当前位置:文档之家› 基于MATLAB运动仿真的平面多连杆机构优化设计

基于MATLAB运动仿真的平面多连杆机构优化设计

基于MATLAB运动仿真的平面多连杆机构优化设计
基于MATLAB运动仿真的平面多连杆机构优化设计

基于MATLAB运动仿真的平面多连杆机构优化设计

崔利杰龚小平(

空军工程大学工程学院,西安710038)(

空军工程大学理学院,西安710051)

Planarmulti-linkageoptimizationdesignbasedonMATLABmovementsimulation

CIULi-jie,GONGXiao-ping

TheEngineeringInstitute,AirforceEngineeringUniversity,Xi'an710038,China)(2TheScienceInstitute,AirforceEngineeringUniversity,Xi'an710051,China)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!!"

【摘要】以一种平面八连杆为例建立了平面多连杆机构的运动分析数学模型,应用MATLAB软

件进行了优化设计和仿真分析,为机构优化设计提供了一种高效、直观的仿真手段,提高了对平面多连杆机构的分析设计能力。同时,也为其他机构的仿真设计提供了借鉴。

关键词:平面多连杆机构;MATLAB;优化设计;运动仿真

【Abstract】Thispapertookaplanar8linkagemechanismsasaexampletosetupthemathematics

modelofplanarmulti-linkagemechanisms,andmadetheoptimizationdesignandsimulationbytheMAT-LABsoftware.Itgaveaefficientlyanddirectlymethodtooptimizationdesignofmechanisms,andimprovedtheabilityofanalyzinganddesigningtheplanarmulti-linkagemechanisms.Atthesametime,italsopro-videsauseforreferencetothedesignandsimulationforothermechanisms.

Keywords:Planarmulti-linkagemechanisms;MATLAB;Optimizationdesign;Movementsimulation

中图分类号:TH112,O224

文献标识码:A

连杆机构由于能有效地实现给定的运动规律或运动轨迹,

很好地完成预定的动作,因而在机械和仪表等多领域中得到了广泛应用。传统的基于图解法或分析法的连杆机构设计无论设计精度还是设计效率都相对低下,不能满足现代机械高速高精度的要求。随着计算机技术的不断发展,为机构运用运动仿真实现优化设计提供了有效的手段。

首先构建多连杆机构的数学模型,再利用MATLAB软件强大的数值计算能力和高效的工具箱函数,以某压力机平面八连杆机构(机构运动简图如图1所示)为例进行优化设计并进行了仿真计算

,实现了机构运动仿真的可视化。

1平面多连杆机

构数学模型

此连杆机构通过主动件杆1以角速度ω1等速转动引起滑块滑动,要求在工作过程中滑块工件的压紧力保持基本稳定,即滑块的工作行程尽可能小。

1.1确定工作变量

因影响设计效果的主要因素包括a,b,l1,l2,l3,l4,

l5,l6,l7,l8,δ34,δ67等12个可

变参数,故取设计变量:

X=[a,b,l1,l2,l3,l4,l5,

l6,l7,l8,δ34,δ67]T

=[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12]

1.2建立目标函数

根据设计要求保持外滑块在压紧工件时保持压紧力基本稳定,这就要求滑块在相应位置上位移波动量最小。根据动力分析结果,相应位置Ф=107°-211°,因此取优化设计目标函数

(x)=1104

211

"=107

#|S|$min

可将连杆机构分为三个2级机构,并分别计算。对于四连杆机构1(图2),求得

图2四连杆机构1

A1=x2-x3cosФ

,B1=x1+x3sinФ,C1=A12

+B12

+x52

+x42

2x5

θ3x=2tan-1(

-A1+A12+B12-C1

%B1+C1)θ2x=cos-1(B1-x5cosθ3x

x4

),δ23=π-θ2x-θ3x

对于四连杆机构2(图3),可求得

文章编号:1001-3997(2007)02-0040-02

*来稿日期:2006-08-24

第2期

-40-

2007年2月

MachineryDesign&Manufacture机械设计与制造

第2期-41-

A2=x2-x6sinθ4x,B2=x1-x6cosθ4x,C2=

A22

+B22

+x82

-x7

2x8

θ6x=2tan-1(

-A2-A2

2+B2

2-C2

2!B2+C2

),θ5x=tan-1(

-A2-x8sinθ6x

-B2-x8cosθ6x

)对于滑块机构(图4),可求得

θ7y=π/2-θ6x-x12,θ8y=

sin-1

(x9sinθ7y

x10

)δ56=θ5x-θ6x,S=x9+x10-x9cosθ7y-x10cosθ8y(mm)

1.3规定约束条件1.3.1考虑曲柄存在条件

由11+12<13+OO1

11+13<12+OO1

11+OO1<12+13

即g1(x)=-(x5+x12+x22!)+x3+x4≤0g2(x

)=-(x4+x12+x22!)+x3+x5≤0g3(x

)=-(x3+x12+x22!)-x4-x5≤01.2.1考虑机构的动力学特性

为使机构具备良好的传力性能,δ23应满足40°≤δ≤140°,δ23在δ23max、δ23min处分别具有最大值和最小值

[1]

(图5),可得cosδ23max=12x4x5?[x42+x52-(x12+x22!+x3)2]cosδ23min=

12x4x5

?[x42+x52-(x12+x22!-x3)2]

即约束式为

g4(x

)=12x4x5?[x42+x52-(x12+x22!+x3)2]-0.76≤0g5(x

)=-12x4x5

?[x42+x52-(x12+x22!-x3)2]-0.76≤0图4滑块机构图5最大值、最小值示意

1.2.2考虑工艺及结构要求

首先,要求滑块行程有上下限;其次,机构运动时,上角架在最高位置必须与立柱留有足够的间隙,下角架不允许同横梁相碰。可建下列约束函数g6(x

)=x9+x10≤2791g7(x)=θ3xmax≤80°g8(x)=-θ7ymax≤-85.5°g9(x

)=-S3xmax≤-830g10

(x)=Smax≤9031.2.3设计变量取值范围

参考常规设计,规定各设计变量的上下界

960≤x1≤1173784≤x2≤866470≤x3≤520700≤x4≤1400450≤x5≤850400≤x6≤820500≤x7≤900350≤x8≤700724≤x9≤8851500≤x10≤2300

45°≤x11≤60°

25°≤x12≤40°

综上所述,本机构优化设计的数学模型为求

X=[x1,x2,......,x12]T使得

(x)=1104211

#=107

#|S|$min

s.t.gu(X

)0(u=1,2,......,10)

XL≤X≤XU

利用Matlab7.0软件优化工具箱[2]的Fmincon()函数,对上述数学模型进行求解。建立目标函数文件和包含八个约束的非线性约束函数文件,再将变量的上下界约束列入lb和ub向量,运算结果如表1所示:

运算结果

变量x

(mm)y

(mm)L1

(mm)L2

(mm)L3

(mm)L4

(mm)优化值

1061.8824.27498.331233.3754.4752.61l5

(mm)L6(mm)L7(mm)L8

(mm)δ34

δ67

812.71

620.88

63.37

198853°17′6″29°14′34″

2机构仿真

2.1连杆机构的运动分析

仍将连杆机构拆分为3个2级机构,依次求得各部分的速度,加速度,最后求得滑块的速度和加速度(限于篇幅详细推导过程参考文献[1])。

滑块的速度和加速度分别为

ν=-dsdt

=-[!?

7yx9sin!7y+!?

8yx10sin!?

8y]/1000

(m/s)a={x9[(!?7y)2

cos!7y+!7y??sin!7y]+x10[(!?7y)2

cos!8y+!8y??

sin!8y]}/1000

(m/s2)

2.2仿真结果的显示

图6滑块位移图

分别编写程序对滑块运动的速度和加速度进行仿真计算,运算结果利用plot()函数画出滑块位移图、滑块速度图和滑块加速度图如图6、图7和图8所示:

图3四连杆机构2

崔利杰等:基于MATLAB运动仿真的平面多连杆机构优化设计

文章编号:1001-3997(2007)02-0042-03

图7滑块速度图

3结束语

(1)本文利用MATLAB优化计算工具箱实现了机构的优化设计,简单易行,不用编写繁琐的程序,减小了工作量,且能方便地进行机构仿真,可以清楚地看到优化效果。

(2)将多杆机构拆分为几个简单的2级机构,为多杆机构的运

动分析及设计提供了模板,可广泛应用于其它2级多杆机构中。

参考文献

1邹慧君.傅祥志.张春林.李杞仪.机械原理[M].北京:高等教育出版社,1999.

2王沫然.MATLAB与科学计算[M].北京:电子工业出版社,2005.

*来稿日期:2006-04-01

*基金项目:国家自然科学基金资助项目

(50575109)目前搅拌叶片的优化设计研究多从性能匹配参数优化和

结构叶片运动学优化方面人手[1],没有建立实际的结构模型,优化方案受实际结构所限,应用于工程实际较困难。受厂方委托对其叶片结构进行优化改进设计。对叶片结构动态优化设计采用有限元分析软件ANSYS建立叶片实际结构优化参数模型,

建立约束条件,结合零阶优化方法,利用ANSYS的多变量优化求解功能进行结构优化分析计算。

1最优化设计理论和方法

1.1优化设计理论

优化问题从总体上来说就是在一定的约束条件下,运用各

混凝土搅拌车搅拌叶片结构优化设计*

于世旭1仪垂杰1郭健翔1邢普2

青岛理工大学能源与环境装备工程技术研究中心,青岛266033)(

中国农业大学工学院,北京100083)

Structureoptimaldesignoftheconcretemixertruck'smixingblade

YUShi-xu1,YIChui-jie1,GUOJian-xiang1,XINGPu2

(1QingdaoR&DCenterOfEnergyAndEnvironmentalEquipment,QingdaoTechnologicalUniversity,Qingdao266033,China)

(2ChinaAgriculturalUniversity,CollegeofEngineering,departmentofvehicle,Beijing100083,China)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!"

【摘

要】应用有限元法和零阶分析法,按照高刚度、轻质量的原则,选取叶片厚度作为设计变量,建

立了以应力为性能约束,以质量最小为优化目标函数的优化模型,进行了基于零阶方法的叶片结构动态优化设计,得出切合实际的优化设计方案。结果证明此种优化设计方法直观、合理。

关键词:有限元法;搅拌叶片;结构优化设计;零阶分析

【Abstract】Accordingtotheprincipleofhighstiffnessandlessmass,usingtheFEMmethodandze

rothorderanalysis,choosingthethicknessoftheConcreteMixerTruck'sMixingBladeasthedesignvariables,

theoptimizemodelwassetup,whichtakingstressastheperformancerestrictions,andtakingtheminimummassasoptimaltarget.Bythezerothordermethod,thestructuraldynamicoptimaldesignoftheconcretemixingbladewasdoneandthepracticaloptimalprojectwasestablished.Theresultstestifythatthisoptimaldesignmethodisintuitionisticandrational.

Keywords:FEMmethod;Mixingblade;Structureoptimaldesign;Zerothorder

中图分类号:TH12

文献标识码:A

##########################################################

第2期

-42-

2007年2月

MachineryDesign&Manufacture机械设计与制造

matlab(四连杆优化设计)

机械优化设计在matlab中的应用 东南大学机械工程学院** 一优化设计目的: 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 二优化设计步骤: 1.机械优化设计的全过程一般可以分为如下几个步骤: 1)建立优化设计的数学模型; ' 2)选择适当的优化方法; 3)编写计算机程序; 4)准备必要的初始数据并伤及计算; 5)对计算机求得的结果进行必要的分析。 其中建立优化设计数学模型是首要的和关键的一步,它是取得正确结果的前提。优化方法的选取取决于数学模型的特点,例如优化问题规模的大小,目标函数和约束函数的性态以及计算精度等。在比较各种可供选用的优化方法时,需要考虑的一个重要因素是计算机执行这些程序所花费的时间和费用,也即计算效率。 2.建立数学模型的基本原则与步骤 ①设计变量的确定; 设计变量是指在优化设计的过程中,不断进行修改,调整,一直处于变化的参数称为设计变量。设计变量的全体实际上是一组变量,可用一个列向量表示: - x=。 ②目标函数的建立; 选择目标函数是整个优化设计过程中最重要的决策之一。当对某以设计性能有特定的要求,而这个要求有很难满足时,则针对这一性能进行优化会得到满意的效果。目标函数是设计变量的函数,是一项设计所追求的指标的数学反映,因此它能够用来评价设计的优劣。 目标函数的一般表达式为: f(x)=,要根据实际的设计要求来设计目标函数。 ③约束条件的确定。 一个可行性设计必须满足某些设计限制条件,这些限制条件称为约束条件,简称约束。 由若干个约束条件构成目标函数的可行域,而可行域内的所有设计点都是满足设计要求的,一般情况下,其设计可行域可表示为 …

平面连杆机构及其设计答案复习进程

第八章平面连杆机构及其设计 一、填空题: 1.平面连杆机构是由一些刚性构件用转动副和移动副连接组成的。 2.在铰链四杆机构中,运动副全部是低副。 3.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 4.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 5.在铰链四杆机构中,与连架杆相连的构件称为连杆。 6.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 7.对心曲柄滑块机构无急回特性。 8.平行四边形机构的极位夹角θ=00,行程速比系数K= 1 。 9.对于原动件作匀速定轴转动,从动件相对机架作往复直线运动的连杆机构,是否有急回 特性,取决于机构的极位夹角是否为零。 10.机构处于死点时,其传动角等于0?。 11.在摆动导杆机构中,若以曲柄为原动件,该机构的压力角α=00。 12.曲柄滑块机构,当以滑块为原动件时,可能存在死点。 13.组成平面连杆机构至少需要 4 个构件。 二、判断题: 14.平面连杆机构中,至少有一个连杆。(√) 15.在曲柄滑块机构中,只要以滑块为原动件,机构必然存在死点。(√) 16.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 17.有死点的机构不能产生运动。(×) 18.曲柄摇杆机构中,曲柄为最短杆。(√) 19.双曲柄机构中,曲柄一定是最短杆。(×) 20.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 21.在摆动导杆机构中,若以曲柄为原动件,则机构的极位夹角与导杆的最大摆角相等。 (√) 22.机构运转时,压力角是变化的。(√) 三、选择题:

23.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A ≤ B ≥ C > 24.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而 充分条件是取 A 为机架。 A 最短杆或最短杆相邻边 B 最长杆 C 最短杆的对边。 25.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时, 有两个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 26.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 A 为机架时, 有一个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 27.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 C 为机架时, 无曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 28.铰链四杆机构中,若最短杆与最长杆长度之和 B 其余两杆长度之和,就一定是双摇杆 机构。 A < B > C = 29.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 C 为原动件时,此时机构处在死点位 置。 A 曲柄 B 连杆 C 摇杆 30.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 A 为原动件时,此时为机构的极限 位置。 A 曲柄 B 连杆 C 摇杆 31.对曲柄摇杆机构,当以曲柄为原动件且极位夹角θ B 时,机构就具有急回特性。 A <0 B >0 C =0 32.对曲柄摇杆机构,当以曲柄为原动件且行程速度变化系数K B 时,机构就具有急 回特性。 A <1 B >1 C =1 33.在死点位置时,机构的压力角α= C 。 A 0 o B 45o C 90o 34.若以 B 为目的,死点位置是一个缺陷,应设法通过。 A 夹紧和增力B传动 35.若以 A 为目的,则机构的死点位置可以加以利用。 A 夹紧和增力;B传动。

实现预定轨迹的平面四连杆机构的优化设计

实现预定轨迹的平面四连杆机构的优化设计 汕头大学工学院 09机电系citycars 摘 要: 四连杆机构是工程上广泛应用的传动机构,按照预定的轨迹曲线设计平面连杆机构,就是要确定机构的各尺寸参数和连杆上的描点位置,使该点所描的连杆曲线与预定的轨迹相符。利用软件Matlab 优化工具箱进行优化设计,使得实际运动轨迹与预定的轨迹误差最小,得到最优的连杆参数。 关键词:平面四连杆机构 预定轨迹 优化设计 For achieving the orbit of the plane four bar linkage of optimization design Abstract : Four bar linkage is widely used in engineering transmission mechanism, according to the predetermined path curve planar linkage mechanism design is to determine the size of the agency and the parameters of the tracing points, and make the point of link curve and draw a path consistent. Use of software Matlab optimal toolbox for optimum design, make the actual trajectory and scheduled path error smallest, the optimal parameters of the connecting rod. Key words: Plane four bar linkage Scheduled path Optimization design 1 问题描述 设计一平面四连杆机构,如图1所示。要求曲柄在运动过程中实现运动轨迹x y 2= ,52<

曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (21) 参考文献 (22)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

平面机构的运动分析习题和答案

2 平面机构的运动分析 1.图 示 平 面 六 杆 机 构 的 速 度 多 边 形 中 矢 量 ed → 代 表 , 杆4 角 速 度 ω4的 方 向 为 时 针 方 向。 2.当 两 个 构 件 组 成 移 动 副 时 ,其 瞬 心 位 于 处 。当 两 构 件 组 成 纯 滚 动 的 高 副 时, 其 瞬 心 就 在 。当 求 机 构 的 不 互 相 直 接 联 接 各 构 件 间 的 瞬 心 时, 可 应 用 来 求。 3.3 个 彼 此 作 平 面 平 行 运 动 的 构 件 间 共 有 个 速 度 瞬 心, 这 几 个 瞬 心 必 定 位 于 上。 含 有6 个 构 件 的 平 面 机 构, 其 速 度 瞬 心 共 有 个, 其 中 有 个 是 绝 对 瞬 心, 有 个 是 相 对 瞬 心。 4.相 对 瞬 心 与 绝 对 瞬 心 的 相 同 点 是 ,不 同 点 是 。 5.速 度 比 例 尺 的 定 义 是 , 在 比 例 尺 单 位 相 同 的 条 件 下, 它 的 绝 对 值 愈 大, 绘 制 出 的 速 度 多 边 形 图 形 愈 小。 6.图 示 为 六 杆 机 构 的 机 构 运 动 简 图 及 速 度 多 边 形, 图 中 矢 量 cb → 代 表 , 杆3 角 速 度ω3 的 方 向 为 时 针 方 向。 7.机 构 瞬 心 的 数 目N 与 机 构 的 构 件 数 k 的 关 系 是 。 8.在 机 构 运 动 分 析 图 解 法 中, 影 像 原 理 只 适 用 于 。

9.当 两 构 件 组 成 转 动 副 时, 其 速 度 瞬 心 在 处; 组 成 移 动 副 时, 其 速 度 瞬 心 在 处; 组 成 兼 有 相 对 滚 动 和 滑 动 的 平 面 高 副 时, 其 速 度 瞬 心 在 上。 10..速 度 瞬 心 是 两 刚 体 上 为 零 的 重 合 点。 11.铰 链 四 杆 机 构 共 有 个 速 度 瞬 心,其 中 个 是 绝 对 瞬 心, 个 是 相 对 瞬 心。 12.速 度 影 像 的 相 似 原 理 只 能 应 用 于 的 各 点, 而 不 能 应 用 于 机 构 的 的 各 点。 13.作 相 对 运 动 的3 个 构 件 的3 个 瞬 心 必 。 14.当 两 构 件 组 成 转 动 副 时, 其 瞬 心 就 是 。 15.在 摆 动 导 杆 机 构 中, 当 导 杆 和 滑 块 的 相 对 运 动 为 动, 牵 连 运 动 为 动 时, 两 构 件 的 重 合 点 之 间 将 有 哥 氏 加 速 度。 哥 氏 加 速 度 的 大 小 为 ; 方 向 与 的 方 向 一 致。 16.相 对 运 动 瞬 心 是 相 对 运 动 两 构 件 上 为 零 的 重 合 点。 17.车 轮 在 地 面 上 纯 滚 动 并 以 常 速 v 前 进, 则 轮缘 上 K 点 的 绝 对 加 速 度 a a v l K K K KP ==n /2 。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -( ) 18.高 副 两 元 素 之 间 相 对 运 动 有 滚 动 和 滑 动 时, 其 瞬 心 就 在 两 元 素 的 接 触 点。- - - ( ) 19.在 图 示 机 构 中, 已 知ω1 及 机 构 尺 寸, 为 求 解C 2 点 的 加 速 度, 只 要 列 出 一 个 矢 量 方 程 r r r r a a a a C B C B C B 222222=++n t 就 可 以 用 图 解 法 将 a C 2求 出。- - - - - - - - - - - - - - - - - - ( ) 20.在 讨 论 杆2 和 杆3 上 的 瞬 时 重 合 点 的 速 度 和 加 速 度 关 系 时, 可 以 选 择 任 意 点 作 为 瞬 时 重 合 点。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( )

平面连杆机构优化设计

平面连杆机构优化设计 一、问题描述 平面连杆机构是由所有构件均由低副连接而成的机构,四杆机构是最常用的平面连杆机构。一般情况下,四杆机构只能近似实现给定的运动规律或运动轨迹,精确设计较为复杂。在四杆机构中,若两连架杆中的一个是曲柄,另一个是摇杆,则该机构为曲柄摇杆机构。曲柄摇杆机构可将曲柄的连续转动转变为摇杆的往复摆动。 设计一曲柄摇杆机构(如图1所示)。已知曲柄长度l 1=100mm ,机架长度l 4=500mm 。摇杆处于右极限位置时,曲柄与机架的夹角为φ0,摇杆与机架的夹角为ψ0。在曲柄转角φ从φ0匀速增至φ0+90°的过程中,要求摇杆转角()200π 32 ??ψψ-+ =。为防止从动件卡死,连杆与摇杆的夹角γ只允许在45°~135°范围内变化。 图1 机构运动简图 二、基本思路

四杆机构的设计要求可归纳为三类,即满足预定的连杆位置要求、满足预定的运动规律要求、满足预定的轨迹要求。本案例中,要求曲柄作等速转动时,摇杆的转角满足预定运动规律()00E π 32 ??ψψ-+ =。优化设计时,通常无精确解,一般采用数值方法得到近似解。本案例将机构预定的运动规律与实际运动规律观测量之间的偏差最小设为目标,由此建立优化设计数学模型,并运用MATLAB 优化工具箱的相关函数进行求解。 三、要点分析 优化设计数学模型的三要素包括设计变量、目标函数和约束条件。依次确定三要素后,编写程序进行计算。 1.设计变量的确定 通常将机构中的各杆长度,以及摇杆按预定运动规律运动时,曲柄所处的初始位置角φ0列为设计变量,即 T 04321T 54321)()(?l l l l x x x x x ==X (1) 考虑到机构各杆长按比例变化时,不会改变其运动规律,因此在计算可取l 1为单位长度,而其他杆长则按比例取为l 1的倍数。若曲柄的初始位置对应摇杆的右极限位置,则φ0及ψ0均为杆长的函数,即 4 212 32 42210)(2)(cos arc l l l l l l l +-++=?(2)

机械基础-案例11实现预定轨迹的平面四连杆机构的优化设计

实现预定轨迹的平面四连杆机构的 数学建模及其优化设计 一.问题描述 设计一平面四连杆机构,如图1所示。要求曲柄在运动过程中实现运动轨迹 x y 2=,52<

为寻优目标,其偏差为i Mi i x x x -=?和i Mi i y y y -=?()n x i ,,2,1???=,如图2。为此,把摇杆运动区间2到5分成S 等分,M 点坐标有相应分点与之对应。将各分点标号记作i ,根据均方根差可建立其目标函数,即 ()()() [ ] min 2 /122 →-+-=∑i Mi i Mi y y x x X f ?sin 3L y Mi = ?cos 33?+=L x Mi i i x y ?=2 )1(3 1-+=i s x i ,S 为运动区间的分段数 ?? ??????--+=432 4 232212)(arccos L L L L L L ? 于是由以上表达式便构成了一个目标函数的数学表达式,对应于每一个机构设计方案(即给定21,X X ),即可计算出均方根差()X f 。 图 2 3.确定约束条件 根据设计条件,该机构的约束条件有两个方面:一是传递运动过程中的最小传动角γ应大于50度;二是保证四杆机构满足曲柄存在的条件。以此为基础建立优化线束条件。 ①保证传动角 50>γ

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析 1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 2.1问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

2.2平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。 如E点轨迹不符合设计要求,则可适当调整各杆件的尺寸,再通过尺寸动画功能检验。

连杆机构运动分析

构件上点的运动分析 函数文件(m文件) 格式:function [ 输出参数] = 函数名(输入参数) p_crank.m function [p_Nx,p_Ny]=p_crank(Ax,Ay,theta,phi,l1) v_crank.m function [v_Nx,v_Ny]=v_crank(l1,v_Ax,v_Ay,omiga,theta,phi) a_crank.m function [a_Nx,a_Ny]=a_crank(l1,a_Ax,a_Ay,alpha,omiga,theta,phi) 函数中的符号说明

函数文件(m 文件) 格式: function [ 输出参数 ] = 函数名( 输入参数 ) p_RRR.m function [cx,cy,theta2,theta3]=p_RRR(bx,by,dx,dy,l2,l3,m) v_RRR.m function [vcx,vcy,omiga2,omiga3]=v_RRR(vbx,vby,vdx,vdy,cx,cy,bx,by,dx,dy) a_RRR.m function [acx,acy,alpha2,alpha3]=a_RRR(abx,aby,adx,ady,cx,cy,bx,by,dx,dy,omiga2,omiga3) 函数中的符号说明 m =1 m = -1 RRR Ⅱ级杆组运动分析

函数文件(m 文件) 格式: function [ 输出参数 ] = 函数名( 输入参数 ) p_RRP.m function [cx,cy,sr,theta2]=p_RRP(bx,by,px,py,theta3,l2,m) v_RRP.m function [vcx,vcy,vr,omiga2]=v_RRP(bx,by,cx,cy,vbx,vby,vpx,vpy,theta2,theta3,l2,sr,omiga3) a_RRP.m function [acx,acy,ar,alpha2]=a_RRP(bx,by,cx,cy,px,py,abx,aby,apx,apy,theta3,vr,omiga2,omiga3,alpha3) 函数中的符号说明 1 1 ∠BCP < 90?,∠BC 'P > 90?, m =1 RRP Ⅱ级杆组运动分析

平面连杆机构的优化设计教案

平面连杆机构的优化设计 【教学目标】 1.了解连杆机构优化设计的一般步骤 2.掌握连杆机构优化设计的方法 【教学重点】 1.掌握连杆机构优化设计的方法 【教学难点】 1.掌握连杆机构优化设计的方法 【教学准备】 多媒体课件、直尺、圆规。 【教学过程】 一、以工程实际案例引入课题 实例1:飞机起落架(结合最近美国波音飞机频繁失事的新闻) 实例2:汽车雨刮器 说明:平面连杆机构的实用在生产生活中随处可见,是机械设计当中常见的一种机构。 二、定义回顾 【提问】平面四杆机构的基本形式有哪些? 【预设】机械原理是本科第四学期的课程,学生可能记不全,要引导性地带大家回忆。 【答案】曲柄摇杆机构、双曲柄机构、双摇杆机构 三、回顾以前所学习的连杆机构设计方法,对比引入优化设计。 新课教授 一、曲柄摇杆机构再现已知运动规律的优化设计

1.设计变量的确定 决定机构尺寸的各杆长度,以及当摇杆按已知运动规律开始运动时,曲柄所处的位置角φ0 为设计变量。 [][] 1234512340T T x x x x x x l l l l ?== 考虑到机构的杆长按比例变化时,不会改变其运动规律,因此在计算时常l 1=1 , 而其他杆长按比例取为l 1 的倍数。 ()()22212430124arccos 2l l l l l l l ???++-=??+???? ()221243034arccos 2l l l l l l ψ??+--=?????? 经分析后,只有三个变量为独立的: [][] 123234T T x x x x l l l == 2.目标函数的建立 目标函数可根据已知的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即

四连杆机构运动分析

游梁式抽油机是以游梁支点和曲柄轴中心的连线做固定杆,以曲柄,连杆和游梁后臂为三个活动杆所构成的四连结构。 1.1四连杆机构运动分析: 图1 复数矢量法: 为了对机构进行运动分析,先建立坐标系,并将各构件表示为杆矢量。结构封闭矢量方程式的复数矢量形式: 3121234i i i l e l e l e l ???+=+ (1) 应用欧拉公式cos sin i e i θθθ=+将(1)的实部、虚部分离,得 1122433112233cos cos cos sin sin sin l l l l l l l ??????+=+? ?+=? (2) 由此方程组可求得两个未知方位角23,??。 当要求解3?时,应将2?消去可得 2222234134313311412cos 2cos()2cos l l l l l l l l l l ????=++---- (3) 解得 3tan(/2)(/()B A C ?=- (4) 33 233 sin arctan cos B l A l ???+=+ (5) 其中:411 11 2222 32 3 cos sin 2A l l B l A B l l C l ??=-=-++-= (4)式中负号对应的四连杆机构的图形如图2所示,在求得3?之后,可利用(5)求得2?。

图2 由于初始状态1?有个初始角度,定义为01?,因此,我们可以得到关于011t ??ω=+, ω是曲柄的角速度。而通过图形3分析,我们得到OA 的角度0312 π θ??=- -。 因此悬点E 的位移公式为||s OA θ=?,速度||ds d v OA dt dt θ = =,加速度2222||dv d s d a OA dt dt dt θ===。 图3 已知附录4给出四连杆各段尺寸,前臂AO=4315mm ,后臂BO=2495mm , 连杆BD=3675mm ,曲柄半径O ’D=R=950mm ,根据已知条件我们推出''||||||||OO O D OB BD +>+违背了抽油系统的四连结构基本原则。为了合理解释光杆悬点的运动规律,我们对四连结构进行简化,可采用简谐运动、曲柄滑块结构进行研究。 1.2 简化为简谐运动时的悬点运动规律 一般我们认为曲柄半径|O ’D|比连杆长度|BD|和游梁后臂|OA|小很多,以至于它与|BD|、|OA|的比值可以忽略。此时,游梁和连杆的连接点B 的运动可以看为简谐运动,即认为B 点的运动规律和D 点做圆周运动时在垂直中心线上的投影的运动规律相同。则B 点经过时间t 时的位移B s 为

平面连杆机构的运动分析

平面连杆机构的运动分析 以典型平面连杆机构(牛头刨床机构)为研究对象,首先进行机构的运动分析,并列出相应方程,然后采用计算机C语言编程的方法,计算出机构中选定点的位移、速度,并绘出相关数据图像。 标签: 连杆机构;位移;速度;计算机编程 TB 1 前言 平面连杆机构是现代机械中应用的最为广泛的一种典型机构。平面连杆机构的典型应用包括牛头刨床机构、缝纫机、颚式破碎机等。在研究平面连杆机构的过程中对机构上某个特定点的研究是必不可少的。然而在传统的研究方法中,手工计算不仅计算量大,而且极易出错。随着计算机技术的广泛普及,计算机逐渐成为分析研究典型机械结构的有力工具。因此本文力求通过C语言编程技术来对牛头刨床机构来进行简单运动分析。 2 牛头刨床机构运动分析 图1所示的为一牛头刨床。假设已知各构件的尺寸如表1所示,原动件1以匀角速度ω1=1rad/s沿着逆时针方向回转,试求各从动件的角位移、角速度和角加速度以及刨头C点的位移、速度的变化情况。 角速度变化较为平缓,保证刨头慢速、稳定工作;在220°~340°之间为回程阶段,角速度变化较快,以提高效率;4杆有4个角速度为0点,即4杆的速度方向改变了四次。 C点的位移、速度分析:在0°~200°范围内,C点位移曲线斜率的绝对值变化较小,说明此时C点速度及加速度的变化量不大,且保持在较小值。200°~260°范围内C点的速度变化量明显增大,由速度图像可以推知加速度在220°左右达到最大值后快速减小,并使其速度在260°左右达到最大,而后加速度反向缓慢增大,速度持续减小到零以后又开始反向增大。 ①工作行程为θ1:0°~220°,回程为θ1:220°~340 °;工作行程角度大于回程角度,工作效率较高; ②工作行程阶段,刨头C点位移的变化较为平稳,速度可以近似看为匀速,

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E 点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD 的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。

曲柄连杆机构运动分析

曲柄连杆机构运动分析 四缸发动机曲轴、连杆和活塞的运动是较复杂的机械运动。曲轴做旋转运动,连杆做平动,活塞是直线往复运动。在用Pro/Engineer做曲轴、连杆和活塞的运动分析的步骤如下所示[20]: (1)设置曲轴、连杆和活塞的连接。为使机构能够按照预定的方式运动,须分别在曲轴与机体之间、连杆与曲轴之间、活塞与连杆之间添加销钉。在活塞与机体之间添加滑动杆连接。 (2)定义伺服电动机。利用伺服电动机驱动曲轴转动。 (3)建立运动分析。 (4)干涉检验与视频制作。 (5)获取分析结果。 7.1 活塞及连杆的装配 7.1.1 组件装配的分析与思路 活塞组件主要包括活塞、活塞销和活塞销卡环,连杆由连杆体和连杆盖两部分组成,将活塞组与连杆组分别组装,工作时用螺栓和螺母将连杆体、连杆盖和曲轴装配在一起,用活塞销将连杆小头和活塞装配在一起[21]。 7.1.2 活塞组件装配步骤 1、向组件中添加活塞 新建组件文件,运用【添加元件】,将活塞在缺省位置,完成装配。 2、向组件中添加活塞销卡环 (1)在“约束类型”中选择“对齐”选项,将卡环中心轴与活塞销孔中心轴对齐; (2)选择“匹配”选项,将卡环外圆曲面与卡环槽曲面相匹配,完成两个活塞销卡环的装配。 3、向组件中添加活塞销 (1)选择“对齐”选项,将活塞销中心轴与活塞销座孔的中心轴对齐; (2)选择“匹配”选项,将活塞销端面与卡环端面相匹配,完成活塞销的装配。 装配结果如图7.1所示:

图7-1 活塞组装配结果 Figure7-1Piston assembly results 7.1.3 连杆组件的装配步骤 1、向组件中添加连杆体 新建组件文件,运用【添加元件】,将连杆体添加在“缺省”位置,完成连杆体的装配。 2、向组件中添加连杆衬套 (1)选择“插入”选项,将连杆衬套的外侧圆柱面与连杆小头孔内侧圆柱面以插入的方式相配合。 (2)选择“对齐”选项,将连杆衬套的中心轴和连杆小头孔的中心轴对齐,完成连杆衬套的装配。 3、向组件中添加连杆轴瓦 (1)选择“对齐”选项,“偏移”为“重合”,并选择相重合的平面,然后【反向】。 (2)选择“约束类型”为“插入”,选取轴瓦的外侧圆柱面和连杆体的大端孔内侧圆柱面,使这两个曲面以插入的方式相配合。 (3)选择“匹配”,“偏移”类型为“重合”,使轴瓦凸起和凹槽的两侧面对应重合,完成连杆轴瓦的配合。 (4)同样的方法完成另一块连杆轴瓦的装配。 4、向组件中添加连杆盖 (1)选择“约束类型”为“匹配”,“偏移”类型为“重合”,并选取相应的面。 (2)分别选取连杆盖和连杆体的孔内侧圆柱面,使其以“插入”方式相配合,完成连杆盖的添加。 5、向组件中添加连杆螺栓 (1)选取螺栓的外侧圆柱面和孔的内侧圆柱面,使其以“插入”的方式相配合。 (2)选择“匹配”选项,并选择相应的面,使其“重合”,完成连杆螺栓的装配。 (3)添加螺母和垫片,同样的方法完成另一个连杆螺栓的装配。 连杆组件的装配结果如图7.2所示:

03平面连杆机构优化设计

案例3 平面连杆机构优化设计 一、问题描述 平面连杆机构是由所有构件均由低副连接而成的机构,四杆机构是最常用的平面连杆机构。一般情况下,四杆机构只能近似实现给定的运动规律或运动轨迹,精确设计较为复杂。在四杆机构中,若两连架杆中的一个是曲柄,另一个是摇杆,则该机构为曲柄摇杆机构。曲柄摇杆机构可将曲柄的连续转动转变为摇杆的往复摆动。 设计一曲柄摇杆机构(如图1所示)。已知曲柄长度l 1=100mm ,机架长度l 4=500mm 。摇杆处于右极限位置时,曲柄与机架的夹角为φ0,摇杆与机架的夹角为ψ0。在曲柄转角φ从φ0匀速增至φ0+90°的过程中,要求摇杆转角()200π 32 ??ψψ-+ =。为防止从动件卡死,连杆与摇杆的夹角γ只允许在45°~135°范围内变化。 图1 机构运动简图 二、基本思路 四杆机构的设计要求可归纳为三类,即满足预定的连杆位置要求、满足预定的运动规律要求、满足预定的轨迹要求。本案例中,要求曲柄作等速转动时,摇杆的转角满足预定运动规律()00E π 32 ??ψψ-+ =。优化设计时,通常无精确解,一般采用数值方法得到近似解。本案例将机构预定的运动规律与实际运动规律观测量之间的偏差最小设为目标,由此建立优化设计数学模型,并运用MA TLAB 优化工具箱的相关函数进行求解。 三、要点分析 优化设计数学模型的三要素包括设计变量、目标函数和约束条件。依次确定三要素后,编写程序进行计算。

1.设计变量的确定 通常将机构中的各杆长度,以及摇杆按预定运动规律运动时,曲柄所处的初始位置角φ0列为设计变量,即 T 04321T 54321)()(?l l l l x x x x x ==X (1) 考虑到机构各杆长按比例变化时,不会改变其运动规律,因此在计算可取l 1为单位长度,而其他杆长则按比例取为l 1的倍数。若曲柄的初始位置对应摇杆的右极限位置,则φ0及ψ0均为杆长的函数,即 4 212 32 42210)(2)(cos arc l l l l l l l +-++=? (2) 4 32 32 422102)(cos arc l l l l l l --+=ψ (3) 因此,设计变量缩减为3个独立变量,即 T 432T 321)()(l l l x x x ==X (4) 2.目标函数的建立 以机构预定的运动规律观测量ψE i 与实际运动规律观测量ψi 之间的偏差平方和最小为指标来建立目标函数,即 min )()(1 2E →-=∑=m i i i f ψψX (5) 式中,m 为输入角的等分数;ψE i 为预期输出角,ψE i=ψE (φi );ψi 为实际输出角。由图2可知: ? ? ?<≤+-<≤--=)π2π(π) π0(πi i i i i i i ?βα?βαψ (6) 32 22322arccos l l l i i i ρρα-+= (7) 42 12422arccos l l l i i i ρρβ-+= (8) i i l l l l ?ρcos 2412421-+= (9)

平面连杆机构及其设计(参考答案)

一、填空题: 1.平面连杆机构是由一些刚性构件用低副连接组成的。 2.由四个构件通过低副联接而成的机构成为四杆机构。 3.在铰链四杆机构中,运动副全部是转动副。 4.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 5.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 6.在铰链四杆机构中,与连架杆相连的构件称为连杆。 7.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 8.对心曲柄滑快机构无急回特性。9.偏置曲柄滑快机构有急回特性。 10.对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,是否有急回特性,取决于机构的极位夹角是否大于零。 11.机构处于死点时,其传动角等于0。12.机构的压力角越小对传动越有利。 13.曲柄滑快机构,当取滑块为原动件时,可能有死点。 14.机构处在死点时,其压力角等于90o。 15.平面连杆机构,至少需要4个构件。 二、判断题: 1.平面连杆机构中,至少有一个连杆。(√) 2.平面连杆机构中,最少需要三个构件。(×) 3.平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。(√) 4.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 5.有死点的机构不能产生运动。(×) 6.机构的压力角越大,传力越费劲,传动效率越低。(√) 7.曲柄摇杆机构中,曲柄为最短杆。(√) 8.双曲柄机构中,曲柄一定是最短杆。(×) 9.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 10.平面连杆机构中,压力角的余角称为传动角。(√) 11.机构运转时,压力角是变化的。(√) 三、选择题: 1.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A <=; B >=; C > 。 2.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而充分条件是取 A 为机架。 A 最短杆或最短杆相邻边; B 最长杆; C 最短杆的对边。3.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时,有两

连杆机构运动分析指导

连杆机构运动分析指导 一、实验目的 1. 加强学生对机构组成原理的认识,进一步了解机构组成及其运动特性,为机构创新设计奠定良好的基础。 2. 培养学生连杆机构解析法分析的能力。 二、实验原理 机构一般由两部分组成,一部分为机架和原动件及他们之间的运动副,另一部分由其他构件和运动副组成。其中,前一部分称为基本机构部分,后一部分称为从动件系统。如图1所示的机构可以分成如图2所示两部分。两部分机构自由度之和等于原始机构的自由度,由于基本机构的自由度与原动件数目相等,等于机构的自由度,所以从动件系统部分的自由度为0。 在很多情况下,从动件系统可以进一步划分成更小的杆组。我们把无法再分割的、自由度=0的从动件连接称为阿苏尔杆组(Assur group). 例如如图2的从动件系统可以进一步划分成如图3所示的两个阿苏尔杆组。 在每一个阿苏尔杆组中,杆组内部各构件间连接的运动副称为内部运动副(inner pair内副)。例如杆组DCB中的转动副C和杆组GFE中的转动副F。每一个阿苏尔杆组中有一部分运动副与运动已知构件相联,这一部分运动副称为外部运动副(outer pairs外副)。例如,阿苏尔杆组DCB中的转动副B和D分别和运动已知构件(原动件和机架)相连接,为外副。阿苏尔杆组DCB通过外副B和D 与运动已知的构件连接后,形成了一个铰链四杆机构ABCD ,杆组DCB中的构件BCE和DC运动确定。阿苏尔杆组GFE 通过外副E和G与运动已知构件(BCE 和机架)连接。注意:转动副E不是阿苏尔杆组DCB的一个外副。从阿苏尔杆组的安装顺序,我们可以看出杆组DCB是第一杆组,杆组GFE 是第二杆组。 我们可以得到机构的组成原理:任何机构都是在基本机构的基础上依次添加杆组扩展而成的。注意只有在前面的阿苏尔杆组安装完之后,后面的杆组才能安装。 依据机构的组成原理就可以预先编写一些常用阿苏尔杆组的子程序。这样,多杆连杆机构的运动分析就可以简化成简单的两步:首先,将机构拆成基本机构

平面连杆机构运动及动力分析

毕业设计报告(论文) 报告(论文)题目:平面连杆机构运动及动力分析作者所在系部:机械工程系 作者所在专业:机械设计制造及其自动化 作者所在班级: B07115 作者姓名: 作者学号: 指导教师姓名: 完成时间: 2011年6月 北华航天工业学院教务处

摘要 平面连杆机构是一种应用十分广泛的机构。平面连杆机构全部采用低副连接,因而结构简单易于制造,结实耐用,不易磨损,适于高速重载;运动低副具有良好的匣形结构,无需保养,适于极度污染或腐蚀而易出现问题的机器中;平面连杆机构能够实现多种多样复杂的运动规律,而且结构的复杂性不一定随所需完成的运动规律性的复杂程度而增加;平面连杆机构还具有一个独特的优点,就是可调性,即通过改变机构中各杆件长度,从而方便地改变了原机构的运动规律和性能。连杆机构由于结构上的特点在各种机械行业中被广泛的采用。通过对连杆机构的设计,可以实现不同的运动规律,满足预定的位置要求和满足预定的轨迹要求。 机构运动及动力分析的目的是分析各个构件的位移、、角加速度以及受力,分析构件上某点的位置、轨迹、速度和加速度等。这种方法能给出各运动参数与机构尺寸间的解析关系及写出机构某些点的轨迹方程式,能帮助我们合理地选择机构的尺寸,从而对某一机构作深入的系统研究。 平面连杆机构运动及动力分析,就是以连杆机构作为研究对象,对其各个运动件之间的关系公式进行推导,应用现代设计理论方法和有关专业知识进行系统深入地分析和研究,探索掌握其运动规律,讨论重要参数间的关系。 关键词:平面连杆机构运动性能仿真运动规律 Abstract Planar linkage mechanisms are used widely. Planar linkage mechanisms take the use of lower pair connection, so its structure is easy to manufacture, durable and resistant, especially suitable for high-speed and heavy-duty; lower pair sports has a good box-shaped structure, without maintenance, which is fit for machines working in extreme contamination or often coming with problems because of corrosion; planar linkage mechanism not only can achieve a variety of complex movement, but also the more complex movem ent doesn’t go with more complex structure; what gives linkage a unique advantage is that the motive rules and performance of the original mechanism will change with the length of the bar. As a result, linkage mechanisms are widely used in mechanical industries. By changing the design of linkage mechanisms, it can achieve different motive rules in order to move as the intended location and trajectory.

相关主题
文本预览
相关文档 最新文档