当前位置:文档之家› 超精密加工技术的发展与展望

超精密加工技术的发展与展望

超精密加工技术的发展与展望
超精密加工技术的发展与展望

精密与特种加工技术

结课论文

题目:超精密加工技术的发展与展望

指导教师:沈浩

学院:机电工程学院

专业:机械工程

姓名:司皇腾

学号: 152085201020

超精密加工技术的发展与展望

摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。环保也是机械制造业发展的必然趋势。

关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工

【引言】

精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。

通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确

切的界限。现阶段通常把被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术称为超精密加工技术[1],也可以理解为超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程,其精度从微米到亚微米,乃至纳米。超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向[2]。

超精密加工技术综合应用了机械技术发展的新成果及现代光电技术、计算机技术、测量技术和传感技术等先进技术。同时,作为现代高科技的基础技术和重要组成部分,它推动着现代机械、光学、半导体、传感技术、电子、测量技术以及材料科学的发展进步。超精密加工在现代武器和一些尖端产品制造中具有举足轻重的地位,是其它一些加工方法无可替代的,它不仅可以应用于国防,而且可以广泛地应用于比较高端的民用产品中,是衡量一个国家科学技术发展水平的重要标志。

1、超精密加工技术的发展历史

精密超精密加工技术的起源从一定意义上可以上溯到原始社会:当原始人类学会了制作具有一定形状且锋利的石器工具时,可以认为出现了最原始的手工研磨加工工艺;到了青铜器时代后人类制作了各类表面光滑的铜镜,这种制作方式就是研磨及抛光工艺。但是到了近代才出现了真正意义上的精密加工,最典型的例子就是精密镗床的发明。1769年瓦特取得实用蒸汽机专利后,汽缸加工精度的高低就成了蒸汽机能否提高效率并得到实际应用的关键问题。1774年英国人威尔金森发明了炮筒镗床,可用于加工瓦特蒸汽机的汽缸体。1776 年他又制造了一台更为精确的汽缸镗床,加工直径为 75inch(1inch=2.54cm)的汽缸,误差还不到一个硬币的厚度。加工精度的提高促使了蒸汽机的大规模应用,从而推动了第一次工业革命的发展。

20 世纪60年代初期,随着航天、宇航的发展,精密超精密加工技术首先在美国被提出,并由于得到了政府和军方的财政支持而迅速发展。到了20世纪 70 年代,日本也成立了超精密加工技术委员会并制定了相应发展规划,将该技术列入高新技术产业,经过多年的发展,使得日本在民用光学、电子及信息产品等产业处于世界领先地位。近年来,美国开始实施了“微米和纳米级技术”国家关键技术计划,国防部成立了特别委员会,统一协调研究工作。美国目前至少有30多家公司研制和生产各类超精密加工机床,如国家劳伦斯利佛摩尔实验室(LLNL)、摩尔(Moore)公司等在国际超精密加工技术领域久负盛名。同时利用这些超精密加工设备进行了陶瓷、硬质合金、玻璃和塑料等材料不同形状和种类零件的超精密加工,并应用于航空、航天、半导体、能源、医疗器械等行业。日本现有20多家超精密加工机床研制公司,重点开发民用产品所需的超精密加工设备,并成批生产了多品种商品化的超精密加工机床,日本在相机、电视、复印机、投影仪等民用光学行业的快速发展与超精密加工技术有着直接的关系。英国从 60 年代起开始研究超精密加工技术,现已成立了国家纳米技术战略委员会,正在执行国家纳米技术研究计划,德国和瑞士也以生产精密加工设备闻名于世。1992 年后,欧洲实施了一系列的联合研究与发展计划,加强和推动了精密超精密加工技术的发展。国内真正系统地提出超精密加工技术的概念是从20世纪 80 年代~90 年代初,由于航空、航天等军工行业的发展对零部件的加工精度和表面质量都提出了更高的要求,这些军工行业投入了资金支持行业内的研究所和高校

开始进行超精密加工技术基础研究。由于当时超精密加工技术属于军用技术,无论从设备还是工艺等方面,国外都实施了技术封锁,所以国内超精密加工技术的开展基本都是从超精密加工设备的研究开始。由于组成超精密加工设备的基础是超精密元部件,包括空气静压主轴及导轨、液体静压主轴及导轨等,所以各家单位也正是以超精密基础元部件及超精密切削加工用的天然金刚石刀具等为突破口,并很快就取得了一些进展。哈尔滨工业大学、北京航空精密机械研究所等单位陆续研制了超精密主轴及导轨等元部件,并进行了天然金刚石超精密切削刀具刃磨机理及工艺研究,同时陆续搭建了一些结构功能简单的超精密车床、超精密镗床等超精密加工设备,开始进行超精密切削工艺实验。非球面、曲面超精密加工设备的研制成功是国内超精密加工技术发展的里程碑,非球面光学零件由于具有独特的光学特性在航空、航天、兵器以及民用光学等行业开始得到应用,从而简化了产品结构并提高了产品的性能。当时加工设备只有美国、日本及西欧等少数国家能够生产,国内引进受到严格限制而且价格昂贵,国家从“九五”开始投入了人力物力支持研发超精密加工设备。到“九五”末期,北京航空精密机械研究所、哈尔滨工业大学、北京兴华机械厂、国防科技大学等单位陆续研制成功代表当时超精密加工最高技术水平的非球面超精密切削加工设备,彻底打破了国外的技术封锁。之后其他各类超精密加工设备,如超精密磨削设备、小计算机数控磨头抛光设备、磁流变抛光设备、离子束抛光设备、大口径非球面超精密加工设备、自由曲面多轴超精密加工设备、压印模辊超精密加工设备等也陆续研制成功,缩小了超精密加工技术国内外的差距。同时由于有了超精密加工设备的支撑,在超精密加工工艺方面也有了很大进展,如ELID 超精密镜面磨削工艺、磁流变抛光工艺、大径光学透镜及反射镜超精密研抛及测量工艺、自由曲面的超精密加工及测量工艺、光学薄膜超精密加工工艺,超精密加工技术的应用领域也从军工业转向了民用行业。超精密加工技术的发展随着时代的进步其加工精度也不断提高,目前已经进入到纳米制造阶段。纳米级制造技术是目前超精密加工技术的巅峰,其研究需要具有雄厚的技术基础和物质基础条件,美国、日本及欧洲一些国家以及我国都在进行一些研究项目,包括聚焦电子束曝光、原子力显微镜纳米加工技术等,这些加工工艺可以实现分子或原子级的移动,从而可以在硅、砷化镓等电子材料以及石英、陶瓷、金属、非金属材料上加工出纳米级的线条和图形,最终形成所需的纳米级结构,为微电子和微机电系统的发展提供技术支持。

2、超精密加工技术的分类

超精密加工主要包括超精密切削(车、铣)、超精密磨削、超精密研磨(机械研磨、机械化学研磨、研抛、非接触式浮动研磨、弹性发射加工等)以及超精密特种加工(电子束、离子束、等离子加工、激光束加工以及电加工等)以及最新研发的纳米技术。

2.1超精密切削加工

超精密切削加工是采用金刚石刀具在超精密机床上进行超精密切削,可以加工出光洁度极高的镜面。金刚石刀具的优点在于其与有色金属亲和力小,硬度、耐磨性以及导热性都非常优越,且能刃磨得非常锋利,其刃口圆弧半径可小于R 0.01μm,实际应用的一般为R0.05μm,可加工出优于Ra0.01μm的表面粗糙度。此外,超精密切削加工还采用了高精度的基础元部件(如,空气轴承、气浮导轨等)、高精度的定位检测元件(如,光栅、激光检测系统等以及高分辨率的微量进给机构。机床本身采取恒温、防振以及隔振等措施,还要有防止污染工件的装置。机床必须安装在洁净室内。进行超精密切削加工的零件材料必须质地均匀,没有

缺陷。在这种情况下加工无氧铜,表面粗糙度可达Ra0.005μm,且最先用于铜的平面和非球面光学元件的加工,随后,加工材料拓展至有机玻璃、塑料制品(如,照相机的塑料镜片、隐形眼镜镜片等)、陶瓷及复合材料等[3]。

2.2超精密磨削

超精密磨削技术是基于一般精密磨削而发展起来的,是用精确修整过的砂轮在精密磨床上进行的微量磨削加工,金属的去除量可在亚微米级甚至更小,可以达到很高的尺寸精度、形位精度和很低的表面粗糙度值。但磨削加工后,被加工的表面在磨削力及磨削热的作用下金相组织要发生变化,易产生加工硬化、淬火硬化、热应力层、残余应力层和磨削裂纹等缺陷。其加工对象主要是玻璃、陶瓷等硬脆材料[4]。超精密磨削不仅要得到镜面级的表面粗糙度,还要保证能够获得精确的几何形状和尺寸。目前超精密磨削的加工目标是3~5nm的平滑表面,也就是通过磨削加工而不需抛光即可达到要求的表面粗糙度。砂轮的修整技术相当关键。尽管磨削比研磨更能有效地去除物质,但在磨削玻璃或陶瓷时很难获得镜面,主要是由于砂轮粒度太细时,砂轮表面容易被切屑堵塞。日本理化学研究所学者大森整博士发明的电解在线修整(ELID)铸铁纤维结合剂(CIFB)砂轮技术可以很好地解决这个问题。

2.3超精密研磨

超精密研磨包括机械研磨、化学机械研磨、浮动研磨、弹性发射加工以及磁力研磨等加工方法。研磨金刚石车刀除采用机械磨料研磨之外,还采用了离子刻蚀和热化学方法。在研磨中, 研磨盘原来均用高磷铸铁,后来采用高速钢研磨盘。例如:日本东海大学安永畅男教授等提出采用高速回转的高速钢盘与被加工的金刚石在接触和摆动中,通过物理化学作用,不用磨料,高速研磨金刚石车刀,完全突破了传统的研磨途径[5]。超精密研磨可解决大规模集成电路基片的加工和高精度硬磁盘的加工等[6]。其加工出的球面度达0.025μm,表面粗糙度达Ra0.003μm。最近Kim.D.J等针对铸铁结合剂金刚石固着磨料砂轮采用电解加工过程修整法实现磨具修整[7]。这种过程修整法可以在研磨加工过程中控制磨粒锐度,使磨具保持高速研磨能力。采用ELID方法超精密研磨硬质合金和光学玻璃,表面粗糙度Ra分别达到10.7nm,16.7nm。

2.4超精密特种加工

当加工精度要求达到纳米,甚至达到原子单位(原子晶格距离为0.1~0.2nm)时,切削加工方法已不能符合加工精度要求了,这时就需要借助特种加工的方法,即应用化学能、热能、电能或电化学能等,使这些能量超越原子间的结合能,从而去除工件表面的部分原子间的附着、结合或晶格变形,以达到超精密加工的目的。

2.4.1电子束加工

电子束加工是指在真空中将阴极(电子枪)不断发射出来的负电子向正极加速,并聚焦成极细的、能量密度极高的束流,高速运动的电子撞击到工件表面,动能转化为势能,使材料熔化、气化并在真空中被抽走。控制电子束的强弱和偏转方向,配合工作台XY方向的数控位移,可实现打孔、成型切割、刻蚀、光刻曝光等工艺。集成电路制造中广泛采用波长比可见光短得多的电子束光刻曝光,所以可以达到高达0.25μm的线条图形分辨串。实验表明,经大面积电子束照射后,钛合金的表面粗糙度从铣削后的Ra10μm下降为Ra0.7μm ,且抗腐蚀性能得到了显著的提高。这种具有良好表面粗糙度和抗腐蚀性能的钛合金可应用于医疗行业,如制造人工关节和人工骨头等[8]。电子束焊接技术的应用越来越广泛,其还广泛应用于高精度掩模、微机电器件制造、新型IC研发等诸多方面,因此正逐步成

为半导体器件和微细加工的关键技术之一[9],现在对电子束焊接设备的需求量也越来越大。

2.4.2离子束加工

离子束加工是指在真空将离子源产生的带正电荷且质量比电子大数千万倍的离子加速(加速以后可以获得更大的动能),然后聚焦使之撞击工件表面。它是靠微观的机械撞击能量而不是靠动能转化为热能来加工的。离子束加工可用于表面刻蚀、超净清洗,实现原子、分子级的切削加工。根据所利用的物理效应和达到的目的,可分为离子束溅射去除加工、离子束溅射镀膜加工、离子束注入加工和离子束曝光等几种[10]。

2.4.3激光束加工

由激光发生器将高能量密度的激光进一步聚焦后照射到工件表面,光能被吸收瞬时转化为热能。主要有激光制孔、激光精密切割、激光焊接、激光表面强化、激光快速成型技术、加工精微防伪标志等。基于激光束具有单色性好、能量密度高、空间控制性和时间控制性良好等一系列优点,激光加工的行业包括汽车制造、航天航空、齿轮行业、铁路机车制造业、开头行业、电子、化工、包装医疗设备等,我国激光加工市场前景广阔,预计平均每年以20%~30%的速率递增[11]。激光技术将是21世纪高新技术发展的主要标志和现代信息社会光电子技术的支柱之一,其发展将使人类在认识和改造自然力上达到一个新的高度,导致人类生活和社会物质文明以及科学技术的巨大变革。

2.4.4微细电火花加工

电火花加工是指在绝缘的工作液中通过工具电极和工件间脉冲火花放电产生的瞬时局部高温来熔化和气化而有控制地去除工件材料,以及使材料变形、改变性能或被镀覆的特种加工。微细电火花加工的特点是每个脉冲的放电能量很小,工作液循环困难,稳定的放电间隙范围小等[12]。由于加工过程中工具与工件间没有宏观的切削力,只要精密地控制单个脉冲放电能量并配合精密微量进给就可实现极微细的金属材料的去除,可加工微细轴、孔、窄缝、平面及曲面等。

3、超精密加工技术的作用

3.1超精密加工技术可促进现代基础科学和应用基础科学的发展

量子力学和相对论是近代物理学和其他基础科学的核心,20世纪30年代已经建立,但是其中一些理论还未得到实验验证,例如爱因斯坦的广义相对论中的2个预言,即重力场弯曲效应和惯性系拖曳效应,这些理论在天文学、空间探测等方面有着重要的指导意义。例如航天器围绕地球旋转,在牛顿的宇宙模型中指针会指向同一方向,而在爱因斯坦的模型中,由于地球对周围时空的扭曲和拖拽,陀螺仪指针会倾斜一个非常小的角度(一年内指针仅移动6000mas),这就是所谓的重力场弯曲效应和惯性系拖曳效应,这两种现象十分微弱,通过实验室验证是不可想象的。美国航空航天局(NASA)为了验证爱因斯坦广义相对论的上述2项预言从1963年开始计划,但直到2004年才发射了一个利用高精度陀螺仪的测量装置——引力探测器,用于检测地球重力对周围时空影响。其中陀螺仪的核心部件——石英转子(φ38.1mm)的真球度达到了7.6nm,若将该转子放大到地球的尺寸,要求地球表面波峰波谷误差仅为 2.4m,如此高的加工精度可以说将超精密加工技术发挥到了极限,最终陀螺精度达到了0.001角秒/年。20世纪80年代以前太赫兹(THz)波段(介于微波与红外之间)的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器的限制。随着 80 年代一系列新技术、新材料、新工艺的发展,使得太赫兹技术得以迅速发展。近年来由于太赫兹

的独特性能将给宽带通信、雷达、电子对抗、电磁武器、天文学、医学成像、无损检测、安全检查等领域带来了深远的影响,太赫兹基础及应用基础技术已经逐渐成为研究热点。太赫兹技术在航空领域的重要应用是太赫兹雷达可用于隐身飞行器探测,其中束控元件是太赫兹探测系统的重要功能部件,其透镜主要采用硅基远红外透射材料,反射元件面形有抛物面、椭球面、离轴非球面以及赋形曲面等,采用铝等金属基材料。我国正研的主反射元件尺寸已有φ300mm、φ800mm、φ1000mm等,面形精度要求已要求达微米级,表面质量为镜面,并且要求零件精度质量具有良好的稳定性。我国中期发展的太赫兹系统拟采用φ4~5m的主镜,远期主镜直径将达30m或更大,太赫兹系统束控主反射元件面形也将采用主动控制的拼接式平面、离轴非球面等形状。基于上述要求,需要大型单点金刚石超精密车削设备、复杂曲面超精密加工工艺技术、大型复杂曲面的高精度三坐标测量技术等支撑[13]。

3.2超精密加工技术是现代高新技术产业发展的基础

国家目前非常重视交通、能源、信息、生物医药等高新技术产业的发展,但是目前这些产业的核心技术国内还没有掌握,关键设备或零部件仍然依赖进口。如高性能轴承是飞机发动机、高铁、风电等产品的关键,但由于目前国内材料、工艺等方面的原因,其使用寿命远远不能满足要求,其他一些承受高频载荷的部件同样面临这些问题。近年国内开始研究的抗疲劳制造技术则是以被加工件的抗疲劳强度及疲劳寿命为判据,其中的核心技术之一是精密超精密加工工艺,可提高表面质量、改善表面应力状态,从而提高零件的疲劳寿命,这不仅要求具有超精密加工设备及工艺,而且还需研制材料及零部件的疲劳寿命精密测试设备。新能源产业(如太阳能)国内虽然发展很快,但核心技术还是掌握在国外,如硅片切割、研磨、抛光、刻划设备,高倍聚光透镜模具、超精密加工设备等与国外还存在较大差距。信息产业的发展推动了芯片、存储等发展,随着存储密度越来越大,对磁盘的表面粗糙度以及相应的读写设备的悬浮高度及磁头的上下跳动量的要求大大提高,目前国外已经可以把磁头、磁盘的相对间隙最高控制在1nm左右。在医疗器械行业,超精密加工技术也起着很大的作用,人造关节采用钛合金或其他贵金属材料,这些高精度零件的表面处理对清洁度、光整度和表面粗糙度具有极高要求,需要进行超精密研抛,形状要根据个人的身体结构定制,国外价格昂贵,而国内无论从使用寿命和安全性等方面存在较大差距。其他如微型内窥镜中的微小透镜及器件、心脏搭桥及血管扩张器、医用微注射头阵列等国内现在还无法生产。

3.3超精密加工技术是现代高技术战争的重要技术支撑

超精密加工技术对国防武器装备的发展具有重大影响,掌握超精密加工技术并具备相应的生产能力是国防工业涉入现代国防科技和武器装备尖端技术领域的必要手段,20世纪90年代初,美国就将其列为21项美国国防关键技术之一。超精密加工技术的发展对飞机、导弹等惯性器件的发展做出了突出贡献。美国1962 年就研制成功了激光陀螺,但因未突破硬脆材料的陀螺腔体和反射镜的超精密加工技术,使激光陀螺在飞机上的应用整整延迟了20年,超精密车削、磨削、研磨以及离子束抛光等工艺的相继突破才使激光陀螺投入了批生产,并将陀螺性能指标提高了2个数量级[14]。半球谐振陀螺仪中半球谐振子采用超精密振动切削工艺达到了精度和性能指标。激光加工和离子刻蚀等超精密加工技术是制造硅微型惯性传感器的重要工艺,这将对飞机和导弹惯性系统的小型化起重要作用。采用超精密铣削工艺及超精密研抛工艺提高了惯性传感器中挠性件的精度和

尺寸稳定性,促进了航空发动机性能的提升。超精密加工技术使导弹关键元器件的精度和质量产生了飞跃,进而大大提高了导弹的命中率。例如导弹头罩形状由球形向适应空气动力学的复杂形状发展,材料由红外材料向蓝宝石乃金刚石发展,这也对超精密加工设备和超精密加工工艺提出了新的要求。

3.4超精密加工技术是衡量一个国家制造水平高低的重要标志

制造技术不断追求的目标是质量和效率,其中质量就是精度和性能,也就是超精密加工技术水平的评价指标。前面提到美国、日本、德国、瑞士等国家的精密超精密加工技术具有很高的水平,同时这些国家的制造业水平在全球处于绝对领先地位,而我国虽然近年来由于国家和政府的重视及人力物力的投入,制造业已经有了长足的进步,但是目前我国还只能称作制造大国,为了向制造强国转变,必须提高精密超精密加工技术的水平。超精密加工及纳米制造技术体现了一个国家制造业的综合实力。纳米机械加工由于具有效率高、可靠性好、成本低等特点,被认为是最有发展潜力的纳米精度制造方法之一,但由于材料去除是在纳米尺度,传统的加工理论不再完全适用,发展受到了一定的限制。近年来我国科技工作者经过不断努力已经在该领域取得了长足的进步。2013年,世界制造领域的最高学术组织——国际生产工程科学院(CIRP)公布了于2012年8月开展的历时一年的国际精密制造技术对比结果,其微工程工作委员会对通过初选的世界各地11个研究小组提出了具体的对比样件及指标,各研究小组完成指定的样件加工后隐去样件来源信息,由德国物理技术研究院进行测量和评估,主要内容包括加工精度、表面质量、微小尺度、复杂形状等,最终仅有2个研究小组加工试件满足全部5项评价指标,我国天津大学的纳米制造技术研究小组是其中之一,这在一定程度上也反映了我国近年来在这方面的进步。

4、精密超精密加工技术发展趋势

4.1超精密加工技术基础理论和实验还需进一步不断发展

所谓超精密加工技术基础理论,是指在了解并掌握超精密加工过程的基本规律和现象的描述后才能驾驭这一过程,取得预期结果。例如上世纪90年代初,日本学者用金刚石车刀在LLNL的DTM3上加工出最薄的连续切屑的照片,当时认为达到了1nm的切削厚度,已成为世界最高水平,并至今无人突破。那么超精密切削极限尺度是多少、材料此时是如何去除的,此外超精密加工工艺系统在力、热、电、磁、气等多复杂耦合下的作用机理是什么、此时系统的动态特性、动态精度及稳定性如何保证等都需要得到新理论的支持。随着计算机技术的发展,分子动力学仿真技术从20世纪90年代开始在物理、化学、材料学、摩擦学等领域得到了很好的应用,美国、日本等国首先应用该技术研究纳米级机械加工过程,国内从21世纪初在一些高校开始应用分子动力学仿真技术对纳米切削及磨削过程进行研究,可描述原子尺寸、瞬态的切削过程,在一定程度上反映了材料的微观去除机理,但这一切还有待于实验验证[15]。

4.2被加工材料和工艺方法也在不断扩展

钛合金是航空最常用的材料之一,氢作为有害杂质元素对钛合金的使用性能有极其不利的影响,如会引起钛合金氢脆、应力腐蚀及延迟断裂等,但是近年来研究表明通过合理有效地控制渗氢、相变及除氢等过程,获得钛合金组织结构的变化,从而可以改善其加工性能,提高加工表面质量和效率。同样通常认为黑色金属是无法利用天然金刚石进行超精密切削加工的,多年来也一直在进行各种工艺研究,如利用低温流体(液氮或二氧化碳)冷却切削区进行低温冷却车削、采用超声振动切削黑色金属、采用金刚石涂层刀具等,采用离子渗氮和气体渗氮工

艺对模具钢进行处理,但上述方法到目前为止还无法工程化应用。近年来通过离子注入辅助方式改变被加工材料表层的可加工性能,实现硅等硬脆材料复杂形状的高效超精密切削。抗疲劳制造技术的发展为超精密加工技术提出了新的发展方向,超硬材料的精密加工工艺要求控制表层及亚表层的损伤及组织结构、应力状态等参数,如航空发动机轴承材料 M50Ni L 表面处理后硬度超过了HRC70。随着单晶涡轮叶盘和单晶涡轮叶片在航空发动机上的应用,要求被加工材料没有重融层和变质层,从而对精密加工工艺提出了新要求。随着导弹马赫数的增加,要求头罩材料的抗耐磨性提高,已从红外材料向蓝宝石材料头罩乃至金刚石材料发展,形状也从球形向非球面乃至自由曲面发展,对超精密加工设备、工艺及检测技术提出了新的要求。

4.3微纳结构功能表面的超精密加工技术

微结构功能表面具有特定的拓扑形状,结构尺寸一般为10~100μm,面形精度小于0.1μm,其表面微结构具有纹理结构规则、高深宽比、几何特性确定等特点,如凹槽阵列、微透镜阵列、金字塔阵列结构等,这些表面微结构使得元件具有某些特定的功能,可以传递材料的物理、化学性能等,如粘附性、摩擦性、润滑性、耐磨损性,或者具备特定的光学性能等。例如在航空、航天飞行器宏观表面加工出微纳结构形成功能性表面,不仅可以减小飞行器的风阻、摩阻,减小摩擦,还可以避免结冰层形成,提高空气动力学和热力学功能,从而达到增速、增程、降噪等目的,同时表面特定的微结构特征还能起到隐身功能,增强突防能力。在民用方面最典型的例子是游泳运动员的泳衣表面增加了一些微结构,俗称鲨鱼皮泳衣,结果使运动员的成绩有了大幅度的提高,使国际泳联不得不禁止使用这种高科技的泳衣。此外微结构功能表面在光学系统、显示设备、聚光光伏产业、交通标志标牌、照明等领域被广泛应用,如LCD显示器的背光模组的各种光学膜片,背光模组关键件,导光板、扩散板、增光膜等,聚光光伏太阳能CPV系统的菲涅尔透镜,道路标示用微结构光学膜片、新一代 LED 照明用高效配光结构等。在未来零部件设计与制造将会增加一项功能表面结构的设计与制造,通过在零件表面设计和加工不同形状的微结构,从而提高零部件力学、光学、电磁学、升学等功能,这将是微纳制造的重要应用领域,2006年成立的国际纳米制造学会经专家讨论并认同,纳米制造中的核心技术将从目前以 MEMS 技术逐步转向超精密加工技术[16]。

4.4超精密加工开始追求高效

超精密加工技术从发展之初是为了保证一些关键零部件的最终精度,所以当初并不是以加工效率为目标,更多关注的是精度和表面质量,例如一些光学元件最初的加工周期是以“年”为加工周期。但是随着零件尺寸的进一步加工增大和数量的增多,目前对超精密加工的效率也提出了要求。例如为了不断提高观察天体范围和清晰度,需不断加大天文望远镜的口径,这就同样存在天文版的摩尔定律,即每隔若干年,光学望远镜的口径增大一倍,如建于1917年位于美国威尔逊山天文台的 Hooker望远镜的口径为 2.5m,是当年全世界最大的天文望远镜;到1948年被 Hale 望远镜取代,其口径达到了5m;1992年新建成的Keck望远镜的口径达到了10m,目前仍在发挥着巨大的作用。目前正在计划制造的巨大天文望远镜OWL主镜口径达到 100m,有3048块六边形球面反射镜组成,次镜由 216块六边形平面反射镜组成,总重约1~1.5万 t,按照目前现有的加工工艺,可能需要上百年的时间才能完成。此外,激光核聚变点火装置(NIF)需要 7000多块400mm见方的KDP晶体,如果没有高效超精密加工工艺,加工时间也无法想象。

为此需要不断开发新的超精密加工设备和超精密加工工艺来满足高效超精密加工的需求。

4.5超精密加工技术将向极致方向发展

随着科技的进步,对超精密加工技术已经提出了新的要求,如要求极大零件的极高精度、极小零件及特征的极高精度、极复杂环境下的极高精度、极复杂结构的极高精度等。欧洲南方天文台正在研制的超大天文望远镜VLT反射镜为一块直径8.2m、厚200mm的零膨胀玻璃,经过减重后重量仍然达到了21t。法国REOSC 公司负责加工,采用了铣磨、小磨头抛光等加工工艺,加工周期为8~9个月,最终满足了设计要求,目前许多新的超精密加工工艺如应力盘抛光、磁流变抛光、离子束抛光等出现为大镜加工提供了技术支撑。前面提到的微纳结构功能表面结构尺寸小到几个微米,如微惯性传感器中的敏感元件挠性臂特征尺寸为9μm,而其尺寸精度却要求±1μm。美国国家标准计量局研制的纳米三坐标测量机(分子测量机)是实现如何在极复杂环境下的极高精度测量的典型例子,该仪器测量范围50mm×50mm×100μm,精度达到了1nm,对环境要求及其严格,最内层壳温度控制17±0.01℃,次层壳采用主动隔振,高真空层工作环境保持 1.0×10-5Pa,最外层壳用于噪声隔离,最后将整体结构安装在空气弹簧上进行被动隔振。自由曲面光学曲面精度要求高、形状复杂,有的甚至无法用方程表示(如赋值曲面),但由于其具有卓越的光学性能近年来应用范围不断扩大,但自由曲面光学零件的设计、制造及检测等技术还有待于进一步发展。

4.6超精密加工技术将向超精密制造技术发展

超精密加工技术以前往往是用在零件的最终工序或者某几个工序中,但目前一些领域中某些零部件整个制造过程或整个产品的研制过程都要用到超精密技术,包括超精密加工加工、超精密装配调试以及超精密检测等,最典型的例子就是美国的美国国家点火装置(NIF)。为了解决人类的能源危机,各国都在研究新的能源技术,其中利用氘、氚的聚变反应产生巨大能源可供利用,而且不产生任何放射性污染,这就是美国国家点火工程。我国也开始了这方面的研究,被称为神光工程。NIF整个系统约有2个足球场大小,共有192束强激光进入直径10m 的靶室,最终将能量集中在直径为2mm的靶丸上。这就要求激光反射镜的数量极多(7000多片),精度和表面粗糙度极高(否则强激光会烧毁镜片),传输路径调试安装精度要求极高,工作环境控制要求极高。对于直径为2mm的靶丸,壁厚仅为160μm,其中充气小孔的直径为5μm,带有一直径为12μm、深4μm 的沉孔。微孔的加工困难在于其深径比大、变截面,可采用放电加工、飞秒激光加工、聚焦离子束等工艺,或采用原子力显微镜进行超精密加工。系统各路激光的空间几何位置对称性误差要求小于1%、激光到达表面时间一致性误差小于 30fs、激光能量强度一致性误差小于 1% 等。如此复杂高精度的系统无论从组成的零部件加工及装配调试过程时刻都体现了超精密制造技术[17]。

5、结语

综上所述,超精密加工技术是提高机电产品性能、质量、工作寿命和可靠性,以及节材节能的重要途径。精密和超精密加工,是现代机械制造业最主要的发展方向之一,在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。超精密加工技术从发展之初一直面临着不断的挑战。当前精密超精密加工技术在不断研究新理论、新工艺以及新方法的同时,正向着高效、极致等方向发展,并贯穿零部件整个制造过程或整个产品的研制过程,向精密超精密制造技术发展。

超精密加工技术在我国的应用已不再局限于国防尖端和航空航天等少数部门,它已扩展到了国民经济的许多领域,应用规模也有较大增长。计算机、现代通信、影视传播等行业,现都需要精密、超精密加工设备,作为其迅速发展的支撑条件。计算机磁盘、录像机磁头、激光打印机的多面棱镜、复印机的感光筒等零部件的超精密加工,采用的都是高效的大批量自动化生产方式。超精密加工方法显得越来越重要,超精密加工技术已成为目前高科技技术领域的基础,提高超精密加工的精度已成为目前迫在眉睫的问题。我国的超精密加工技术虽然有所发展,但与发达国家相比还有很大差距。所以我国应该吸取国外的最新尖端技术,来开展与之相关的理论和实验研究,把国外的技术用于自己的发展,使用一些复合加工技术,使我国的超精密加工技术与国际接轨,甚至在国际上能达到领先水平。

我国的制造业发展已进入了高速发展阶段,随着我国精密超精密技术的不断发展和进步,中国民营企业已具备足够的经济实力来使企业迈向现代化,先进设备的引进和大量专业人才的涌入使许多沿海地区的制造业水平迅速提高。随着国家决策的科学化、民主化进程不断深入,相信我国的制造业会更快速、更健康地发展,必将实现从制造大国向制造强国的飞跃。

【参考文献】:

[1] 李圣怡,戴一帆.超精密加工技术的发展与对策[J].中国机械工

程,2000(8):841- 844.

[2] 国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告

(2006~2010年).机械与制造科学[M].北京:科学出版社,2006.

[3] ByrneG, DornfeldD, DenkenaB. Advancing cutting

technology[J].Ann.CIRP,2003, 52(2):483- 507.

[4] 张彩芬.现代精密和超精密加工技术及发展[J].科技咨询导

报,2006(20):10.

[5] 吴敏镜.超精密加工的技术基础和创新[J].超精密加工技术,2006(5):7-

10.

[6] 袁巨龙,王志伟,文东辉,等.超精密加工现状综述[J].机械工程

报,2007,43(1):35- 48.

[7] Kim D J.A study on the development of in-process dressing lap-ping

wheel and its evaluation of machining characteristics[J]. Journal of material processing technology, 2005(26): 211- 218.

[8] Akira Okada, Yoshi yukiUno, Nori yasu Yabushita, et al. High Efficient

surface finishing of bio-titanium alloy by large area lectron beam irradiation[J].Journal of materials processing technology,2004(149):506- 511.

[9] Chang TH P. Electro-beam micro columns for lithography and related

applications[J]. J VacSciTechnol,1996, B 14(6):3774.

[10] 赵葛霄,李扬,郑莹娜.离子束去除加工原理探讨[J].电加工与模

具,2001(1):26- 28.

[11] 王又良.激光加工的最新应用领域[J].应用激光, 2005, 25(5):329- 332.

[12] 刘龙,范悦.微细电火花加工的技术分析[J].吉林工程技术师范学院学

报,2007,23(9):35~36.

[13] 吴云锋,陈洁.精密超精密加工技术综述[J].机械加工工艺与装

备,2007(6):38~40.

[14] 王先逵.精密及超精密加工.机械加工手册第2卷第14章[M].北京:机械工

业出版社,1991

[15] 袁哲俊,周明.加速发展我国的精密和超精密加工技术[J].工具技术,1994(2).

[16] 刘贺云,柳世传.精密加工技术[M].武汉:华中理工大学出版社,1991.

[17] 袁哲俊.精密和超精密加工技术的新进展[J].工具技术,2006(3).

精密和超精密加工的应用和发展趋势

精密和超精密加工的应用和发展趋势 [摘要]本文以精密和超精密加工为研究对象,对世界上精密和超精密加工的应用和发展趋,势进行了分析和阐释,结合我国目前发展状况,提出今后努力方向和发展目标。 【关键词】精密和超精密加工;精度;发展趋势 精密和超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。 美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在20世纪50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件¢2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。 在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。 日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,是以民品应用为主要对象。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。 我国的精密、超精密加工技术在20世纪70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超

精密和超精密加工论文

精密和超精密加工论文 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,

精密和超精密加工技术复习思考题答案

精密和超精密加工技术复习思考题答案 第一章 1.试述精密和超精密加工技术对发展国防和尖端技术的重要意义。 答:超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。制造惯性仪表,需要有超精密加工技术和相应的设备。 尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。 2.从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工。 答:通常将加工精度在0.1-lμm,加工表面粗糙度在Ra 0.02-0.1μm之间的加工方法称为精密加工。而将加工精度高于0.1μm,加工表面粗糙度小于Ra 0.01μm的加工方法称为超精密加工。 3.精密和超精密加工现在包括哪些领域。 答:精密和超精密加工目前包含三个领域: 1)超精密切削,如超精密金刚石刀具切削,可加工各种镜面。它成功地解决了高精度陀螺仪,激光反射镜和某些大型反射镜的加工。 2)精密和超精密磨削研磨。例如解决了大规模集成电路基片的加工和高精度硬磁盘等的加工。 3)精密特种加工。如电子束,离子束加工。使美国超大规模集成电路线宽达到0.1μm。 4.试展望精密和超精密加工技术的发展。 答:精密和超精密加工的发展分为两大方面:一是高密度高能量的粒子束加工的研究和开发;另一方面是以三维曲面加工为主的高性能的超精密机械加工技术以及作为配套的三维超精密检测技术和加工环境的控制技术。 5.我国的精密和超精密加工技术和发达国家相比情况如何。 答:我国当前某些精密产品尚靠进口,有些精密产品靠老工人于艺,因而废品率极高,例如现在生产的某种高精度惯性仪表,从十几台甚至几十台中才能挑选出一台合格品。磁盘生产质量尚未完全过关,激光打印机的多面棱镜尚不能生产。1996年我国进口精密机床价值达32亿多美元(主要是精密机床和数控机床)。相当于同年我国机床的总产值,某些大型精密机械和仪器国外还对我们禁运。这些都说明我国必须大力发展精密和高精密加工技术。 6.我目要发展精密和超精密加工技术,应重点发展哪些方面的内容。

超精密加工技术

精密加工 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。 精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。 精密及超精密加工-分类 1、传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μ;m,最好可到Ra0.025μ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 e.抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。手工或机械抛光加工后工件表面粗糙度Ra≤0.05μ;m,可用于平面、柱面、曲面及模具型腔的抛光加工。超声波抛光加工精度0.01~0.02μ;m,表面粗糙度Ra0.1μ;m。化学抛光加工的表面粗糙度一般为Ra≤0.2μ;m。电化学抛光可提高到Ra0.1~0.08μm。 2、精密加工包括微细加工和超微细加工、光整加工等加工技术。 微细加工技术是指制造微小尺寸零件的加工技术; 超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。 光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高加工精度,其典型加工方法有珩磨、研磨、超精加工及无屑加工等。实际上,这些加工方法不仅能提高表面质量,而且可以提高加工精度。精整加工是近年来提出的一个新的名词术语,它与光整加工是对应的,是指既要降低表面粗糙度和提高表面层力学机械性质,又要提高加工精度(包括尺寸、形状、位置精度)的加工方法。 3、超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。当前的超精密加工是指

超融合技术白皮书超融合架构

深信服超融合架构技术白皮 书 深信服科技有限公司 2015年10月 版权声明 深圳市深信服电子科技有限公司版权所有,并保留对本文档及本声明的最终解释权和修改权。 本文档中出现的任何文字叙述、文档格式、插图、照片、方法、过程等内容,除另有特别注明外,其着作权或其它相关权利均属于深圳市深信服电子科技有限公司。未经深圳市深信服电子科技有限公司书面同意,任何人不得以任何方式或形式对本文档内的任何部分进行复制、摘录、备份、修改、传播、翻译成其他语言、将其全部或部分用于商业用途。

免责条款 本文档仅用于为最终用户提供信息,其内容如有更改,恕不另行通知。 深圳市深信服电子科技有限公司在编写本文档的时候已尽最大努力保证其内容准确可靠,但深圳市深信服电子科技有限公司不对本文档中的遗漏、不准确、或错误导致的损失和损害承担责任。 信息反馈 如果您有任何宝贵意见,请反馈至: 信箱:广东省深圳市学苑大道1001号南山智园A1栋 邮编:518055 缩写和约定 修订记录

目录 深信服超融合架构技术白皮书 1前言................................................................. 1.1IT时代的变革............................................................................................................................ 1.2白皮书总览 ................................................................................................................................ 2深信服超融合技术架构................................................. 2.1超融合架构概述 ......................................................................................................................... 2.1.1超融合架构的定义......................................................... 2.2深信服超融合架构组成模块....................................................................................................... 2.2.1系统总体架构............................................................. 2.3aSV计算虚拟化平台 ................................................................................................................. 2.3.1概述 .................................................................... 2.3.2aSV技术原理 ............................................................ 2.3.3aSV的技术特性........................................................... 2.3.4aSV的特色技术........................................................... 2.4aSAN存储虚拟化 ..................................................................................................................... 2.4.1存储虚拟化概述........................................................... 2.4.2aSAN技术原理........................................................... 2.4.3aSAN存储数据可靠性保障................................................. 2.4.4深信服aSAN功能特性 .................................................... 2.5aNet网络虚拟化....................................................................................................................... 2.5.1网络虚拟化概述........................................................... 2.5.2aNET网络虚拟化技术原理 ................................................. 2.5.3aNet功能特性 ........................................................... 2.5.4深信服aNet的特色技术...................................................

超精密加工技术论文

超精密加工技术简介论文 学校:XXXXX 学院:XXXX 班级:XXXXX 专业:XXXXX 姓名:XXXX 学号:XXXX 指导教师:XXX

目录 目录 .......................................................................................................................................... - 2 - 一、概述................................................................................................................... - 1 - 1、超精密加工的内涵...................................................................................... - 1 - 2.、发展超精密加工技术的重要性................................................................. - 1 - 二、超精密加工所涉及的技术范围....................................................................... - 2 - 三、超精密切削加工............................................................................................... - 3 - 1、超精密切削对刀具的要求.......................................................................... - 3 - 2、金刚石刀具的性能特征.............................................................................. - 3 - 3、超精密切削时的最小切削厚度.................................................................. - 3 - 四、超精密磨削加工............................................................................................... - 4 - 1、超精密磨削砂轮.......................................................................................... - 4 - 2、超精密磨削砂轮的修整.............................................................................. - 4 - 3、磨削速度和磨削液...................................................................................... - 5 - 五、超精密加工的设备........................................................................................... - 5 - 六、超精密加工的支撑环境................................................................................... - 6 - 1、净化的空气环境.......................................................................................... - 6 - 2、恒定的温度环境.......................................................................................... - 6 - 3、较好的抗振动干扰环境.............................................................................. - 7 - 七、超精密加工的运用领域................................................................................... - 7 - 八、超精密加工的现状及未来发展....................................................................... - 7 - 1、超精密加工的现状...................................................................................... - 7 - 2、超精密加工的发展前景.............................................................................. - 8 - 总结:....................................................................................................................... - 9 - 参考文献:.....................................................................................错误!未定义书签。

超精密加工技术的发展与展望资料

精密与特种加工技术 结课论文 题目:超精密加工技术的发展与展望指导教师:沈浩 学院:机电工程学院 专业:机械工程 姓名:司皇腾 学号:152085201020

超精密加工技术的发展与展望 摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。环保也是机械制造业发展的必然趋势。 关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工 【引言】 精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。 通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。现阶段通常把被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术称为超精密加工技术[1],也可以理解为超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程,其精度从微米到亚微米,乃至纳米。超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向[2]。 超精密加工技术综合应用了机械技术发展的新成果及现代光电技术、计算机技术、测量技术和传感技术等先进技术。同时,作为现代高科技的基础技术和重要组成部分,它推动着现代机械、光学、半导体、传感技术、电子、测量技术以及材料科学的发展进步。超精密加工在现代武器和一些尖端产品制造中具有举足轻重的地位,是其它一些加工方法无可替代的,它不仅可以应用于国防,而且可以广泛地应用于比较高端的民用产品中,是衡量一个国家科学技术发展水平的重要标志。 1、超精密加工技术的发展历史 精密超精密加工技术的起源从一定意义上可以上溯到原始社会:当原始人类学会了制作具有一定形状且锋利的石器工具时,可以认为出现了最原始的手工研

2018年超融合技术市场现状与发展前景分析报告

超融合技术市场现状与发展前景分析报告

正文目录 一、超融合架构简介 (6) 二、传统服务器集群的架构形成多种瓶颈,超融合技术驱动IT基础架构达标互联网规模化 (7) 2.1大数据、云计算市场高速增长,为超融合市场高速增长奠定坚实基础 (7) 2.2 传统IT基础架构的瓶颈和问题 (8) 2.3 虚拟化、云计算发展令企业面临新问题和更复杂的抉择 (9) 2.4超融合技术使企业基础设施拥有超大型互联网公司的技术优势 (10) 2.5 替代现有IT基础架构趋势显著,市场空间广阔 (14) 2.6 全球著名企业纷纷加入 (16) 三、超融合是IT基础架构领域从设备到管理、运维市场的颠覆力量 (19) 3.1 现有存储、服务器、虚拟平台软件的厂商受到冲击 (19) 3.2 超融合技术的易用性使得数据中心运维企业同样受到冲击 (20) 四、超融合技术在国内尚处于发展初期,有望成为蓝海 (21) 4.1 IDC产业成超融合替代重点,未来千亿量级空间可期 (22) 4.2 国内名列前茅的超融合技术、解决方案企业 (23) 五、投资建议 (26) 六、风险提示 (28)

图表目录 图表1超融合架构的发展历程 (6) 图表2全球大数据产业市场规模2014-2020年间CAGR高达49% (7) 图表3我国大数据产业市场规模2014-2020年间CAGR高达53% (7) 图表6我国云计算市场规模2013-2016年间CAGR为32% (8) 图表72013-2016年我国私有云市场在我国云计算市场占比均超过70% (8) 图表8传统体系架构下的SAN存储 (9) 图表9传统SAN存储遭遇I/O瓶颈 (9) 图表10企业在抉择是否采用虚拟化、私有云时纠结的主要因素 (10) 图表11企业使用桌面虚拟化和企业级应用虚拟化时面临的挑战 (10) 图表12超大型互联网公司数据中心超融合方案的理念 (11) 图表13Nutanix超融合基础架构(HCI) (12) 图表14华为FushionCube超融合服务器 (12) 图表15Nutanix分布式存储池的结构及企业级数据和存储功能 (13) 图表16Nutanix产品架构 (13) 图表17传统IT架构、云计算架构和超融合架构云的功能比较 (14) 图表18Gartner 2015年发布的存储技术炒作周期 (14) 图表192012-2017年的超融合架构和Server SAN市场空间广阔 (15) 图表20全球超融合市场规模高速增长 (15) 图表212014年IDC魔力象限 (16) 图表222016年Gartner魔力象限 (16) 图表23EMC VxRail (17) 图表24HPE Hyper Converged 380 (17) 图表25Nutanix (18) 图表26VMware Virtual SAN (19) 图表27超融合系统的软硬件体系覆盖了数据中心中设备到平台软件的所有层面 (20) 图表28数据中心体系的沿革和代表厂商 (20) 图表29超融合系统的系统规划、实施、优化的服务周期从月、天下降到分钟数量级 (21) 图表30超融合系统带来的全方位的系统和应用管理服务 (21) 图表31H3C在我国超融合市场占有率排名第一 (22) 图表322014-2019年我国HCI市场规模及增速 (22) 图表33我国互联网数据中心市场规模高速增长 (23) 图表34联想ThinkCloudAIO一体机 (24) 图表35华三通信UIS超融合解决方案示意图 (24)

浅析超精密加工机床现状及展望

浅析超精密加工机床现状及展望 张建锋学号:11309017 (汕头大学机械工程学院广东) 摘要:本文主要讨论超精密加工以及加工机床的发展历程、国内外现状、关键技术要点以及展望。通过对超精密加工机床的现状和难点分析,总结了未来超精密加工机床的发展趋势,并且具体给出了超精密加工机床的重点需要突破革新的要点和对策。 关键字:超精密加工、超精密加工机床、精度、效率。 0 前言 超精密加工技术是20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的一种加工技术。超精密加工技术是现代制造技术之一,它与传统加工在加工方法、加工精度等方面有着本质的区别,是零件加工精度和质量的飞跃。超精密加工是世界科技发展的重要前沿领域,主要包含有超精密制造、超精密检测、超精密环境控制及其各类辅助研究分支。大部分仪器系统和设备都是通过机床加工出来的,如隐形眼镜就是用超精密数控车床加工而成的。目前隐形眼镜的加工工艺主要有三种:分别是旋转成型工艺、切削成型工艺和模压成型工艺。计算机硬盘驱动器、光盘和复印机等高技术产品的很多精密零件都是用超精密加工手段制成。当现有加工设备不能满足零件加工要求时,必然要设计新设备,这就是我们经常提起的超精密机床的研究,而超精密加工机床的结构设计是其中最关键的技术之一。一个高精密机床的设计不仅仅是机械部门一个单元能完成的,它受到材料、物理、设计和工艺水平等多个环节和整个系统的综合影响。本文主要从超精密加工的起源、内涵、影响因素、研究方向和对策等方面来阐述超精密加工机床结构。 1 超精密加工相关知识概述 超精密加工目前尚没有统一的定义,在不同历史时期,不同的科学技术发展水平的情况下,有不同的理解。通常我们认为一定尺寸的被加工零件的尺寸精度和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术为超精密

惠普超融合一体机技术方案

惠普超融合一体机技术方案 白鸽学吧 惠普SS100超融合一体机 技术响应方案 第 1 页 白鸽学吧 1. 项目背景 由于业务发展客户需要对现有IT系统进行扩容,考虑到云计算可以大大提升IT 资源利用率,提高业务系统可用性,客户原来计划使用“2台X86服务器+MSA存储+VMware ”组建云平台,幵把域控,杀毒,补丁服务器,文件共享服务器,门锁系统,人事系统,会员系统等8-10个应用,均为win2008,迁移到云平台,系统架构如下: 第 2 页

白鸽学吧 该架构使用VMWare 搭建虚拟化平台,使用MSA存储设备作为共享存储。该架构有以下一些缺点: , 存储设备是整个系统癿单点,如果这个存储设备发生故障,那么整 个虚拟机环境就会完全瘫掉。 , 这个架构是“伪高可用”,vmware 采用主-从,master-slave,架 构,vcenter 是整个系统癿管理中心,当vcenter所在物理机宕机戒 vcenter自身发生故障时,用户将不能管理整个云环境,例如无法新 建/删除云主机等,,除非搭建vcenter HA,需要购买,. , 目前推荐使用癿是VMware vSphere 6 Essentials Plus Kit for 3 hosts(Max 2 processors per host) 最多支持3个节点,虽然当前价 格幵不是徆高,未来系统扩容如果超过3个节点,需要购买 vSphere 标准版,费用就会大大增加; , 使用MSA 存储阵列采购成本较高,未来需要维护X86服务器和存储 设备,扩容和运维成本较高; 该方案配置如下: 数量方案组件 HP ProLiant DL388 Gen9机架服务器; 2 HP DL380 Gen9 Intel Xeon E5-2620v3 (2.4GHz/6-core/15MB/85W) Processor Kit 2 HP 16GB (1x16GB) Dual Rank x4 DDR4-2133 CAS-15-15-15 Registered Memory Kit 6 HP DL380 Gen9 Universal Media Bay Kit 2 HP 9.5mm SATA DVD-ROM JackBlack Gen9 Optical Drive 2 HP 300GB 6G SAS 10K rpm SFF (2.5-inch) SC Enterprise 3yr Warranty Hard Drive 4 HP 800W Flex Slot Platinum Hot Plug Power Supply

超融合:架构演变和技术发展

超融合:架构演变和技术发展 开篇推荐: ?如何学习微服务大规模设计? (点击文字链接可阅读) 1、超融合:软件定义一切趋势下的诱人组合 超融合是以虚拟化为核心,将计算、存储、网络等虚拟资源融合到一台标准x86 服务器中形成基本架构单元,通过一整套虚拟化软件,实现存储、计算、网络等基础功能的虚拟化,从而使购买者到手不需要进行任何硬件的配置就可以直接使用。 “超”特指虚拟化,对应虚拟化计算架构。这一概念最早源自Nutanix 等存储初创厂商将Google/Facebook 等互联网厂商采用的计算存储融合架构用于虚拟化环境,为企业客户提供一种基于X86 硬件平台的计算存储融合产品或解决方案。超融合架构中最根本的变化是存储,由原先的集中共享式存储(SAN、NAS)转向软件定义存储,特别是分布式存储(如Object、Block、File 存储)。 “融合”是指计算和存储部署在同一个节点上,相当于多个组件部署在一个系统中,同时提供计算和存储能力。物理

融合系统中,计算和存储仍然可以是两个独立的组件,没有直接的相互依赖关系。超融合则重点以虚拟化计算为中心,计算和存储紧密相关,存储由虚拟机而非物理机 CVM(Controller VM)来控制并将分散的存储资源形成统一的存储池,而后再提供给Hypervisor 用于创建应用虚拟机。 超融合已从1.0 阶段发展至3.0 阶段,服务云平台化趋势明显,应用场景不断丰富。超融合1.0,特点是简单的硬件堆砌,将服务器、存储、网络设备打包进一个“盒子” 中;超融合2.0,其特点则是软件堆砌,一般是机架式服务器+分布式文件系统+第三方虚拟化+第三方云平台,具有更多的软件功能。 在1.0 和2.0 阶段,超融合和云之间仍旧有着“一步之遥”,并不能称之为“开箱即用”的云就绪系统,超融合步入3.0 阶段,呈现以下两个特点:

《精密与超精密加工技术》知识点总结

《精密与超精密加工技术》知识点总结 1.加工的定义:改变原材料、毛坯或半成品的形状、尺寸及表面状态,使之符合规定要求的各种工作的统称。规定要求:加工精度和表面质量。 2.加工精度:是指零件在加工以后的几何参数(尺寸、形状、位置)与图纸规定的理想零件的几何参数相符合的程度。符合程度越高,加工精度则越高。 3.表面质量:指已加工表面粗糙度、残余应力及加工硬化。 4.精密加工定义:是指在一定时期,加工精度和表面质量达到较高程度的加工技术(工艺)。 5.超精密加工:是指在一定时期,加工精度和表面质量达到最高程度的加工技术(工艺)。 6.加工的划分普通加工(一般加工)、精密加工和超精密加工。普通加工:加工精度在1μm 以上(粗加工IT13~IT9、半精加工IT8~IT7、精加工IT6~IT5),粗糙度Ra0.1-0.8μm。加工方法:车、铣、刨、磨等。适用于:普通机械(汽车、拖拉机、机床)制造等。 精密加工:加工精度在1~0.1μm ,粗糙度Ra0.1μm 以下(一般Ra0.1~0.01μm )的加工方法。加工方法:车削、磨削、研磨及特种加工。适用于:精密机床、精密测量仪器等中的关键零件的制造。 超精密加工:加工精度在0.1~0.01μm ,粗糙度小于Ra0.01μm(Ra0.01~Ra0.001μm)的加工方法。 加工方法:金刚石刀具超精密切削、超精密磨削、超精密特种加工。适用于:精密元件的制造、计量标准元件、集成电路等的制造。 7.精密加工影响因素 8.切削、磨削加工:精密切削和磨削、超精密切削与磨削。 9.特种加工:是指一些利用热、声、光、电、磁、原子、化学等能源的物理的,化学的非传统加工方法。 10.精密加工和超精密加工的发展趋势:向高精度方向发展、向大型化,微型化方向发展、向加工检测一体化发展、研究新型超精密加工方法的机理、新材料的研究。 11.精密加工和超精密加工的特点:形成了系统工程它是一门多学科的综合高级技术;它与特种加工关系密切传统加工方法与非传统加工方法相结合;加工检测一体化在线检测并进行实时控制、误差补偿;与自动化技术联系密切依靠自动化技术来保证;与产品需求联系紧密加工质量要求高、技术难度大、投资大、必须与具体产品需求相结合。 12.金刚石刀具是超精密切削中的重要关键。金刚石刀具有两个比较重要的问题:一是晶面的选择,因为金刚石晶体各向异性;二是研磨质量,也就是刃口半径,因为影响变形和最小切削厚度。 13.检测技术是超精密切削中一个极为重要的问题。超精密加工要求测量精度比加工精度高一个数量级。 14.超精密加工必须在超稳定的加工环境条件下进行:恒温条件、防振条件。恒温:20℃±(1~0.02)℃恒湿:35﹪~45﹪空气净化、防振等。 15.金刚石分类:天然金刚石和人造金刚石两大类(碳的同素异形体)。 16.金刚石晶体的三种晶面晶体——原子具有规则排列的物体。晶体中各种方位上的原子面 叫晶面。晶体中各种方位上的原子列叫晶向。金刚石晶格中有三种重要晶面,(100),(110),(111)。 17.金刚石晶体具有强烈的各向异性不同晶面,不同方向性能有明显差别;金刚石刀具的晶面选择直接影响切削变形和加工表面质量;金刚石晶体和铝合金、紫铜间的摩擦系数在0.06~0.13之间,而

精密与超精密加工技术

精密与超精密加工技术综述 0 前言 就先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域 1 。前者包括了精密加工、超精密加工、微细加工,以及广为流传的纳米加工,它追求加工上的精度和表面质量的极限,可统称为精密工程;后者包括了设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是提高产品质量的有效方式。两者有密切联系,许多精密和超精密加工要靠自动化技术才能达到预期目标,而不少制造自动化则有赖于精密加工才能达到设计要求。精密工程和制造自动化具有全局性的、决策性的作用,是先进制造技术的支柱。 精密和超精密加工与国防工业有密切关系。导弹是现代战争的重要武器,其命中精度由惯性仪表的精度所决定,因而需要高超的精密和超精密加工设备来制造这种仪表。例如,美国“民兵”型洲际导弹系统的陀螺仪其漂移率为0.03~0.05°/h ,加速度计敏感元件不允许有0.05μm的尘粒,它的命中精度的圆概率误差为500m;MX战略导弹(可装载10个核弹头),由于其制导系统陀螺仪精度比“民兵—Ⅲ”型导弹要高出一个数量级,因而其命中精度的圆概率误差仅为50~150m。对射程4000km的潜射弹道导弹,当潜艇的位置误差对射程偏差的影响为400m、潜艇速度误差对射程偏差的影响为800m、惯性平台的垂直对准精度对射程偏差的影响为400m时,要求惯性导航的陀螺仪的漂移精度为0.001°/h、航向精度在1′以上、10小时运行的定位精度为0.4~0.7海里,因此,陀螺元件的加工精度必须达到亚微米级,表面粗糙度达到Ra0.012~0.008μm。由此可知,惯性仪表的制造精度十分关键。如1kg重的陀螺转子,其质量中心偏离其对称轴为0.5nm时,就会造成100m的射程误差和50m的轨道误差;激光陀螺的平面反射镜的平面度为0.03~ 0.06μm ,表面粗糙度要求为Ra0.012μm以上;红外制导的导弹,其红外探测器中接受红外线的反射镜,其表面粗糙度要求达到Ra0.015~0.01μm[2]。 航天、航空工业中,人造卫星、航天飞机、民用客机等,在制造中都有大量的精密和超精密加工的需求,如人造卫星用的姿态轴承和遥测部件对观测性能影响很大。该轴承为真空无润滑轴承,其孔和轴的表面粗糙度要求为Ry0.01μm,即1nm,其圆度和圆柱度均要求纳米级精度。被送入太空的哈勃望远镜(HST),可摄取亿万千米远的星球的图像,为了加工该望远镜中直径为2.4m、重达900kg的大型反光镜,专门研制了一台形状精度为0.01μm的加工光学玻璃的六轴CNC研磨抛光机。据英国Rolls-Royce公司报道,若将飞机发动机转子叶片的加工度,由60μm提高到12μm、表面粗糙度由Ra0.5μm减少到0.2μm,发动机的加速效率将从89%提高到94%;齿轮的齿形和齿距误差若能从目前的3~6μm,降低到1μm,则其单位重量所能传递的扭距可提高近1倍。 当前,微型卫星、微型飞机、超大规模集成电路的发展十分迅猛,涉及微细加工技术、纳米加工技术和微型机电系统(MEMS)等已形成微型机械制造。这些技术都在精密和超精密加工范畴内,与计算机工业、国防工业的发展直接相关。 1 精密和超精密加工的技术内涵 精密加工和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工三个阶段。由于生产技术的不断发展,划分的界限将逐渐向前推移,过去的精密加工对今天来说已是普通加工,因此,其划分的界限是相对的,且在具体数值上至今没有固定。 1.1 精密加工和超精密加工的范畴 当前,精密加工是指加工精度为1~0.1μm、表面粗糙度为Ra0.1~0.025μm的加工技术;超精密加工是指加工精度高于0.1μm、表面粗糙度Ra小于0.025μm的加工技术,因此,超精密加工又称之为亚微米级加工。但是,目前超精密加工已进入纳米级精度阶段,故出现了纳米加工及其相应的技术 从精密加工和超精密加工的范畴来看,它应该包括微细加工、超微细加工、光整加工、精整加工等加工技术。 微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是

相关主题
文本预览
相关文档 最新文档