(GC/MS)和液相色谱—质谱(LC/MS)。另外,正处于快速发展阶段并广泛应用的色谱联用技术包括气相色谱/傅立叶变换红外光谱(GC—FTIR)、气相色谱/原子光谱(GC—AS)、液相色谱/电感耦合等离子体质谱(HPLC-ICP—MS)、液相色谱/二极管阵列检测/质谱/质谱联用(LC—DAD—MS-MS)、毛细管电泳/质谱联用(CE-MS)等。色谱联用技术在生物样品分析、食品分析、环境分析、药物方面等表现出了一定的优越性。 本文着重介绍液质联用与气质联用。 1液相色谱与质谱联用技术 HPLC - MS 主要由高效液相色谱仪、接口、质量分析器、真空系统和计算机数据处理系统组成。混合样品通过液相色谱系统进样,由色谱柱分离。从色谱仪流出的被分离组分依次通过接口进入质谱仪的离子源处并被离子化,然后离子被聚焦于质量分析器中,根据

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

浅析气相色谱仪的应用现状及发展趋势

浅析气相色谱仪的应用现状及发展趋势 【摘要】从1903年气相色谱仪被发现至今,用气相色谱法对物质进行测量分析已被广泛的应用于人类生产生活的各个领域当中。气相色谱仪技术由于其分离质量不断提高、检测速度普遍加快、机器微型化、成本降低的特点逐步赢得了市场的认可。本文在我国气相色谱仪市场状况调研的基础上,对气相色谱仪的应用现状进行简要分析、并按照现有的气相色谱仪的实际应用对气相色谱仪的发展趋势做出估计。 【关键词】气相色谱仪应用现状发展趋势 1 气相色谱技术的发展历程 1906年茨维特创设色谱法以来,关于气相色谱的研究就从未间断。虽然色谱理论和技术上的创新引起了学术界的广泛关注,但直到1952年气相色谱的发明(GC ),才使气相色谱技术得到了广泛的使用,并且该发明使气相色谱实验技术和仪器设备等不断发展成熟,而毛细管气相色谱的出现使气相色谱的应用可以向石化以外的多行业延伸。 气相色谱强大的分离能力,加之近年来气相色谱技术逐渐向快速检测、高度分离、高准确性、微型化、便携式的方向发展,使其走出实验室向广大的社会生产生活领域迈进,我国也走过了机械式、光电转盘式、数字分频电子式、现代计算机式的发展过程,当权威的国际离子色谱会议(International Ion Chromatography Symposium )把微型化色谱柱的研究作为其重要的议题之一时,微型气相色谱仪的研发就成为了当前气相色谱技术的流行发展趋势和学术界主流研究方向。 从1952年气液相色谱技术进行实际应用,气相色谱技术得到了突飞猛进的发展。其中气相色谱仪已经成为了物质分析检测类仪器领域中的佼佼者,目前在世界范围内已经发展为一个庞大的产业,形成了一门独立的应用技术学科。通过对气相色谱仪技术的研究可以发现,这一科技成就甚至一定程度可以代表色谱技术对人类的贡献值。其从诞生到成熟的经历也可以代表气相色谱的应用历史和现状。 2 我国气相色谱仪的应用现状分析 我国气相色谱仪的市场广泛,中国市场是世界气相色谱仪竞争的重点区域,国外厂商纷纷进入中国市场,其知名品牌有安捷伦科技、赛默飞世尔、戴安等,这些企业一方面活跃了中国气相色谱仪市场,另一方面为我国学习和自主研发气相色谱仪提供了契机,并且使我国气相色谱仪市场呈现出独特特征。 2.1 国产气相色谱仪技术水平分析

色谱法的产生和发展

1906年,俄国植物学家Tswett发表了他的实验结果,他为了分离植物色素,将植物绿叶的石油醚提取液倒入装有碳酸钙粉末的玻璃管中,并用石油醚自上而下淋洗,由于不同的色素在碳酸钙颗粒表面的吸附力不同,随着淋洗的进行,不同色素向下移动的速度不同,形成一圈圈不同颜色的色带,使各色素成分得到了分离。他将这种分离方法命名为色谱法(chromatography)。在此后的20多年里,几乎无人问津这一技术。到了1931年,Kuhn等用同样的方法成功地分离了胡萝卜素和叶黄素,从此,色谱法开始为人们所重视,此后,相继出现了各种色谱方法。 色谱法的发展历史 在分析化学领域,色谱法是一个相对年轻的分支学科。早期的色谱技术只是一种分离技术而已,与萃取、蒸馏等分离技术不同的是其分离效率高得多。当这种高效的分离技术与各种灵敏的检测技术结合在一起后,才使得色谱技术成为最重要的一种分析方法,几乎可以分析所有已知物质,在所有学科领域都得到了广泛的应用。

1. 色谱法的优点 分离效率高。几十种甚至上百种性质类似的化合物可在同一根色谱柱上得到分离,能解决许多其他分析方法无能为力的复杂样品分析。 分析速度快。一般而言,色谱法可在几分钟至几十分钟的时间内完成一个复杂样品的分析。 检测灵敏度高。随着信号处理和检测器制作技术的进步,不经过预浓缩可以直接检测 10-9g 级的微量物质。如采用预浓缩技术,检测下限可以达到 10-12g 数量级。 样品用量少。一次分析通常只需数纳升至数微升的溶液样品。 选择性好。通过选择合适的分离模式和检测方法,可以只分离或检测感兴趣的部分物质。 多组分同时分析。在很短的时间内(20min左右),可以实现几十种成分的同时分离与定量。 易于自动化。现在的色谱仪器已经可以实现从进样到数据处理的全自动化操作。 2. 色谱法的缺点 定性能力较差。为克服这一缺点,已经发展起来了色谱法与其他多种具有定性能力的分析技术的联用。 色谱法的定义与分类 固定相(stationary phase):在色谱分离中固定不动、对样品产生保留的一相。 流动相(mobile phase):与固定相处于平衡状态、带动样品向前移动的另一相。

气相色谱法在分析中的应用(精)

-科苑论谈 气相色谱法在分析中的应用 王颖石 (黑化集团有限公司,黑龙江齐齐哈尔161041) 摘要:简述气相色谱法近年来的发展及在分析中所起到的重要作用,详细阐述气相色谱法的工作原理、方法特点、操作流程及气相色谱曲线的特点。 关键词:气相色谱;色谱柱;色谱峰;载气 前言:气相色谱法是近五十年来迅速发展起来的一种新型分离,分析技术,在石油炼制、基本有机原料、高分子、医药、原子能、冶金工业中得到了广泛的应用。对保证工业生产的正常进行和提高产品质量起到了重要的作用。在许多生产部门,气相色谱分析法逐步代替了化学分析法。当前随着我国石油化学工业的迅速发展,气相色谱法在石油、化工生产中已成为中间控制分析中的一种不可缺少的分析方法了。 近年来电子计算机和专用的微型电子计算机已和气相色谱仪联用,可自动对分析结果进行数据处理,对于提高分析速度、改善分析结果的准确性及实现生产过程高自动化起到了重要的作用。现就气相色谱法的原理、特点及流程作以详细阐述。 1气相色谱法工作原理

气相色谱的工作原理是利用试样中各组份在色谱柱中的气相和固定液相间的分配系数不同,当汽化后的试样被载体带入色谱中运行时,组份就在其中的两相间进行反复多次的分配(吸附-脱附或溶解-放出),由于固定相对各组份的吸附或溶解能力不同,(即保留作用不同),各组份在色谱柱中的运行速度也就不同,经过一定柱长后,便彼此分离,按顺序离开色谱柱,进入检测器,产生的离子流经讯号放大后,在记录仪上就描绘各组份的曲线图,称为色谱峰。根据色谱峰的峰高或峰面积就可定量测定出样品中各级份的含量。 2气相色谱法的主要特点 气相色谱法在应用中的主要特点是选择性高、分离效率高、灵敏度高、分析速度快。 2.1选择性高 选择性高是指气相色谱法对性质极为接近的物质,具有很强的分离能力。如在石油化工生产中比较难解决的碳四烯烃异构体的分离;原子能工业中氢的三种同位素:氢、氘、氚的分离;医药和生物化学中结构复杂的旋光异构体的分离。现都可采用气相色谱法来解决。 2.2分离效率高 分离效率高是指气相色谱法能分离分配系数很接近的组份一根1~2m的色谱柱,柱效率可达几千块理论塔板数,因而对组成复杂的或难以分离的物质,经过色谱柱进行反复多次的分配平衡(或吸附平衡),最终均可达到分离的目的。 2.3灵敏度高

浅析气相色谱仪的应用现状及发展趋势

32 https://www.doczj.com/doc/eb20696.html,/ 1 气相色谱技术的发展历程 1906年茨维特创设色谱法以来,关于气相色谱的研究就从未间断。虽然色谱理论和技术上的创新引起了学术界的广泛关注,但直到1952年气相色谱的发明(GC ),才使气相色谱技术得到了广泛的使用,并且该发明使气相色谱实验技术和仪器设备等不断发展成熟,而毛细管气相色谱的出现使气相色谱的应用可以向石化以外的多行业延伸。 气相色谱强大的分离能力,加之近年来气相色谱技术逐渐向快速检测、高度分离、高准确性、微型化、便携式的方向发展,使其走出实验室向广大的社会生产生活领域迈进,我国也走过了机械式、光电转盘式、数字分频电子式、现代计算机式的发展过程,当权威的国际离子色谱会议(International Ion Chromatography Symposium )把微型化色谱柱的研究作为其重要的议题之一时,微型气相色谱仪的研发就成为了当前气相色谱技术的流行发展趋势和学术界主流研究方向。 从1952年气液相色谱技术进行实际应用,气相色谱技术得到了突飞猛进的发展。其中气相色谱仪已经成为了物质分析检测类仪器领域中的佼佼者,目前在世界范围内已经发展为一个庞大的产业,形成了一门独立的应用技术学科。通过对气相色谱仪技术的研究可以发现,这一科技成就甚至一定程度可以代表色谱技术对人类的贡献值。其从诞生到成熟的经历也可以代表气相色谱的应用历史和现状。 2 我国气相色谱仪的应用现状分析 我国气相色谱仪的市场广泛,中国市场是世界气相色谱仪竞争的重点区域,国外厂商纷纷进入中国市场,其知名品牌有安捷伦科技、赛默飞世尔、戴安等,这些企业一方面活跃了中国气相色谱仪市场,另一方面为我国学习和自主研发气相色谱仪提供了契机,并且使我国气相色谱仪市场呈现出独特特征。 2.1 国产气相色谱仪技术水平分析 由于气相色谱仪在不同的行业中有着不同的技术要求,在石油加工、化工、生物化学、环保等方面应用很广,因此我国气相色谱仪生产商基本上围绕行业的需求进行专业化的色谱仪生产,但近年来我国仪器企业也不乏有技术突破的新产品推向市场。例如2005年国产的带有电子程序压力流量控制系 统的全自动气相色谱仪,该产品实现了从样品导入至形成报告的全微机控制管理。2012年3月,天瑞仪器生产的气相色相质谱联用仪GC-M6800的测试质量、分辨率、重复性等指标均以达到JJF1164-2006国家标准,此产品的问世摆脱了我国同类产品完全依赖进口的局面。而北京普析通用、港资天美通用等为代表的国产气相色谱仪生产企业生产的数字化、全中文操作界面、可安装大型毛细管柱系统、全自动化的气相色谱仪已经完全能满足国内用户的需求,并日益占据更多的市场份额。 2.2 中外气相色谱仪技术差距分析 2011年末,我国注册仪器仪表装备制造企业数量达到历史最高值1830家,企业利润增长水平、企业规模等均居世界前列。但是也应当看到,与我国仪器仪表企业数量形成鲜明对比的是欧美等国只有少数几家大型仪器仪表制造企业,其产品世界市场占有率却占到了58.94%。而我国企业在国内工业气相色谱仪领域的市场占有率却达不到5%。巨大的差异说明我国气相色谱仪产品质量、关键技术水平、产品可靠性等还与国际先进水平有一定差距,而随着新技术的不断应用、气相色谱仪的智能化发展趋势的到来,我国气相色谱仪器的生产企业和产品市场占有率情况将受到更大冲击。 3 气相色谱仪的发展趋势 随着气相色谱仪技术应用领域的不断拓展和新产品的开发,加之电子信息技术的普遍应用,使气相色谱仪朝向灵敏度更高、选择性更强、更加方便快捷的方向发展,具体来说主要表现出以下几个方面的趋势。3.1 智能化 智能化气相色谱仪是以数字化、智能化、网络化技术等为标志气相色谱仪技术,智能化的发展方向有效解决了传统气相色谱仪可靠性较差,功能单一,无法进行技术升级等问题,其技术攻关的主要难点在于如何把微处理器植入测试系统当中。智能化的操作方向可以实现气相色谱仪的人机对话功能,提供更好的操控使用界面,更有助于推动我国气相色谱仪的产业化能力,不断扩大我国气相色谱仪的市场占有率。例如当前较国产较为流行的GC2002系列彩色触摸屏智能化气相色谱仪,其全微机控制系统、自我诊断功能、价格适中等优势得到了市场普遍认可。 3.2 微型化 气相色谱仪使用程度越来越广。使气相色谱仪的生产已经从技术驱动转为市场驱动,以往那种一味追求高、精、尖的气相色谱仪设计装备理念已不符合实际。而满足用户有明确的需求,能用最短的时间开发出新产品投放市场,从而达到集中优势、降低成本、专业化的气相色谱仪制造更加能促进企业的生存与发展需要。当前市场普遍要求气相色谱仪能现场作业、实时分析、即时提供有效精准的数据,因此对气相色谱的设计提出了微型化、便携式的设计要求。北京普析GC190型微型便携式气相色谱仪可现场打印色谱分离图、实时解析测量结果、更加适合于现场作业和野外使用,虽然技术上还有不完善之处,但其便携式的优点加之同类产品中较低的价格还是满足了很多顾客的实际需求。 3.3 新技术普遍应用 气相色谱仪的应用范围越来越广泛,但是用户对气相色谱仪的电子设计自动化、计算机辅助测试、数字信号处理、实时数据分析等要求是一致的,广大用户都希望气相色谱仪能与生产领域的其它仪器设备共同发挥作用,从而达到快速分析、处理数据、有效传输、确保安全的目的,因此在气相色谱仪领域不断有新技术应用到其中,例如细内径毛细管柱的应用以便提高分离速度、色谱仪模块化技术的应用、GC*GC 二维色柱等新技术都被应用到气相色谱仪当中。 气相色谱仪器经过多年的发展,其技术水平在总体上已经进入了一个相对稳定和成熟的阶段,在可预见的今后一段时期内其革命性的新技术不会出现太多,但在气相色谱仪细节和智能化研发上将会持续进行。对于我国气相色谱仪器生产企业来说,如何研发出具有自主知识产权、不断持续提高改进现有技术水平,则成为其发展的主要方向。 参考文献 [1] 张晓燕.气相色谱仪的发展轨迹与趋势[J].工业计量,2007,S1:156[2] 罗伟东.便携式气相色谱仪的模块化设计[J]. 分析仪器,2011,05:36[3] 王海坤 气相色谱仪的改进及应用研究与发展[J].化学通报,2011,01:265[4] 邵红艳.浅谈气相色谱仪的应用与日常维护[J].环境技术,2012,04:128 浅析气相色谱仪的应用现状及发展趋势 周雪彬 石家庄白龙化工股份有限公司质监处 河北 石家庄 050031 【摘要】从1903年气相色谱仪被发现至今,用气相色谱法对物质进行测量分析已被广泛的应用于人类生产生活的各个领域当中。气相色谱仪技术由于 其分离质量不断提高、检测速度普遍加快、机器微型化、成本降低的特点逐步赢得了市场的认可。本文在我国气相色谱仪市场状况调研的基础上,对气相色谱仪的应用现状进行简要分析、并按照现有的气相色谱仪的实际应用对气相色谱仪的发展趋势做出估计。 【关键词】气相色谱仪 应用现状 发展趋势

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

相关主题
文本预览
相关文档 最新文档