当前位置:文档之家› 印刷烧结测试白皮书

印刷烧结测试白皮书

印刷烧结测试白皮书
印刷烧结测试白皮书

1 基本参数影响

1.1印刷参数影响

a)Snap-off:丝网间距在一定范围内越大印刷厚度越厚,反之越薄;

b)Pressure:印刷压力在一定范围内越大印刷厚度越薄,反之越厚;

c)Printing speed:印刷速度在一定范围内越快厚度越薄,反之越厚。

1.2 烧结参数影响

a)开路电压Uoc的损失主要在体内复合,所以减少各种复合中心(硅片各类缺陷、暗

纹、沾污等)是提高Uoc的有效方法;

b)影响短路电流Isc的因素包括:

1)绒面减反射效果;

2)扩散PN结结构;

3)后清洗去边结效果;

4)PECVD镀膜减反射效果;

5)印刷栅线的遮光面积;

6)沾污。

c)串联电阻Rs包括:P型硅片基区体电阻、扩散层电阻、正面电极和背面铝金属材料

电阻、正面和背面形成的欧姆接触电阻;

d)并联电阻Rsh主要受材料缺陷、各种杂质污染和后清洗去除边缘PN结效果影响;

e)填充因子FF是作为最佳工作点的综合体现,与入射光谱光强、短路电流、开路电压、

串并联电阻密切相关。背电极印刷偏移、断栅一定程度上也会导致FF降低。

2 常见问题处理

2.1印刷常见问题处理

2.1.1粘片

a)网版高度太低或网版形变量不够,调节方法:抬高网版高度、加大压力;

b)如果抬高网版和改变压力没有效果,可将印刷头顶部限位螺丝松动,将旋钮逆时针

旋转,然后重新调节压力和网版高度。

2.1.2印刷不全/虚印

a)印刷不全通常表现为网版高度太高,此时适当降低网版高度;

b)适当降低回料板高度,切忌调节幅度过大导致网版破损;

c)虚印是印刷不全的一种形式,虚印的产生主要是浆料渗透性不好或者网版局部堵塞,

可适当的增加印刷压力和降低印刷速度;

d)印刷不良品的处理:背电极和背电场轻微印刷不全时可用碎硅片沾取浆料补全未印

全位置,然后轻压平整;印刷不全面积较大时用废硅片尽量铲掉背面所印刷浆料,

重新印刷;正电极印刷不全较严重时直接重新印刷。

2.1.3漏浆

印刷漏浆时直接更换网版。

2.1.4断栅

a)一般轻微断栅使用无尘布擦拭网版即可恢复正常;

b)浆料的渗透性导致虚印而表现的断栅可延长搅拌时间、改变浆料稀释度,印刷时可

先使用松油醇擦拭网版再用无尘布将虚印点上下网版对擦;

c)网版太高也是断栅的一个方面原因,情况类似于印刷不全。

2.1.5毛边

所谓毛边是指边缘栅线印刷不平滑,呈毛绒状,毛绒处为多余浆料印刷。

a)调节方法:抬高网版,而且调动幅度需求较大,轻微调动效果不明显;

b)网版过低也会造成毛边,区别在于毛绒状偏向的方向,通常偏向电池片内部的可抬

高网版,偏向电池片外部边缘的可适当降低网版高度;

2.1.6栅线宽度不合格

a)所有台面均表现为栅线过宽时抬高网版、降低刮刀高度;栅线过细则调节方向相反;

b)刮条局部区域被磨损更换刮条,此情况在调节参数和设备无效的情况下进行;

c)回料板位置太低也会导致栅线过宽,原因是回料板在回料过程中因为压力较大又印

刷了一次;

d)如果几个台面的栅线宽度粗细不一致或者同一电池片的不同区域粗细不一致可查

看台面是否平整以及网版的形变量是否发生变化。

2.1.7背场印刷质量

背场印刷存在的几个问题:厚度不均匀,边缘印刷偏厚;

a)此处厚度不均匀表现在背电极附近印刷湿重较大,目前主要的手段是保持印刷均匀

性,另外设备电机的稳定也是重要的方面即保证印刷过程中印刷台不抖动;

b)边缘印刷偏厚的调节方法包括抬高网版(降低刮刀高度和加大压力有相同效果)和

更换刮条。

2.1.8印刷偏移

开始印刷时需要使用游标卡尺来确定是否偏移以及偏移方向和偏移量,根据测量情况调节X、Y、T补偿。

印刷过程中可在背电场印刷和烧结后观察到背电极是否偏移。目前使用的背电极设计包括了电极两边对称的锯齿区域,如果发生偏移则锯齿区域不再对称,呈现一边面积大一边面积小的现象,而背电极为银白色,与背场颜色区分较明显,可背光仔细观察。

2.1.9台面纸沾污

印刷过程中的漏浆、碎片等导致台面纸洁净度下降,台面纸沾污必须及时更换,防止对电池片造成污染。

2.1.10隐裂

一旦从烧结炉出来发现隐裂则立即停止印刷段所有印刷,从item3开始向前逐步排查台面、网版、真空等是否异常。

a)隐裂通常为台面纸不平整或者有碎片、颗粒等,所以要保持台面纸的平整以及印刷

机台的清洁;

b)台面真空不足或不稳定引起的吸力不均衡。

2.1.11网版印和刮条印

判断网版印与刮条印的主要方法是看印迹图形的形状。图形为直线则大多为刮条印需要更换刮条;图形为弯曲线或者不规则区域为网版印,情形严重时及时更换网版。

2.2 烧结常见问题处理

2.2.1弯曲度过大

造成弯曲度过大的几个因素:

a)来料片源太薄,可适当降低背电场的印刷湿重;

b)湿重(印刷量)过大:降低背电场的印刷湿重;

c)温度过高:降低烧结炉烧结区温度,但要防止对效率造成影响;

d)印刷厚度不均匀。

2.2.2烧结炉报警

烧结炉因履带带速或者温度波动较大(超过设置值±10℃)时报警,立即停止放片,及时消除报警,然后回到主界面升温。

2.2.3 Uoc、Isc偏低

a)Uoc、Isc偏低,Rs、FF正常,考虑来料异常;

b)查看生产流程单确认扩散方块电阻和少子寿命无异常;

c)浆料污染会导致Isc偏低,Uoc变化不大,同时FF会降低,Rsh会很小。

2.2.4 Rs与Rsh的异常关系

a)Rs小,Rsh大,正常现象;

b)Rs偏大,Rsh正常,升高温度;

c)Rs正常,Rsh偏小,漏电严重;

d)Rs偏大,Rsh偏小,考虑浆料是否污染或者烧穿。

2.2.5 Rs偏高、FF偏低

a)烧结温度不足,可以适当的升高烧结温度;

b)烘干温度过高,可适当的降低烘干温度;

c)测试台探针压片不准、接触不好或者探针使用时间过久需更换。

2.2.6 Isc下降、Rs减小、Ncell下降

此现象最常见在网版的使用寿命到上限或者网版的张力下降;主要原因是栅线的宽度增大导致遮光面积的增大Isc下降,横向电阻的减小Rs减小,导致效率有一定的降低。

2.2.7背场烧结常见问题

a)背场颜色

一般铝背场烧结后呈龟裂状,颜色的灰色(或青色);背场颜色发白或者无龟裂状很有可能未烧结充分;背场呈焦黄色有可能烧过。

b)铝包

铝包调节根据铝包的数目、大小以及位置来判断。数目在1~3个,位置固定,形状呈凸起点状可查看背电场铝浆印刷是否存在结点;铝包数目较多、位置不固定时多为温度过高或者过低造成,判断温度过高还是过低可根据Rs以及FF来参照,最准确可靠的是使用拉温仪确定当前温度高低。另外,热排风和冷却水的调节,烘箱的烘干温度也对铝包调节有一定效果。

c)铝刺

铝刺的产生主要有温度和履带两个影响因素。履带造成的铝刺大多在背场烧结的履带印上,反光观察可以看到,而且形状呈狭长的刀刃状;温度造成的铝包和铝刺差别不大,相比之下铝刺多为铝包的破裂形式,可尝试降温调节。

d)漏电大

造成反响漏电Irev2较大的几个方面:

1)来料片源杂质或者缺陷多,测试EL可看到图像上黑斑区域较多或者图像整体发

暗;

2)边缘刻蚀不足,在后清洗换液前后以及维护后刚生产时需要关注;

3)浆料污染,此种情况下Rsh会变得很小,Isc和FF也降低很明显;

4)印刷边缘漏浆,此情况较少,属于印刷质量监控范围内应及时发现和纠正的问

题;

5)漏电变化呈一个数量级,表现为C10X时观察栅线上有无击穿现象,导致击穿的因素包括金属、油性物质的沾污,探针压碎击穿,隐裂等,具体情况需仔细

观察并测试EL辅助判断。

2.3 丝印工序常见问题一般解决方法

2.3.1差异性排查

现象描述:测试台线间效率差异大于0.08%,或线内差异大于0.03%,或线间填充因子差异大于0.3%,或丝印各线测试效率均较低时,应立即启动工艺排查机制。

解决方法:当发生差异性问题时,应立即向品管和设备人员反映。发生线间差异时,应对比各线差异性电性能数值,找出影响效率的最主要的参数。Uoc较低时可调节电压补偿或者重新校准标片;Isc较低时可重新校准标片;Rs较大和FF较低时可进行测试台探针排查,FF 有时会由于IV曲线存在毛刺现象而偏大或偏低;Rsh较低时可对测试台进行清洁。发生线内差异时,可查看差异性电池片具体数据,观察是否有个别电池片效率测试较高或较低,若存在可对差异性电池片进行重新测量。若重新测量后差异性问题仍然存在,可检查测试台上下探针是否整齐、是否有松动或者存在下掉现象,通知设备人员进行探针复位或探针测试位置调整等相关工作。当发生丝印各线测试效率均较低时,可检查标片是否存在沾污或崩边等问题,观察标片校准人员的校准手法是否存在问题。

2.3.2主栅线脱落

现象描述:正面电极经烧结后出现主栅线两头翘起现象。

解决方法:主栅线脱落的影响因素主要是烘干温度过高或者电极印刷厚度太大,这种现象一般常见于PV159等粘滞度较低的浆料。烘干温度过高导致浆料内对电极起粘附作用的无机物或者玻璃氧化物提前被挥发,在烧结时电极翘曲,所以降低前三区的烘干温度是调节的方向。另外增加正面电极印刷压力(2~5N)、降低网版高度可以减小印刷厚度,有效解决主栅线脱落问题。主栅线脱落一般在印刷第三道刚更换网版后或者进行有关印刷厚度增加的参数调整后发生,所以印刷第三道更换网版后务必要进行首件检查(不得少于5片电池片)正常后方可进行批量生产。首件确认包括对电池片外观和电性能的确认,外观首件标准见《测试分选作业指导书》6.3.1和6.3.2印刷质量与弯曲度的监控,电性能是首件标准为:首件电性能参数平均值无异常(Uoc不低于0.610V、Isc不低于8.0A、Rs不高于3.8mohm、Rsh不低于100ohm、FF不低于77.3%、Irev2不超过0.3A),工艺人员需根据生产实际情况进行判定。在生产过程中工艺人员调整参数时也务必要进行跟踪观察,参数调整后确认印刷质量无误时

方可离开,并及时在《丝网印刷工艺参数更改记录表》上做好记录。

2.3.3浆料污染

现象描述:浆料污染是指印刷第三道Ag浆受到污染,尤其是受到Al浆污染后,电池各项电性能参数连续发生异常,主要表现在Isc下降明显,Rsh突然降低(约在60ohm左右),伴随着Rs、Irev2明显增大,Ncell较低。

解决方法:怀疑浆料污染时应立即通知生产部停止进行第三道印刷并立即启动工艺排查。确认浆料是否污染的有效方法是进行两条生产线电池片的交叉对比进行验证。例如怀疑1#第三道发生浆料污染,可将1#正在生产的还未印刷正面电极的电池片5至10片拿于2#进行印刷,印刷后拿回1#进行烧结和测试,观察各项电性能参数是否正常。若电性能正常,则基本可以确定1#已发生浆料污染,此时应立即通知生产部更换网版、浆料、刮条,认真清洗刮刀、回料刀等与浆料密切接触的物件。新网版安装前需认真进行第三道印刷台的工艺卫生,保证浆料污染彻底消除。生产刚恢复时应密切关注电池片电性能参数变化情况,怀疑已被污染的浆料需贴上标签并放在指定位置防止生产人员勿领,事后应向相关领导和丝印工艺组提交浆料污染事故报告。浆料污染一般发生在交接班时或操作人员缺少时,浆料搅拌不当、操作人员错误操作、刮条刮刀混用等都是可能造成浆料污染的原因。

2.3.4工艺排查

现象描述:生产过程中一些突发情况和因素会导致印刷质量或者效率的降低,当出现以下几种情况之一时工艺人员可启动排查机制,在最短时间内恢复正常生产工艺。

a)单批次平均效率低于16.10%时,需要提交排查报告;

b)单批次平均效率低于16.20%时;

c)单批电性能参数FF低于77.50%时;

d)电性能参数Rsh连续两批(包括两批)以上低于100ohm时;

e)单批电性能参数Uoc低于0.610V时;

f)单批电性能参数Rs大于3.4mohm时;

g)单批电性能参数Irev2大于0.3A时;

h)同批电池片电性能参数Uoc或Isc有分层现象时;

i)同批电池片电性能参数Rs(或者FF)持续增加(或者持续降低)时;

j)同批电池片电性能参数Rsh、Irev2有明显恶化趋势时;

k)生产工艺相同的两条线线间效率差异达到0.05%时;

l)当班当线效率相比于上班低0.05%时。

解决方法:

一般方法:解决以上问题的一般方法叫逆向排查法,这是丝网印刷进行问题排查的最普遍的一种方法。例如丝印1#出现以上问题之一时,若2#各项电池片电性能参数正常,可将1#和2#进行对比进行排查,排查按照从后到前的顺序逆向排查,即先排查这两条线测试台是否有测试差异,再排查烧结炉,之后是item3排查,然后item2排查,最后item1排查。当排查到某一段时发现两线差异明显,电性能异常问题已经发现,此时排查结束,工艺人员可针对出现问题的这一段开展问题解决措施。

(1)若发现测试台有问题,可检查测试台探针、进行测试台卫生清洁、重新校准标片等方面进行排查;

(2)若发现烧结炉有问题,可通过拉温对比线间温度差异、调节烧结炉温、查看烧结炉温度是否稳定等方面进行排查;

(3)若发现item3有问题,可检查网版和浆料是否存在问题、湿重是否正常、网版线宽拓展情况、印刷质量情况、浆料是否异常等方面进行排查;

(4)若发现item2有问题,可检查网版和浆料是否存在问题、湿重是否正常、印刷是否良好,有无偏移、锯齿覆盖情况、印刷是否存在高低不平等、烘箱温度是否正常、人员操作方面进行排查;

(5)若发现item1有问题,可检查网版和浆料是否存在问题、湿重是否正常、边缘锯齿印刷是否良好,有无偏移、烘箱温度是否正常、人员操作方面等方面进行排查。

测重法:由于逆向排查法需要时间较长,调节效果无法立即知晓,对生产的影响较大,因此工艺人员可根据实际情况开展测重排查法。

(1)Uoc较低:可检查item2湿重是否正常、测试温度是否较高、EL测试暗纹是否明显等方面排查问题;

(2)Isc较低:可查看扩散方块电阻不均匀性是否较大、少子寿命是否较低、检查正面栅线线宽拓展是否较大、item3湿重是否正常、item3印刷质量是否良好、EL测试暗纹是否明显、电池表面有无沾污、各道台面纸有无沾污、工艺卫生是否达标等方面排查问题;

(3)Rs较大或者FF较低时:可着重于烧结炉排查,通过拉温对比线间差异,一般而言,Rs较大时可升高烧结区温度或降低烘干区温度,FF较低时可升高八、九区温度;

(4)Rsh较低时可适当降低烧结炉温度;

(5)Irev2较大时:可查看各道印刷是否有漏浆情况、电池传输步进梁上是否有浆料残留,电池刻蚀线是否清楚、烧结炉温度是否较高、EL测试暗纹是否较多等方面排查问题;(6)如果上述方式排查后电性能参数仍无明显好转变化趋势时,需使用逆向排查法进行排查。

注意:当班工艺人员负责生产工艺的稳定和连续性,对生产线上所有工艺问题负有直接责任。遇到工艺问题要立即采取措施解决;遇到不能解决且影响生产的工艺问题,超过一个小时要报告工艺主管,工艺主管一个小时不能解决问题后,要报告技术部长。

油漆涂层附着力检测方法(百格测试)

油漆涂层附着力检测方法 ——百格测试 含义及测试方法 含义:一般而言是测试对象在经过涂装之后测试其附着度的工具,按照日本工业标准(JIS),分为1~5级,级数越高,要求越严格,当客户规范当中要求是第5级时,表示完全不能有脱落。参考标准:《GBT9286-1998 色漆和清漆漆膜的划痕实验》 测试方法:用百格刀在测试样本表面划10×10个(100个)1mm×1mm小网格,每一条划线应深及油漆的底层;用毛刷将测试区域的碎片刷干净;用3M600号胶纸或等同效力的胶纸牢牢粘住被测试小网格,并用橡皮擦用力擦拭胶带,以加大胶带与被测区域的接触面积及力度;用手抓住胶带一端,在垂直方向(90°)迅速扯下胶纸,同一位置进行2次相同试验。实验条件及标准 规定利用3M600或610的胶带黏贴于百格中,快速拉起3M胶带,其面漆或电度层被胶带黏起的数量依照百格的百分比: ISO等级:0 =ASTM等级:5B 切口的边缘完全光滑,格子边缘没有任何剥落。 ISO等级:1 =ASTM等级:4B 在切口的相交处有小片剥落,划格区内实际破损≤5% 。 ISO等级:2 =ASTM等级:3B 切口的边缘和/或相交处有被剥落,其面积大于5%~15% 。 ISO等级:3 =ASTM等级:2B 沿切口边缘有部分剥落或整大片剥落,或部分格子被整片剥落。剥落的面积超过15%~35% 。 ISO等级:4 =ASTM等级:1B 切口边缘大片剥落/或者一些方格部分或全部剥落,其面积大于划格区的35%~65% 。 ISO等级:5 =ASTM等级:0B 在划线的边缘及交叉点处有成片的油漆脱落,且脱落总面积大于65%。 依照客户要求B数测试是否通过百格实验,一般手机业界客户要求在4B以上。 正式的话是使用百格刀,横向与纵向各划1刀及型成100各细小方格.如无百格刀利用美工刀也可以. 利用3M600或610的胶带黏贴于百格中,快速拉起3M胶带,测试脱落数量。 操作步骤: 用划格器在涂层上切出十字格子图形,切口直至基材; 用毛刷对角线方向各刷五次,用胶带贴在切口上再拉开; 观察格子区域的情况,可用放大镜观察。 划格结果附着力按照第二项的标准等级。 相关测试工具产品参数 百格测试仪(漆膜划格仪,漆膜划格器) 产品说明: 根据ISO2409-1992标准设计制造的。 适用于GB/T9286-98、BS 3900 E6/ASTM D3359。 特点: 用于均匀划出一定规格尺寸的方格,通过评定方格内涂膜的完整程度来评定涂膜对基材附着程度,以‘级’表示。它主要用于有机涂料划格法附着力的测定,不仅适用于实验室,也可用于各种条件下的施工现场。 用途:

NovAtel 的 ARTK 性能对比测试白皮书

NovAtel的ARTK性能对比测试白皮书 介绍 GNSS定位技术正在被越来越多的测量用户所采用,而测量用户倾向于利用高精度的RTK定位功能使得生产效率最大化。测量用户使用RTK功能时关注以下三个方面性能: ?RTK解算精度‐‐可靠的厘米级精度对于测量领域来说是必要的 ?RTK解算可靠性‐‐对于测量领域工作RTK固定解是可靠的 ?RTK初始化时间‐‐更快进入RTK固定解可以节约测量人员的时间 本文介绍了在多种典型测量应用环境下,对多家GNSS厂商的接收机进行的一系列 GPS+GLONASS的性能测试。由于测量用户厘米级精度的要求,所以下面报告中仅展示了RTK固定解的解算结果。 测试配置和方法 我们对此RTK测试方法进行精心的设计,尽可能确保测试的公平性: ?所有的接收机接收同样的RTK差分数据 ?所有的接收机采用同一GNSS天线,并且多次测量过程中天线架设在相同位置 ?每台接收机的GNSS天线信号增益都经过校准 ?GNSS天线信号均在同一精确时刻连接或断开 RTK差分数据通过GPRS/NTRIP发送给移动站接收机,这种方式可进行长基线RTK测试。测试系统搭建如下图所示: 1 / 8

2 / 8 此RTK测试是模拟测量用户在野外作业环境的操作。由于测量用户在穿越桥梁、建筑物周围和其他遮挡物的时候经常会遇到GNSS信号丢失的情况。因此,在此RTK测试中设计了每隔一定时间强制GNSS信号丢失——90到695秒时间内保持GNSS信号连接和5到25秒GNSS天线断开。这样就使得每台接收机都能进入固定的RTK解算模式,并在限定的时间内采集数据,直到固定解丢失,这正是测量用户作业时的一种典型工况。 中等基线—开阔环境 我们选择了14KM基线作为中等基线测试。基准站和移动站接收机天线都架设在楼顶,多路径影响很小,是一个比较理想的测试环境。开阔环境下中等基线测试结果见下文。

附着力试验仪作业指导书

第 1页 / 共 2页 文件编号:QW-TE-03 版本号:A 版 仪器名称:黏着力试验仪 规格型号:AR-1000 相关测试:离型力、残余等测试 设备 工具 编号 名称 编号 名称 物料 编号 名称 规格 用量 编号 名称 规格 用量 1 黏着力试验仪 1 TESA 胶带 7475 - 4 双面胶带 25mm 宽 - 2 钢板 2 日东胶带 31B - 3 仪器链接的电脑 3 待测样品 - - 更改人: 日期: 审批: 更改通知单编号: Step1:打开程序后显示如图1程序界面。 需确认以下信息: A. 1位置数字为0.0(如不为0请进行校准) B. 2位置为30cm/min C. 其他设定均为默认设定 D. 单位选择 Step2:将待测样品待测试面(胶带在上面)向上贴于试验台上。 Step3:拨动卡扣旋钮(红色方框位置)到图示位置,推动平台至右侧末端。如图3蓝色方框将左侧的胶带撕开用探头夹子夹住(避免碰撞探头夹子)。 Step4:确认无误后点击位置3 (START MOTOR ) 位置4 START 按钮由灰色变为白色,后点击START 。 平台会自动运行并记录测试数据。 图2 图3 图1 1 2 3 4 5

第 2页 / 共 2页 文件编号:QW-TE-03 版本号:A 版 仪器名称:黏着力试验仪 规格型号:AR-1000 相关测试:离型力、残余等测试 设备 工具 编号 名称 编号 名称 物料 编号 名称 规格 用量 编号 名称 规格 用量 1 黏着力试验仪 1 TESA 胶带 7475 - 4 双面胶带 25mm 宽 - 2 钢板 2 日东胶带 31B - 3 仪器链接的电脑 3 待测样品 - - 3 c 更改人: 日期: 审批: 更改通知单编号: Step5:待胶带即将被完全剥离的时候,点击STOP 按钮(图4红框内),测试会停止(电机仍在运行)并跳出如图5界面。切换至图6的初始界面,点击图6红圈位置的STOP MOTOR 按钮(停止电机的工作) Step6:切换到图5的界面。测试曲线名称的命名规则为按测试日期命名。如:2018-04-28-48,意义为:2018年4月28日测试的第48个测试样条。命名结束后直接点击结束按钮,跳转如图7界面。操作过程中出现操作失误导致曲线波动,需对曲线进行修正,点击图7红圈按钮,移动上方的进行修正,后点击保存。 Step7:点击图7位置保存曲线,跳转如图8界面。保存格式为PDF 格式,如红圈位置,文件名为2018-04-28-48,参照Step6,点击保存,记录测试结果,关闭测试曲线,反回图1界面,一个测试样条测试完成。近1000条测试曲线可通过初始页面的5号位置按钮进行查找。曲线查找路径:我的电脑/D:/AR-1000/涂硅线原纸数据/2018-0401-0430. 图4 图5 图6 图5 图7 图8

ASTM D 3359 涂层附着力粘胶带法测试

Designation:D3359–02 Standard Test Methods for Measuring Adhesion by Tape Test1 This standard is issued under the?xed designation D3359;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval. This standard has been approved for use by agencies of the Department of Defense. 1.Scope 1.1These test methods cover procedures for assessing the adhesion of coating?lms to metallic substrates by applying and removing pressure-sensitive tape over cuts made in the?lm. 1.2Test Method A is primarily intended for use at job sites while Test Method B is more suitable for use in the laboratory. Also,Test Method B is not considered suitable for?lms thicker than5mils(125μm). N OTE1—Subject to agreement between the purchaser and the seller, Test Method B can be used for thicker?lms if wider spaced cuts are employed. 1.3These test methods are used to establish whether the adhesion of a coating to a substrate is at a generally adequate level.They do not distinguish between higher levels of adhesion for which more sophisticated methods of measure-ment are required. N OTE2—It should be recognized that differences in adherability of the coating surface can affect the results obtained with coatings having the same inherent adhesion. 1.4In multicoat systems adhesion failure may occur be-tween coats so that the adhesion of the coating system to the substrate is not determined. 1.5The values stated in SI units are to be regarded as the standard.The values given in parentheses are for information only. 1.6This standard does not purport to address the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 2.Referenced Documents 2.1ASTM Standards: D609Practice for Preparation of Cold-Rolled Steel Panels for Testing Paint,Varnish,Conversion Coatings,and Related Coating Products2 D823Practices for Producing Films of Uniform Thickness of Paint,Varnish,and Related Products on Test Panels2 D1000Test Method For Pressure-Sensitive Adhesive-Coated Tapes Used for Electrical and Electronic Applica-tions3 D1730Practices for Preparation of Aluminum and Aluminum-Alloy Surfaces for Painting4 D2092Guide for Preparation of Zinc-Coated(Galvanized) Steel Surfaces for Painting5 D2370Test Method for Tensile Properties of Organic Coatings2 D3330Test Method for Peel Adhesion of Pressure-Sensitive Tape6 D3924Speci?cation for Standard Environment for Condi-tioning and Testing Paint,Varnish,Lacquer,and Related Materials2 D4060Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser2 3.Summary of Test Methods 3.1Test Method A—An X-cut is made through the?lm to the substrate,pressure-sensitive tape is applied over the cut and then removed,and adhesion is assessed qualitatively on the0 to5scale. 3.2Test Method B—A lattice pattern with either six or eleven cuts in each direction is made in the?lm to the substrate,pressure-sensitive tape is applied over the lattice and then removed,and adhesion is evaluated by comparison with descriptions and illustrations. 4.Signi?cance and Use 4.1If a coating is to ful?ll its function of protecting or decorating a substrate,it must adhere to it for the expected service life.Because the substrate and its surface preparation (or lack of it)have a drastic effect on the adhesion of coatings, a method to evaluate adhesion of a coating to different substrates or surface treatments,or of different coatings to the 1These test methods are under the jurisdiction of ASTM Committee D01on Paint and Related Coatings,Materials,and Applications and are the direct responsibility of Subcommittee D01.23on Physical Properties of Applied Paint Films. Current edition approved Aug.10,2002.Published October2002.Originally published as D3359–https://www.doczj.com/doc/e2604767.html,st previous edition D3359–97. 2Annual Book of ASTM Standards,V ol06.01. 3Annual Book of ASTM Standards,V ol10.01. 4Annual Book of ASTM Standards,V ol02.05. 5Annual Book of ASTM Standards,V ol06.02. 6Annual Book of ASTM Standards,V ol15.09. 1 Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States. Copyright ASTM International Reproduced by IHS under license with ASTM Licensee=daimlerchyrsler account/5957216001 Not for Resale, 12/09/2005 00:34:54 MST No reproduction or networking permitted without license from IHS --` ` , , , , ` , , , ` ` ` ` ` ` , , ` ` ` , , , ` , ` ` ` -` -` , , ` , , ` , ` , , ` ---

涂层表面附着力测试标准

标题涂层表面附着力测试标准 文件类别规范文件文件号目标[质]字05第10 版本号 1 修改标记无修改次数无 编制/日期审核/日期批准/日期 执行主体监督主体 1.目的:指导涂层表面附着力测试工作,规范和统一涂层表面附着力检验标准; 2.范围:应用?涂层厚度大于50μm; 3.定义:符合BS?3900-E6、ISO2409、DIN53?151和ASTM?D3359-B测试方法; 4.流程:无 5.内容: 设备要求:划线器刀口由碳钨合金材料制成,齿数x齿间距?6齿x2mm;胶带用3M 600号2cm宽胶带;操作步骤 -用划格器在涂层上切出十字格子图形,切口直至基材; -用毛刷对角线方向各刷五次,用胶带贴在切口上再拉开; -观察格子区域的情况,可用放大镜观察; 划格结果附着力按照以下的标准等级 ISO等级:0 ASTM等级:5B 切口的边缘完全光滑,格子边缘没有任何剥落 ISO等级:1 ASTM等级:4B 在切口的相交处有小片剥落,划格区内实际破损 不超过5% ISO等级:2 ASTM等级:3B 切口的边缘和/或相交处有被剥落,其面积大于 5%,但不到15% 版本号1实施日期页次:共 2 页第 1 页

ISO等级:3 ASTM等级:2B 沿切口边缘有部分剥落或整大片剥落,及/或者部 分格子被整片剥落。被剥落的面积超过15%,但 不到35% ISO等级:4 ASTM等级:1B 切口边缘大片剥落/或者一些方格部分部分或全 部剥落,其面积大于划格区的35%,但不超过65% ISO等级:5 ASTM等级:0B超过上一等级 ? 测试结果判定:如果没有客人特殊要求,目标的产品要求达到ISO等级:1、ASTM等级:4B以上级别可以接受。 签发人签名 部门,现将《涂层表面附着力测试标准》抄发你部门(组织),请严格执行。 签发人/日期: 执行人签名现收到签发的《涂层表面附着力测试标准》,本人明白制度的详细内容,并保证本部门(人)严格贯彻执行。 执行人/日期: 版本号 1实施日期页次:共 2 页第 2 页

APP网络性能测试白皮书

APP网络性能测试白皮书 资源类性能中,磁盘、内存、CPU是本地资源,但是除了这些之外,还有一个特别的存在——网络,之所以特别是因为它是外部资源。对于移动互联网来说,优化网络的性能非常重要。而我们优化网络性能无非看三个问题:业务成功率、业务网络时延、业务宽带成本。 基本概念 业务成功率 有两个真实的场景是用户可能遇到的:一个是点外卖时进了电梯,一个是听演唱会时上传照片。就大家的体验来说,这是最有可能发送失败的场景。刚好,这两个场景分别代表两种典型的网络差的场景,进电梯代表弱信号网络,而演唱会则代表拥塞网络,处理不当都会直接影响业务的成功率。 弱信号,可以简单看成当手机信号只有一两格的时候,这时不仅仅是信令(无线网络其实通信的都是一个个信令)发出去困难,而且还有可能导致不断切换网络、切换基站。App 能做的,就是在应用层做重试,因为很有可能这个弱信号是一时的。 另外一个是拥塞网络,简单地理解就是,堵车、排队,数据包排队,信令也在排队。这时App不断重试,只会使得拥塞更为严重。最多能做的就是让自己的非核心业务不要捣乱,不要也去排队,让核心业务的数据量更少,协议来回更少。 业务网络延时 比起成功率,网络延时虽然影响没这么直接,但是慢带来的不爽,也是会流失用户的。这个慢就必须从一个数据包的发送历程开始说起,如图所示。以下我们来对业务网络延时的原因作逐个分析。

DNS解析,简单来说就是域名换IP。这一步看似简单却是充满陷阱,10分钟的DNS Cache过期时间,200~2000ms不等的DNS解析耗时,就像猪一样的队友,坑了无数应用。解决无非有三个策略:IP直连、域名重用、HttpDNS(简单来说就是利用自定义的协议获取域名对应的IP地址,甚至是列表)。 建立连接,大多数应用都是基于TCP的,所以无非就是三次握手建立TCP连接。这一步的耗时,如果是长连接的话,就是一次消耗,短连接则是每次都会有这个消耗。要维护长连接就必须要心跳包,心跳包多,会耗电,特别是当心跳间隔等于移动网络状态机Active-Idle切换间隔时,简直就是悲剧,同时对于移动网络来说还会增加信令通道的负担;心跳包少了,会让连接在NAT中超时,导致长连接断开。在建立连接的过程中,TCP会进行一些商定,其中影响网络时延最明显的就是窗口。 接收窗口,用于拥塞控制。以发送图片为例,服务器的接收窗口就像你告诉客户端,我的池子有多大,你就放多少水给我,客户端放多少水涉及同一时间发送多少TCP数据包,当前的带宽有没有被充分利用,直接影响发送的速度。而让窗口太少的原因无非几个:①服务器的ReceiveBuffer太小;②因为慢启动,而包又太小,刚刚连接,慢启动会逐步放大窗口,没有等放大完,数据就发完了;③Window size scaling factor失效,这里最有可能的原因是网络代理,失效的结果就是窗口最大只有65536字节。 业务宽带成本 如果说一定要考虑流量的原因,除了流量大对业务成功率和网络时延的影响外,就应该是宽带成本了。对于视频、图片这些富媒体业务,每天在宽带成本上的投入,跟烧钱没什么区别。如何节省这些成本,同时也为用户带来好处呢?策略有压缩、增量、去重复三种。 先说压缩,图片用WebP压缩、PNG压缩,还可以用progressive jpeg的不同程度压缩来替代大中小图,视频用H264、H265压缩,文本用gzip压缩和其他ZIP压缩方案。

hp打印机自检页测试

hp 打印机自检页测试 全系列HP打印机脱机打自检页以及查看打印张数 时间:2009-11-17 15:19来源:未知作者:admin 点击: 282次 全系列 HP打印机脱机打自检页以及查看打印张数喷墨打印机HP Deskjet 2368 1368 3938 3918(入门级打印机等) 1 打开打印机电源 2 按 全系列HP打印机脱机打自检页以及查看打印张数 喷墨打印机 HP Deskjet 2368 1368 3938 3918(入门级打印机等) 1 打开打印机电源 2 按住“电源”按钮的同时,连续掀启并关闭打印机顶盖 3 次,然后将“电源”按钮松开。 HP Deskjet 5438 4168 1打开打印机电源 2按住“送纸(恢复)”按钮 5 秒钟。 HP Photosmart 130 打印机 1. 在纸盒中放入10 × 15 cm 的打印纸。 2. 按住打印机面板上的“打印”钮不放,直到打印机开始打印测试页。 HP Photosmart 148 打印机 1. 在纸盒中放入10 × 15 cm 的打印纸。 2. 通过按打印机的左右箭头按钮,在液晶显示的菜单中选择“打印

测试页”选项。 3. 按“OK”按钮开始打印。 HP Photosmart 325、335 打印机 1. 在纸盒中放入10 × 15 cm 的打印纸。 2. 通过按打印机的左右箭头按钮,在液晶显示的菜单中选择“工具”,然后按“OK”按钮。 3. 通过按打印机的左右箭头按钮,在液晶显示的菜单中选择“打印测试页”选项,然后按“OK” 按钮开始打印。 HP Photosmart 245、375、385、475 打印机 1.在纸盒中放入10 × 15 cm 的打印纸。 2.按打印机面板上的“菜单”按钮。 3.在打印机面板上按上下箭头按钮,在液晶显示的菜单中选择“工具”,然后按“OK”按钮。 4.在打印机面板上按上下箭头按钮,在液晶显示的菜单中选择“打印测试页”选项,然后按“OK” 按钮开始打印。 hp photosmart 7150 7155 7268 7458打印机 按住电源按钮的同时,按四下“继续”按钮。 同时松开所有按钮,打印机开始打印。 hp photosmart 7660 打印机 1. 在打印机面板上按菜单的左右箭头按钮,选到“print a test p age”。 2. 按“ok”按钮,打印机开始打印。

浪潮InCloud Rail1000超融合一体机白皮书

【浪潮超融合架构一体机】 浪潮超融合架构一体机 InCloud Rail1000——将计算、网络连接和存储资源组合到一个一体化设备中, 从而创建一个由浪潮提供的简单、易于部署的一体化解决方案。 要点 ●基于浪潮InCloud Sphere服务器虚拟化 及InCloud Storage 存储虚拟化可快速实 现IT计算、存储和网 络资源池化 ●通过自动化部署引擎 实现系统的自动化安 装和部署,实现基于策 略和模板的自动化管 理 ●实现千兆和万兆网络 的灵活切换,实现高速 网络互连 ●可实现系统内的快速 扩容,支持多个 InCloud Rail的自动 化堆叠

【浪潮超融合架构一体机】 产品特点 自动化 INCLOUD RAIL 依托InCloud Manager 强大的管理运维功能,可以很方便的实现向导式自动化部署以及维护和管理,20分钟完成系架构统部署。 强管理 INCLOUD RAIL 融合InCloud Manager,突破传统系统架构,可提供功能强大、经生产验证的高性能虚拟化层。它支持多个虚拟机共享硬件资源,并灵活的调度各个虚拟机资源,解除了传统架构下的应用和硬件紧耦合的状态。 高性能 INCLOUD RAIL 融合浪潮分布式存储系统,单节点存储IOPS 达到20000+。 可重构 INCLOUD RAIL 采用浪潮新一代硬件重构和软件定义理念和设计,通过计算虚拟化和分布式存储技术实现计算和存储的融合,打破了传统架构服务器和存储的传统架构设计。 整体性 INCLOUD RAIL 是超融合的一体化架构产品,融合浪潮软件定义计算软件、软件定义存储软件和浪潮重构硬件,构建云数据中心的一体化交付解决方案。 弹性化 通过增加INCLOUD RAIL 设备实现计算、存储、网络的线性扩展,并且可以快速融入到现有环境中。 规格配置 类型 2U4N 融合架构系统 处理器 每节点支持2个英特尔? 至强? 处理器E5-2650 v3CPU 高速缓存 15MB QPI 总线速率 7.2GT/s 内存 每节点16个内存插槽,128G-192G 内存, 支持高级内存纠错,内存镜像,内存热备等高级功能 磁盘 每节点标配4块1.2TB 7200转SAS 硬盘,64G SATADOM 卡,VMware 产品配置1块SSD;浪潮虚拟化产品配置两块SSD,去除300G 系统盘 网络控制器 每节点配置1个高性能千兆以太网控制器(双口)和1个万兆以太网控制器(双口),支持虚拟化加速,网络加速,负载均衡,冗余等高级功能 电源 标配大功率高效白金级电源,1+1冗余,支持PMbus,睿能SmartPower 功耗管理技术 软件定义计算 支持浪潮服务器虚拟化InCloud Sphere 和VMware vSphere 软件定义存储 基于X86架构的浪潮自研分布式存储软件InCloud Storage,极大提高存储读写IOPS;支持VMwareVSAN 云管理平台 选择配置浪潮云管理平台InCloud Manager,实现业务的自动感知,资源的智能 管理和服务的自动化交付 用户收益 ● 降低复杂性:出厂预 装,自动化部署,实现 服务的灵活交付。 ● 降低TCO:2U4N 标 准节点降低空间和能 耗,软件定义的存储减 少存储设备的投入和 维护。 ● 可靠性:强大的容错机 制和企业级高可用性 保证系统的不间断进 化。 ● 线性扩展:利用软件定 义的计算和存储可以 轻松实现系统随不断 增长的业务需要弹性 扩充。 关键技术 ● 集成InCloud Manager 的全局管 理、智能交付、业务审 批等云管理功能。 ● IT 资源虚拟化:基于 服务器虚拟化的 INCLOUD RAIL 可快 速实现IT 资源虚拟 化。 ● 高速网络互连: INCLOUD RAIL 可实 现千兆和万兆网络的 灵活切换,实现高速的 网络互连。 ● 弹性的基础架构: INCLOUD RAIL 可 实现系统内的快速 扩容,可横向扩展至 64个物理节点

涂层附着力检测方法的详细介绍

涂层附着力的检测方法 摘要:介绍了防腐蚀涂料涂层附着力的机理,并对附着力检测的标准划格法、划X法以及拉开法的测试方法和程序,作了详细说明。 关键词:涂层、附着力、划格法、拉开法 1.涂层附着力 涂装工程中,对于防腐蚀涂料的涂层附着力检测是涂层保护性能相当重要的指标,越来越被业主和监理所重视。除了在试验室内的检测外,防腐蚀涂料的选用过程中,对涂料产品进行的样板附着力测试,以及施工过程中现场附着力的检测,也越来越普遍。 有机涂层与金属基底间的附着力,与涂层对金属的保护有着密切的关系,它主要是由附着力与有机涂层下金属的腐蚀过程所决定的。有机涂层下金属的腐蚀主要是由相界面的电化学腐蚀引起的,附着力的好坏对电化学腐蚀有明显的影响。良好的附着力能有效地阻挡外界电解质溶液对基体的渗透,推迟界面腐蚀电池的形成;牢固的界面附着力可以极大地阻止腐蚀产物——金属阳离子经相间侧面向阴极区域的扩散,这些阳离子扩散是为了平衡阴极反应所生成的带负电荷的氢氧根离子,这虽然是一个相当缓慢的过程,但是一旦附着力降低,阳离子从相间侧面向阴极扩散的扩散则容易得多。 有机涂层的附着力,应该包括两个方面,首先是有机涂层与基底金属表面的黏附力(adhesion),其次是有机涂层本身的凝聚力(Cohesion)。这两者对于涂层的防护作用来说缺一不可。有机涂层在金属基底表面的附着力强度越大越好;涂层本身坚韧致密的漆膜,才能起到良好的阻挡外界腐蚀因子的作用。涂层的不能牢固地黏附于基底表面,再完好的涂层也起不到作用;涂层本身凝聚力差,漆膜容易开裂而失去保护作用。这两个方面缺一不可,附着力不好,再完好的涂层也起不到作用;而涂层本身凝聚力差,则漆膜容易龟裂。这两者共同决定涂层的附着力,构成决定涂层保护作用的关键因素。 有关涂层附着力的研究有相当多的理论学说,影响涂层附着力有基本因素主要有两个,涂料对底材的湿润性和底材的粗糙度。涂层对金属底材的湿润性越强,附着力越好;一定的表面粗糙度对涂层起到了咬合锚固(Anchor Pattern)的作用。 检测涂层与底材之间的附着力有多种方法,很多机构制订了相应的标准,同时也制备了很多的仪器工具来进行附着力的检测。 适用于现场检测附着力的方法主要有两大类,用刀具划X或划格法,以及拉开法。这两种方法除了可以在实验室内使用外,更适合于在施工现场中应用。主要的应用标准如表1。 表1 涂层附着力的检测方法和标准 美国材料试验协会制订的ASTM D3359-02是目前最新版的有关划X法的标准。它适用于干膜厚度高于125微米的情况,对最高漆膜厚度没有作出限制.而相对应的划格法通常适用于250微米以下的干膜厚度。 测试所要有的工具比较简单,锋利的刀片,比如美工刀、解剖刀;25mm(1in.)的半透

RYU控制器性能测试报告

RYU控制器性能测试报告 全球SDN测试认证中心SDNCTC 2016.3.8

一、引言 当软件定义网络(Software Defined Network, SDN)逐渐成为网络世界新的范式,转发与控制的分离使得数据平面只作为单纯的数据收发引擎,而控制平面则承担了全部的逻辑与运算任务。作为控制平面的核心组件,SDN控制器的性能关乎整个SDN网络的性能表现。随着SDN商业部署速度地加快,SDN控制器性能也必将越来越多地成为网络用户关心的焦点。 OFsuite_performance是全球SDN测试认证中心(SDNCTC)独立开发的OFsuite系列测试工具之一,此测试工具致力于OpenFlow 控制器性能测试。能够在通用Linux服务器上模拟大量OpenFlow 1.3交换机,并且能够模拟不同的网络拓扑以及全部的OpenFlow事件。该测试工具能够在真实的SDN网络环境中运行,从而有效地衡量控制器对OpenFlow消息的处理能力。其测试结果能够在网络用户进行SDN网络性能评估,测试及商业部署时提供可靠的数据支撑。除此之外,还可以提供多控制器连接,TLS加密通道连接,测试结果可视化等附加功能。该测试工具简洁、高效、易于使用,并将持续更新以便为用户提供更丰富的性能测试案例及测试场景。 本报告以开源控制器RYU作为被测控制器,使用OFsuite_performance执行测试,汇总结果得出性能测试报告。全部测试例均为OFsuite_performance自动化测试完成,报告中所展示的结果图表均为测试工具自动生成。 二、测试环境配置 2.1 待测控制器 待测控制器为目下流行的开源控制器RYU,版本为v3.28,该版本的RYU控制器完全支持OpenFlow v1.3南向协议。 2.2 服务器配置 待测控制器RYU运行于一台单独的服务器上,其配置如下: ?处理器:Intel(R) Xeon(R) E3-1230 @ 3.20GHz 4核 ?内存:8GB 1333MHz ?操作系统:Ubuntu server 12.04 LTS 64位 ?网卡:1Gbps 2.3 测试工具

拉脱法附着力测试仪

F108拉开法(拉脱法)附着力测试仪 种是拉开法,一种是划格法,另一种是划圈法。划圈法和划格法都只能对附着力进行评级划分,而不能具体量化;而拉开法是可以定量(用Mpa)描述附着力大小,对于比较不同涂层的附着力大小是最有效的,非常适合检测机构现场评定或研发人员在研制配方时使用。 F108拉开法附着力测试仪是我公司最新研发的一款智能附着力测试仪器,它通过液压顶力对特定面积的涂层进行拉脱测试,拉脱力可通过数字显示器精准显示,并有两种不同的单位MPa和KN选择。 该仪器在国内尚属首创,具有操作简单,数据精确,维护成本及配套耗材价格低等特点。广泛应用于一些工业设备、钢结构、混凝土基体涂层、防腐涂层或者多道涂层体系中不同涂层之间的附着力测试。 特点:适用于较小面积或基体为薄板的附着力检测。 XH-F108是一种非常通用的液压型附着力测量仪,它可满足实际中许多附着力测试要求。可测量大小平面、弯曲面(凹面和凸面)。

将一可重复使用的圆形锻模与涂层表面粘贴,用手柄将圆形锻模拉离涂层表面。拉离的力以数值显示在仪表上。 F108罐体、管道等表面涂层测试的理想仪器: F108可装配弯曲表面的圆形锻模,适用于罐体、管道和其它弯曲表面的涂层附着力测试。 弯曲表面的圆形锻模规格众多,每种锻模都是为一定范围内的曲率半径设计的。凸形与凹形分别用于凸形表面与凹形表面。 ①ISO 4624 《Paints and varnishes-Pull-offtest for adhesion》 ②ASTM D 4541 《StandardTest Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers》③ASTM D7234 《Standard Test Method for Pull-OffAdhesion Strength of Coatings on Concrete Using Portable Pull-Off Adhesion Testers》 ④GB/T 5210 《色漆和清漆拉开法附着力试验》 ◆便携式设计,特别适合现场和实验室

04.025-2005 涂层附着力试验方法-划格法

涂层附着力试验方法-划格法(试行)范围 本规范规定了金属或非金属基材油漆涂层附着力特性的试验方法,此方法不适用于总厚度大于250μm的涂层,合成纤维涂层,以及粗糙表面的涂层。本标准由范围,规范性引用文件,试验目的,试验设备,取样或样板制作,试验过程等内容组成。 1 试验目的 通过从基材上脱落的油漆涂层来评定涂层附着力。 5.1 试样地尺寸要求能在三个不同的地方进行试验,且划痕距试板边缘至少为5mm 5.2 试板准备 5.2.1 清洁试板表面,保证涂层表面无油、蜡或其它残余物 5.2.2 试板表面的流挂、气泡或其它明显缺陷区域,不作为试验部位 5.2.3试验前,试板应在温度23±2℃,相对湿度为(50±5)%环境下静置16小时 2 试验过程 6.1刀具选用: 根据涂层的厚度选用不同刀锯的划格器: 膜厚:0~60μm,刀具间距1mm 膜厚:61~120μm,刀具间距2mm 膜厚:121~250μm,刀具间距3mm 6.2操作步骤 6.2.1 为了避免在试验期间试板的变形,应将试板放在刚性平面上。 6.2.2将切割工具放在样板表面的标准平面上,在工具上施加均匀压力,用均匀速度在漆膜上完成相应数量的划痕,保证划痕深入到基材;用同样方法呈90度交叉划痕,形成一个个方格。 6.2.3 用刷子轻刷划格部位,清除漆屑。 6.2.4 用专用胶带粘贴到被划伤的涂层表面,用手指把胶带再划格处上方的部位压平,保证胶带和涂层接触良好,胶带的长度至少超过划格处20mm。 6.2.5拿住胶带的末端在0.5秒到1秒内,以接近60度的角度迅速地剥离,揭下胶带。 6.2.6 检查格子区域涂层剥落情况(可用放大镜观察),按标准判定级别。 6.3 在试样上至少进行三个不同位置的试验,相互间距与试样边缘的距离不小于5mm,如果三次结果不一致,差值超过一个等级时,在三个以上不同位置重复以上实验或者另取试样进行试验。 3 结论描述 1

Polkadot白皮书

Polkadot白皮书(中文版)Polkadot白皮书(中文版) 1 前言 1.1 历史 2 介绍 2.1 协议、实现、网络 2.2 前人工作 2.2.1 没有全局状态的系统 2.2.2 异构链系统 2.2.3 Casper 3 概要 3.1 Polkadot的哲学 4 Polkadot的参与方 4.1 验证人 4.2 提名人 4.3 收集人 4.4 钓鱼人 5 设计综述 5.1 共识 5.2 权益证明 5.3 平行链和收集人 5.4 跨链通信 5.5 Polkadot和以太坊 5.5.1 从Polkadot到以太坊 5.5.2 从以太坊到Polkadot 5.5.3 Polkadot和比特币 6 协议细节 6.1 中继链操作 6.2 权益合约 6.2.1 权益代币的流动性 6.2.2 提名 6.2.3 押金没收/烧毁 6.3 平行链的注册 6.4 打包中继链区块 6.5 中继链区块打包的改进 6.5.1 延迟性介绍 6.5.2 公众参与 6.5.3 可用性保证人 6.5.4 收集人设置 6.5.5 区块超重 6.5.6 收集人保险 跨链交易路由 6.6.1 外部数据可用性 6.6.2 路由“提交” 6.6.3 弊端 6.7 平行链的验证 6.7.1 平行链收集人 6.8 网络设计

6.8.1 节点轮换的问题 6.8.2 通往高效网络协议的路径 7 协议的可实践性 7.1 跨链交易支付 7.2 添加链 8 结论 8.1 遗漏的材料和开放问题 8.2 鸣谢 9 Polkadot资料汇总 摘要:现有的区块链架构都存在诸多问题,不仅仅是从实用性角度所说的扩展性(extensibilty)和伸缩性(scalability)的问题。我们认为,问题源于把共识架构中两个很重要的部分:一致性(canonicality)和有效性(validity)绑定得太紧密了。这篇文章介绍了一种异构的多链架构,能从本质上把两者拆开。 为了分离这两者,且能保持最小化的绝对安全性(security)和传输性(transport)等基本功能,我们将介绍一种原生的支持内核可扩展(core extensibilty)的可行性方法。对于可伸缩性(scalability)的问题,我们通过对这两个问题分而治之的思路解决,通过非信任节点的激励机制,弱化他们的内生绑定关系。 本架构的异构本质,支持众多高度差异化的共识系统在非信任(trustless)、完全去中心化的联邦内交互操作,允许去信任(trust-free)地相互访问各区块链。 我们提出一种方式,支持向后兼容一个或多个现有的网络,比如以太坊等。我们相信这个系统能够提供一种有用的底层组件,能够实用性地支持全球商业级别的可伸缩性(scalability)和隐私性(privacy)。 1 前言 这篇论文的意图只是一个技术版本的概要,旨在用一些原则来描述将要开发的这个区块链示例,解释这个可能方向的合理性。它罗列了诸多区块链技术方面的具体改善措施,以及在此开发阶段所能够提供的尽可能多的细节。 它并不是要写成一个形式化证明的说明书。它并不完整,也不是最终版本。它并不是为了覆盖框架非核心的模块,例如API、依赖、语言和用法等。这只是概念性实验,都很可能会修改提到的参数。为了响应社区的意见和评论,会新增、重定义、删除各组件。通过实验性的证据和原型,给出关于什么会有效、什么不会的信息,也很可能修正本论文中大部分内容。 这篇论文包含了一个关于协议和一些想法的核心描述,可能会被用来解决多个方面的问题。它将是能够用来在概念验证阶段开展一系列工作的核心描述。一个最终的“1.0版本”会基于这个协议,再添加一些变得可证明而且决定包含到项目中来的想法。 1.1 历史 l 2016年10月09日:0.1.0-proof1 l 2016年10月20日:0.1.0-proof2 l 2016年11月01日:0.1.0-proof3 l 2016年11月10日:0.1.0 2 介绍

相关主题
文本预览
相关文档 最新文档