当前位置:文档之家› 页面淘汰算法课程设计

页面淘汰算法课程设计

页面淘汰算法课程设计
页面淘汰算法课程设计

****学院

计算机科学系

课程设计报告

设计名称:软件课程设计

设计题目:页面置换算法模拟程序学生学号:****

专业班级:

学生姓名:

学生成绩:

指导教师(职称):

课题工作时间:

摘要

操作系统(英语;Operating System,简称OS)是一管理电脑硬件与软件资源的程序,同时也是计算机系统的内核与基石。操作系统身负诸如管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本事务。操作系统是管理计算机系统的全部硬件资源包括软件资源及数据资源;控制程序运行;改善人机界面;为其它应用软件提供支持等,使计算机系统所有资源最大限度地发挥作用,为用户提供方便的、有效的、友善的服务界面。操作系统是一个庞大的管理控制程序,大致包括5个方面的管理功能:进程与处理机管理、作业管理、存储管理、设备管理、文件管理。

在地址映射过程中,若在页面中发现所要访问的页面不再内存中,则产生缺页中断。当发生缺页中断时操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。而用来选择淘汰哪一页的规则叫做页面置换算法(Page-Replacement Algorithms)。

A.关键词:操作系统;OPT页面置换算法; FIFO先进先出的算法;LRR最近最

少使用算;LFR最少访问页面算法;NUR最近最不经常使用算法

Abstract

Operating system (in English; Operating System, referred to as OS) is a computer hardware and software resources management procedures, but also the core and foundation of the computer system. Who are charged with operating systems such as memory management and allocation, supply and demand determine the priority of system resources, control input and output devices, operation and management of network file systems and other basic services. The operating system is managing all the hardware resources of computer systems including software resources and data resources; control program is running; to improve human-machine interface; provide support for other applications, so that computer systems play a role in maximizing all resources to provide users with convenient effective, friendly service interface. Operating system is a huge management control procedures, including the five aspects of general management functions: process and processor management, operations management, storage management, device management, document management.

In the address mapping process, if found to be in the page to access the page no longer in memory, then generate a page fault. When a page fault occurs the operating system must select a page in memory of their out of memory in order to be transferred to the page to make room. The page used to select out what the rules are called page replacement algorithm (Page-Replacement Algorithms).

Keywords:Operating system; First Input First Output; Least Recently Used;OPT; Least Frequently Used;NUR

目录

第一章课题背景 (x)

1.1关于页面置换算法 (x)

第二章设计简介及设计方案论述 (x)

2.1 程序运行平台 (x)

2.2 程序的主要功能 (x)

2.3 XXXX (x)

第三章详细设计 (x)

3.1 XXXX (x)

3.1 XXXX (x)

第四章设计结果及分析 (x)

4.1 XXXX (x)

4.2 XXXX (x)

4.3 XXXX (x)

总结 (x)

致谢 (x)

参考文献 (x)

附录主要程序代码 (x)

第一章课题背景

1.1 关于页面置换算法

1.1.1页面置换算法及其分类

在地址映射过程中,若在页面中发现所要访问的页面不再内存中,则产生缺页中断。当发生缺页中断时操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。而用来选择淘汰哪一页的规则叫做页面置换算法。

常见的置换算法有:

1.最佳置换算法(OPT)(理想置换算法)

2.先进现出置换算法(FIFO):

3.最近最久未使用(LRU)算法

4.Clock置换算法(LRU算法的近似实现)

5.最少使用(LFU)置换算法

6.页面缓冲置换算法

1.1.2关于页面置换算法模拟程序问题的产生

在各种存储器管理方式中,有一个共同的特点,即它们都要求将一个作业全部装入内存方能运行,但是有两种情况:(1)有的作业很大,不能全部装入内存,致使作业无法运行;(2)有大量作业要求运行,但内存容量不足以容纳所有这些作业。而虚拟内存技术正式从逻辑上扩充内存容量,将会解决以上两个问题。

从内存中调出一页程序或数据送磁盘的对换区中,通常,把选择换出的页面的算法称为页面置换算法(Page-Replacement Algorithms)。进而页面置换算法模拟程序能客观的将其工作原理展现在我们面前。

第二章设计简介及设计方案论述

2.1程序运行平台

VC++6.0

具体操作如下:在VC++6.0的环境下准备用时钟函数调用库函数(#include )、取时钟时间并存入t调用库函数(t=time(NULL))、用时间t初始化随机数发生器调用库函数(srand(t)返回一个1~10之间的随机数(x=rand( )%10+1)。编写三种算法。

2.2程序的主要功能

2.2.1随机产生页面

用随机数方法产生页面走向,页面走向长度为L。

2.2.2 FIFO算法

该算法总是淘汰最先进入内存的页面,既选择在内存中驻留时间最久的页面予以淘汰。

2.2.3 LRU算法

在前面几条指令中使用频繁的页面很可能在后面的几条指令中频繁使用。反过来说,已经很久没有使用的页面很有可能在未来较长的一段时间内不会被用到。这个思想提示了一个可以实现的算法:在缺页发生时,淘汰掉最久未使用的页。

2.2.4LFR算法

在缺页中断发生时,置换未使用时间最长的页面。这个策略称为LRU(Least Recently Used,最近最少使用)页面置换算法

2.2.5NUR算法

NRU在需要淘汰某一页时,从那些最近一个时期内未被访问的页中任选一页淘汰。只要在页表中增设一个访问位即可实现。当某页被访问时,访问位置1。否则,访问位置0。系统周期性地对所有引用位清零。当需淘汰一页时,从那些访问位为零的页中选一页进行淘汰。如果引用位全0或全1,NRU算法退化为FIFO算法。

2.3总体设计

2.31结构图

Input(int m,Pro p[L])(打印页面走向状态);

void print(Pro *page1)(打印当前的页面);

int Search(int e,Pro *page1 )(寻找内存块中与e相同的块号);

int Max(Pro *page1)(寻找最近最长未使用的页面);

int Count(Pro *page1,int i,int t,Pro p[L])(记录当前内存块中页面离下次使用间隔长度);

int main()(主函数);

.随机数发生器

#include

#include //准备用时钟函数调用库函数

t=time(NULL);//取时钟时间并存入t调用库函数

srand(t);//用时间t初始化随机数发生器调用库函数

x=rand( )%10+1;//返回一个1~10之间的随机数

第三章详细设计

4.1 FIFO(先进先出)

设计原理:需要进行页面置换,即把内存中装入最早的那个页面淘汰,换入当前的页面。

算法流程图

图4-1FIFO算法流程图

代码:if(c==1)//FIFO页面置换

{

n=0;

cout<<" ****************************************** "<

cout<

cout<<" FIFO算法页面置换情况如下: "<

cout<

cout<<" ******************************************

"<

while(i

{

if(Search(p[i].num,page)>=0)//当前页面在内存中

{ cout<

cout<<"不缺页"<

else //当前页不在内存中 {

if(t==M)t=0; else {

n++;//缺页次数加1

page[t].num=p[i].num; //把当前页面放入内存中

cout<

print(page); //打印当前页面 t++; //下一个内存块 i++; //指向下一个页面 } } }

cout<<"缺页次数:"<

}

4.2 LRU (最近最久未使用)

设计原理:当需要淘汰某一页时,选择离当前时间最近的一段时间内

最久没有使用过的页先淘汰该算法的主要出发点是,如果某页被访问了,则它可能马上还要被访问。或者反过来说如果某页很长时间未被访问,则它在最近一段时间也不会被访问。

算法流程图:

图4-2 LRU算法流程图

代码:if(c==2)//LRU页面置换

{

n=0;

cout<<" ******************************************

"<

cout<

cout<<" LRU算法页面置换情况如下: "<

cout<

cout<<" ******************************************

"<

while(i

{

int a;

t=Search(p[i].num,page);

if(t>=0) //如果已在内存块中

{

page[t].time=0; //把与它相同的内存块的时间

置0

for(a=0;a

if(a!=t)page[a].time++; //其它的时间加1

cout<

cout<<"不缺页"<

}

else //如果不在内存块中

{

n++; //缺页次数加1

t=Max(page); //返回最近最久未使用的块号赋值给t

page[t].num=p[i].num; //进行替换

page[t].time=0; //替换后时间置为0

cout<

print(page);

for(a=0;a

if(a!=t)page[a].time++; //其它的时间加1

}

i++;

}

cout<<"缺页次数:"<

}

4.3 OPT(最佳置换算法)

设计原理:需要进行页面置换,把内存中以后一段时间都不使用或是使用时间离现在最远的页面换出。

流程图:

图4-3 OPT 流程图

代码: if(c==3) //OPT页面置换

{

n=0;

cout<<" ****************************************** "<

cout<

cout<<" OPT算法置换情况如下:"<

cout<

cout<<" ****************************************** "<

while(i

{

if(Search(p[i].num,page)>=0) //如果已在内存块中

{

cout<

cout<<"不缺页"<

i++;

}

else //如果不在内存块中

{

int a=0;

for(t=0;t

if(page[t].num==0)a++; //记录空的内存块数

if(a!=0) //有空内存块

{

int q=M;

for(t=0;t

if(page[t].num==0&&q>t)q=t; //把空内存块中块号最小的找出来

page[q].num=p[i].num;

n++;

cout<

print(page);

i++;

}

else

{

int temp=0,s;

for(t=0;t

if(temp

{

temp=Count(page,i,t,p);

s=t;

} //把找到的块号赋给s

page[s].num=p[i].num;

n++;

cout<

print(page);

i++;

}

}

}

cout<<"缺页次数:"<

}

第四章设计结果及分析

4.1实现结果

程序在运行的情况下,进入主界面输入菜单,如图3-3所示:

输入14:

图4-5 输入14后的输出图输入25:

图5-6输入数据25后输出图输入数据18:

图5-7 输入数据18后的输出图输入数据:

图5-8输出图

选1,进入FIFO页面置换:

图5-9 FIFO的输出图选2,进入LRU页面置换:

图5-10 LRU的输出图输入3,进入OPT页面置换:

图5-11 OPT的输出图

总结

通过对页面置换算法模拟程序的程序设计,让我对虚拟页式存储管理有了更深的了解。刚开始拿到这个题目觉得很难,不知道该怎么下手,因为是自己第一次用C语言编写操作系统程序。但是搞懂了页面置换的思想以后,对编程就有了一定的思路。经过几天的编写,程序也终于写出来啊。但是却遇到了许多困难,程序的调试也出现了许多的错误。但是经过几次上机操作,在老师的指导和帮助下,程序最终还是完成了。通过这次的程序设计,让我对C语言有了更深一步的了解和认识,编程能力也有了提高,我认到学好计算机要重视实践操作,只有真正动手了才知道自己还有那些不足之处。

操作系统实验报告利用银行家算法避免死锁

计算机操作系统实验报告 题目利用银行家算法避免死锁 一、实验目的: 1、加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 2、要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。 二、实验内容: 用银行家算法实现资源分配: 设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}的系统,例如,{A,B,C}的资源数量分别为10,5,7。进程可动态地申请资源和释放资源,系统按进程的申请动态地分配资源,要求程序具有显示和打印各进程的某一个时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。 三、问题分析与设计: 1、算法思路: 先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。 2、银行家算法步骤: (1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因

为它所需要的资源数已超过它所宣布的最大值。 (2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值: Available=Available-Request[i]; Allocation=Allocation+Request; Need=Need-Request; (4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。 3、安全性算法步骤: (1)设置两个向量 ①工作向量Work。它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation; ②布尔向量Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。 (2)从进程集合中找到一个能满足下述条件的进程: ①Finish[i]=false ②Need

数据结构课程设计-排序

一、问题描述 1、排序问题描述 排序是计算机程序设计的一种重要操作,他的功能是将一组任意顺序数据元素(记录),根据某一个(或几个)关键字按一定的顺序重新排列成为有序的序列。简单地说,就是将一组“无序”的记录序列调整为“有序”的记录序列的一种操作。 本次课程设计主要涉及几种常用的排序方法,分析了排序的实质,排序的应用,排序的分类,同时进行各排序方法的效率比较,包括比较次数和交换次数。我们利用java语言来实现本排序综合系统,该系统包含了:插入排序、交换排序、选择排序、归并排序。其中包括: (1)插入排序的有关算法:不带监视哨的直接插入排序的实现; (2)交换排序有关算法:冒泡排序、快速排序的实现; (3)选择排序的有关算法:直接选择排序、堆排序的实现; (4)归并排序的有关算法:2-路归并排序的实现。 2、界面设计模块问题描述 设计一个菜单式界面,让用户可以选择要解决的问题,同时可以退出程序。界面要求简洁明了,大方得体,便于用户的使用,同时,对于用户的错误选择可以进行有效的处理。 二、问题分析 本人设计的是交换排序,它的基本思想是两两比较带排序记录的关键字,若两个记录的次序相反则交换这两个记录,直到没有反序的记录为止。应用交换排序基本思想的主要排序方法有冒泡排序和快速排序。 冒泡排序的基本思想是:将待排序的数组看作从上到下排列,把关键字值较小的记录看作“较轻的”,关键字值较大的纪录看作“较重的”,较小关键字值的记录好像水中的气泡一样,向上浮;较大关键字值的纪录如水中的石块向下沉,当所有的气泡都浮到了相应的位置,并且所有的石块都沉到了水中,排序就结束了。 冒泡排序的步骤: 1)置初值i=1; 2)在无序序列{r[0],r[1],…,r[n-i]}中,从头至尾依次比较相邻的两个记录r[j] 与r[j+1](0<=j<=n-i-1),若r[j].key>r[j+1].key,则交换位置; 3)i=i+1; 4)重复步骤2)和3),直到步骤2)中未发生记录交换或i=n-1为止; 要实现上述步骤,需要引入一个布尔变量flag,用来标记相邻记录是否发生交换。 快速排序的基本思想是:通过一趟排序将要排序的记录分割成独立的两个部分,其中一部分的所有记录的关键字值都比另外一部分的所有记录关键字值小,然后再按此方法对这两部分记录分别进行快速排序,整个排序过程可以递归进行,以此达到整个记录序列变成有序。 快速排序步骤: 1)设置两个变量i、j,初值分别为low和high,分别表示待排序序列的起始下

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

中南大学数据结构与算法第10章内部排序课后作业答案

第10章内部排序习题练习答案 1.以关键字序列(265,301,751,129,937,863,742,694,076,438)为例,分别写出执行以下排序算法的各趟排序结束时,关键字序列的状态。 (1) 直接插入排序(2)希尔排序(3)冒泡排序(4)快速排序 (5) 直接选择排序(6) 堆排序(7) 归并排序(8)基数排序 上述方法中,哪些是稳定的排序?哪些是非稳定的排序?对不稳定的排序试举出一个不稳定的实例。 答: (1)直接插入排序:(方括号表示无序区) 初始态: 265[301 751 129 937 863 742 694 076 438] 第一趟:265 301[751 129 937 863 742 694 076 438] 第二趟:265 301 751[129 937 863 742 694 076 438] 第三趟:129 265 301 751[937 863 742 694 076 438] 第四趟:129 265 301 751 937[863 742 694 076 438] 第五趟:129 265 301 751 863 937[742 694 076 438] 第六趟:129 265 301 742 751 863 937[694 076 438] 第七趟:129 265 301 694 742 751 863 937[076 438] 第八趟:076 129 265 301 694 742 751 863 937[438] 第九趟:076 129 265 301 438 694 742 751 863 937

(2)希尔排序(增量为5,3,1) 初始态: 265 301 751 129 937 863 742 694 076 438 第一趟:265 301 694 076 438 863 742 751 129 937 第二趟:076 301 129 265 438 694 742 751 863 937 第三趟:076 129 265 301 438 694 742 751 863 937 (3)冒泡排序(方括号为无序区) 初始态[265 301 751 129 937 863 742 694 076 438] 第一趟:076 [265 301 751 129 937 863 742 694 438] 第二趟:076 129 [265 301 751 438 937 863 742 694] 第三趟:076 129 265 [301 438 694 751 937 863 742] 第四趟:076 129 265 301 [438 694 742 751 937 863] 第五趟:076 129 265 301 438 [694 742 751 863 937] 第六趟:076 129 265 301 438 694 742 751 863 937 (4)快速排序:(方括号表示无序区,层表示对应的递归树的层数)

计算机算法设计及分析课程设计报告

成绩评定表

课程设计任务书

算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。算法(Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。在计算机科学中,算法要用计算机算法语言描述,算法代表用计算机解一类问题的精确、有效的方法。 分治法字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。在一个2^k*2^k的棋盘上,恰有一个放歌与其他方格不同,且称该棋盘为特殊棋盘。 回溯法的基本做法是深度优先搜索,是一种组织得井井有条的、能避免不必要重复搜索的穷举式搜索算法。数字拆分问题是指将一个整数划分为多个整数之和的问题。利用回溯法可以很好地解决数字拆分问题。将数字拆分然后回溯,从未解决问题。 关键词:分治法,回溯法,棋盘覆盖,数字拆分

1分治法解决期盼覆问题1 1.1问题描述1 1.2问题分析1 1.3算法设计1 1.4算法实现2 1.5结果分析4 1.6算法分析5 2回溯法解决数字拆分问题7 2.1问题描述7 2.2问题分析7 2.3算法设计8 2.4算法实现8 2.5结果分析10 参考文献10

1分治法解决期盼覆问题 1.1问题描述 在一个2k×2k(k≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。显然,特殊方格在棋盘中出现的位置有4k中情形,因而有4k中不同的棋盘,图(a)所示是k=2时16种棋盘中的一个。棋盘覆盖问题要求用图(b)所示的4中不同形状的L型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且热河亮哥L型骨牌不得重复覆盖 1.2问题分析 用分治策略,可以设计解决棋盘问题的一个简介算法。 当k>0时,可以将2^k*2^k棋盘分割为4个2^k-1*2^k-1子棋盘。由棋盘覆盖问题得知,特殊方格必位于4个较小的子棋盘中,其余3个子棋盘中无特殊方格。为了将3个无特殊方格的子棋盘转化为特殊棋盘可以将一个L型骨牌覆盖这3个较小棋盘的会合处,所以,这3个子棋盘上被L型覆盖的方格就成为给棋盘上的特殊方格,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归的使用这种分割,直至棋盘简化为1*1棋盘为止。 。 1.3算法设计 将2^k x 2^k的棋盘,先分成相等的四块子棋盘,其中特殊方格位于四个中的一个,构造剩下没特殊方格三个子棋盘,将他们中的也假一个方格设为特殊方格。如果是: 左上的子棋盘(若不存在特殊方格)----则将该子棋盘右下角的那个方格假设为特殊方格 右上的子棋盘(若不存在特殊方格)----则将该子棋盘左下角的那个方格假设为特殊方格 左下的子棋盘(若不存在特殊方格)----则将该子棋盘右上角的那个方格假设为特殊方格

综合课程设计

可用C++(Visual C++ 6.0),JA V A(JSP,STRUTS),C#(https://www.doczj.com/doc/e14952408.html, ,Visual Studio 2005),试题目而定。 1、综合购物频道(限最多3人选) 项目描述:是一个在线销售系统,是一个B-C模式的电子商务系统,由前台的B/S模式购物系统和后台的C/S模式的管理系统两部分组成。该电子商务系统可以实现会员注册、浏览商品、查看商品详细信息、选购商品、取消订单和查看订单等功能,前台系统的详细功能。目的:了解项目开发的一个基本流程以及如何运用现行的框架搭建一个大型的综合型系统2、某大型企业内部OA(限最多3人选) 项目描述:采用网络办公自动化系统,不仅能快速提高企业的运作效率,节省大量的办公费用,能全面提升企业的核心竞争力和生产力以及提高工作效率。该企业内部OA系统采用模型组件与WEB技术结合的方式,具有强大的功能,广泛的适用性、可靠安全性和可扩展性。目的:学习运用当前热门的前台技术。 3、产品展示厅(限最多3人选) 项目描述: 在互联网发达的今天,当您想客户宣传自己的产品时,最好的方式是拥有自己的网站,通过网络来传播和展示您的产品信息。产品展示系统,为客户详细介绍自己的产品,提供了一个功能强大的平台。 系统界面友好、功能强大、操作简便,用户可以方便迅速掌握系统的操作。 4人事管理系统(限最多3人选) 项目描述:人事档案完整资料、人事分类管理(员工户口状况、员工政治面貌、员工生理状况、员工婚姻状况、员工合同管理、员工投保情况、员工担保情况)、考勤管理、加班管理、出差管理、人事变动管理(新进员工登记、员工离职登记、人员变更记录)、员工培训管理(员工培训、员工学历)、考核奖惩、养老保险等几大模块。系统具有人事档案资料完备,打印灵活,多样、专业的报表设计,灵活的查询功能等特点。 主要技能:掌握项目的开发流程:需求分析、详细设计、测试等;熟悉VC的多文档的开发技能和技巧;利用ADO技术操作SQL Server数据库;掌握数据库的开发和操作技能。 5、即时通讯系统(限最多3人选) 项目描述:系统采用UDP协议,具有:收发在线和离线消息、添加/删除好友、服务器端存储好友列表、在客户端存储好友资料和聊天记录、添加/删除好友组、可以群发消息、收发文件等功能。 主要技能:掌握项目的开发流程:需求分析、详细设计、测试等;熟悉VC的网络通信的开发技能和技巧,包括:TCP和UDP协议、线程等;利用ADO技术操作SQL Server数据库; 6、推箱子(限最多3人选) 【规则】本游戏的目的就是把所有的箱子都推到目标位置上。箱子只能推动而不能拉动。一次只能推动一个箱子。 经典的推箱子是一个来自日本的古老游戏,目的是在训练你的逻辑思考能力。在一个狭小的仓库中,要求把木箱放到指定的位置,稍不小心就会出现箱子无法移动或者通道被堵住的情况,所以需要巧妙的利用有限的空间和通道~! 7、贪吃蛇(限最多3人选) 【规则】: A 用键盘的方向键控制蛇的上下左右移动。 B 游戏分为三种难度,SLUG为慢速,每吃一朵花得1分;WORM 为中速,每吃一朵花得2分;PYTHON为快速,每吃一朵花得3分。 C 游戏目标:操纵屏幕上那条可爱的小蛇,在黑框中不停吃花,而每吃一朵

《数据结构与算法分析》课程设计:顺序表、单链表、顺序栈、查找、排序算法

*******大学 《数据结构与算法分析》课程设计 题目:数据结构上机试题 学生姓名: 学号: 专业:信息管理与信息系统 班级: 指导教师: 2014年04月

目录 一、顺序表的操作 (2) 【插入操作原理】 (2) 【删除操作原理】 (2) 【NO.1代码】 (3) 【运行截图演示】 (7) 二、单链表的操作 (10) 【创建操作原理】 (10) 【插入操作原理】 (10) 【删除操作原理】 (10) 【NO.2代码】 (11) 【运行截图演示】 (20) 三、顺序栈的操作 (25) 【数值转换原理】 (25) 【NO.3代码】 (26) 【运行截图演示】 (30) 四、查找算法 (32) 【顺序查找原理】 (32) 【折半查找原理】 (32) 【NO.4代码】 (33) 【运行截图演示】 (38) 五、排序算法 (40) 【直接插入排序原理】 (40) 【快速排序原理】 (40) 【NO.5代码】 (41) 【运行截图演示】 (46)

一、顺序表的操作 (1)插入元素操作:将新元素x 插入到顺序表a 中第i 个位置; (2)删除元素操作:删除顺序表a 中第i 个元素。 【插入操作原理】 线性表的插入操作是指在线性表的第i-1个数据元素和第i 个数据元素之间插入一个新的数据元素,就是要是长度为n 的线性表: ()11,,,,,i i n a a a a -………… 变成长度为n+1的线性表: ()11,,,,,,i i n a a b a a -………… 数据元素1i a -和i a 之间的逻辑关系发生了变化。 (其【插入原理】在课本P23的算法2.3有解释) 【删除操作原理】 反之,线性表的删除操作是使长度为n 的线性表: ()111,,,,,,i i i n a a a a a -+………… 变成长度为n-1的线性表: ()111,,,,,i i n a a a a -+………… 数据元素1i a -、i a 和1i a +之间的逻辑关系发生变化,为了在存储结构上放映这个变化,同样需要移动元素。 (其【删除原理】在课本P24的算法2.4有解释)

操作系统课程设计之模拟通过银行家算法避免死锁

模拟通过银行家算法避免死锁 一、银行家算法产生的背景及目的 1 :在多道程序系统中,虽然节奏、虽然借助于多个进程的并发执行来改善系统的利用率,提高系统的吞吐量,但可能发生一种危险—死锁。,死锁就是多个进程在运行过程中因争夺资源而造成的一种僵局,当进程处于这种僵局状态时,如无外力作用,他们将无法再向前进行,如再把信号量作为同步工具时,多个 Wait 和 Signal 操作顺序不当,会产生进程死锁。然而产生死锁的必要条件有互斥条件,请求和保持条件,不剥夺条件和环路等待条件。在预防死锁的几种方法中,都施加了较强的限制条件,在避免死锁的方法中,所施加的条件较弱,有可能获得令人满意的系统性能。在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统都处于安全状态,便可避免死锁。 2:实验目的:让学生独立的使用编程语言编写和调试一个系统分配资源的简单模拟程序,了解死锁产生的原因及条件。采用银行家算法及时避免死锁的产生,进一步理解课堂上老师讲的相关知识点。银行家算法是从当前状态出发,逐个按安全序列检查各客户中谁能完成其工作,然后假定其完成工作且归还全部贷款,再进而检查下一个能完成工作的客户。如果所有客户都能完成工作,则找到一个安全序列,银行家才是安全的。 二:银行家算法中的数据结构 1 :可利用资源向量Available。这是一个含有m个元素的数组,其中的每个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类资源的分配和回收而动态的改变。如果 Available[j]=k , z 则表示系统中现有 Rj 类资源 K 个。 2 :最大需求矩阵Max这是一个n*m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果 Max[i,j]=k ,表示第i个进程需要第Rj 类资源的最大数目k个. 3:分配矩阵Allocation, 也是n*m的矩阵,若 Allocation[i,j]=k, 表示第i 个进程已分配Rj类资源的数目为k个。 4 :需求矩阵Neec。也是一个n*m的矩阵,Need[i,j]=k, 表示第i个进程还需 Rj 类资源 k 个。 三、银行家算法及安全性算法 1 :银行家算法 设 Request[i] 是进程 Pi 的请求向量,若 Request[i][j]=k; 表示进程需要 j 类资源k个。当Pi发出资源请求时,系统按下属步骤进行检查; (1) 如果 Request[i][j]<=Need[i][j]; 便转向步骤( 2),否则认为出错,因为它所需 要的资源数已超过他所宣布的最大值。 (2) 如果 Request[i][j]<=Available[i][j], 便转向步骤( 3),否则认为尚无足 够资源,进程需等待。

《HTML网页编程技术综合课程设计》教学实施方案

《HTML网页编程技术综合课程设计》教学实施方案

————————————————————————————————作者:————————————————————————————————日期:

《网页编程技术综合课程设计》教学方案 一、课程设计目标 通过该课程设计综合应用本学期所学的网页制作知识,全面建立对网站的认知,建立网站设计与网页制作的基本思想;学会网站功能规划、网站布局、网页制作、网页配色等的基本技巧,掌握网页制作与网站设计相关软件的使用方法;通过课程设计教学环节能够制作有一定实用性的网站;能解决一些实际应用问题并以此为基础进一步扩展到相关的学科上;通过本课程设计提高网页的审美意识;通过团队合作制作网站,培养团队协作精神,初步了解软件企业开发软件系统模式,为将来适应工作打开良好的基础。 二、设计要求 1.本课程设计分小组进行,各小组成员原则上2~4人,不得超过4人,由小组长协调分工,每个组员充分发挥团队协作精神。 2.自选主题,使用Dreamweaver网页设计与制作软件,设计并制作一个内容完整、结构规范合理的静态网站,要求选取内容健康,网站中出现一定数量的图像和多媒体。网站主题应大小适中、内容健康、具有时代气息;网站提供的信息应与网站主题相符合, 主题突出、内容丰富; 3.页面设计合理、美观,有创意,适用于各种显示器的分辨率和颜色。 4.每个页面都要求有导航条和页脚信息,需要将这些信息制作成库项目,然后根据需要将之插入到模板或其它页面中。各个页面都要有标题,而且布局要合理、美观、大方。布局网页时要尽量主流布局方法(必须使用Div、表格等),并要有一定复杂度。 5.页面中需要有文字、图像、多媒体、超链接等,要求达到图文并茂的效果。所使用的文字的大小、字体和颜色要认真处理,除非特殊需要,不能出现空链接,文字不能简单用截图代替;所需图像和多媒体素材尽量自己设计,如有下载,自己必须再作处理,不得直接使用现有商业网站标志。 6. 为了保证页面的设计效果更好地兼容各种浏览器以及便于改版,要求用独立的CSS文件设置页面内容格式。 7.为主页添加背景音乐。 8.需要使用一定量的JavaScript脚本,使网页具有一定的交互功能。每小组必须制作一个表单,表单输入内容需要使用正则表达式进行验证。

排序算法课程设计

排序算法课程设计 专业 班级 学号 姓名 指导老师

一:课程设计的目的 1.掌握各种排序的基本思想 2.掌握各种排序的算法实现 3.掌握各种排序的算法优劣分析花费的时间计算 4.掌握各种排序算法所适用的不同场合。 二:课程设计的内容 (1)冒泡、直插、选择、快速、希尔、归并、堆排序算法进行比较; (2)待排序的元素的关键字为整数。其中的数据用伪随机产生程序产生(如10000个,1000个),再使用各种算法对其进行排序,记录其排序时间,再汇总比较;(3)将每次测试所用的时间,用条形图进行表示,以便比较各种排序的优劣。 三:课程设计的实现 (1)直接插入排序 #include typedef int keytype; struct datatype { keytype key; }; /* int rand(void); void srand(unsigned int seed ); */ #include #include #include #include void InsertSort (datatype a[], int n) //用直接插入法对a[0]--a[n-1]排序 { int i, j; datatype temp; for(i=0; i

while(j > -1 && temp.key <= a[j].key) { a[j+1] = a[j]; j--; } a[j+1] = temp; } } void main() { /*srand((unsigned)time(NULL));// 随机种子*/ /*time_t t; srand((unsigned)time(&t));*/ time_t t1,t2; srand((unsigned)GetCurrentTime()); datatype num[10000]; t1=GetCurrentTime(); for(int i=0;i<10000;i++) { num[i].key=rand(); } int n=10000; InsertSort(num,n); for(int j=0;j<10000;j++) cout< /* int rand(void); void srand(unsigned int seed ); */ #include #include #include #include typedef int keytype; struct datatype { keytype key;

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

计算机算法设计与分析课程设计.

成绩评定表 学生姓名吴旭东班级学号1309010236 专业信息与计算 科学课程设计题目 分治法解决棋盘覆 盖问题;回溯法解 决数字拆分问题 评 语 组长签字: 成绩 日期20 年月日

课程设计任务书 学院理学院专业信息与计算科学 学生姓名吴旭东班级学号1309010236 课程设计题目分治法解决棋盘覆盖问题;回溯法解决数字拆分问题实践教学要求与任务: 要求: 1.巩固和加深对基本算法的理解和运用,提高综合运用课程知识进行算法设计与分析的能力。 2.培养学生自学参考书籍,查阅手册、和文献资料的能力。 3.通过实际课程设计,掌握利用分治法或动态规划算法,回溯法或分支限界法等方法的算法的基本思想,并能运用这些方法设计算法并编写程序解决实际问题。 4.了解与课程有关的知识,能正确解释和分析实验结果。 任务: 按照算法设计方法和原理,设计算法,编写程序并分析结果,完成如下内容: 1.运用分治算法求解排序问题。 2. 运用回溯算法求解N后问题。 工作计划与进度安排: 第12周:查阅资料。掌握算法设计思想,进行算法设计。 第13周:算法实现,调试程序并进行结果分析。 撰写课程设计报告,验收与答辩。 指导教师: 201 年月日专业负责人: 201 年月日 学院教学副院长: 201 年月日

算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。算法 (Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。在计算机科学中,算法要用计算机算法语言描述,算法代表用计算机解一类问题的精确、有效的方法。 分治法字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。在一个2^k*2^k的棋盘上, 恰有一个放歌与其他方格不同,且称该棋盘为特殊棋盘。 回溯法的基本做法是深度优先搜索,是一种组织得井井有条的、能避免不必要重复搜索的穷举式搜索算法。数字拆分问题是指将一个整数划分为多个整数之和的问题。利用回溯法可以很好地解决数字拆分问题。将数字拆分然后回溯,从未解决问题。 关键词:分治法,回溯法,棋盘覆盖,数字拆分

银行家死锁避免算法模拟

银行家死锁避免算法模拟 一.课程设计目的 通过本次实验掌握银行家死锁避免算法的基本思想。当进程提出资源申请时,能够用该算法判断是否拒绝进程请求。 二.课程设计摘要 银行家算法: 我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 四.课程设计原理分析 在多道程序系统中,虽可借助于多个进程的并发执行,来改善系统的资源利用率,提高系统的吞吐量,但可能发生一种危险——死锁。所谓死锁,是指多个进程在运行过程中因争夺资源而造成的一种僵局,当进程处于这种僵局状态时,若无外力作用,它们都将无法再向前推进。为保证系统中诸进程的正常运行,应事先采取必要的措施,来预防死锁。最有代表性的避免死锁的方法,是Dijkstra的银行家算法。 死锁: 死锁的产生,必须同时满足四个条件,第一个为互斥条件,即一个资源每次只能由一个进程占用;第二个为请求和保持条件,指进程已经保持了至少一个资源,但又提出了新的资源请求,而该资源又被其他进程占有,此时请求进

程阻塞,但又对自己已获得的其他资源保持不放;第三个为非剥夺条件,即在出现死锁的系统中一定有不可剥夺使用的资源;第四个为循环等待条件,系统中存在若干个循环等待的进程,即其中每一个进程分别等待它前一个进程所持有的资源。防止死锁的机构只能确保上述四个条件之一不出现,则系统就不会发生死锁。 银行家算法原理: 银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。通过这个算法可以用来解决生活中的实际问题,如银行贷款等。 银行家算法,顾名思义是来源于银行的借贷业务,一定数量的本金要应多个客户的借贷周转,为了防止银行家资金无法周转而倒闭,对每一笔贷款,必须考察其是否能限期归还。在操作系统中研究资源分配策略时也有类似问题,系统中有限的资源要供多个进程使用,必须保证得到的资源的进程能在有限的时间内归还资源,以供其他进程使用资源。如果资源分配不得到就会发生进程循环等待资源,则进程都无法继续执行下去的死锁现象。把一个进程需要和已占有资源的情况记录在进程控制中,假定进程控制块PCB其中“状态”有就绪态、等待态和完成态。当进程在处于等待态时,表示系统不能满足该进程当前的资源申请。“资源需求总量”表示进程在整个执行过程中总共要申请的资源量。显然,,每个进程的资源需求总量不能超过系统拥有的资源总数, 银行算法进行资源分配可以避免死锁. 算法思想: 将一定数量的资金供多个用户周转使用,当用户对资金的最大申请量不超过现存资金时可接纳一个新客户,客户可以分期借款,但借款总数不能超过最大的申请量。银行家对客户的借款可以推迟支付,但是能够使客户在有限的时间内得到借款,客户得到所有的借款后能在有限的时间内归还。 用银行家算法分配资源时,测试进程对资源的最大需求量,若现存资源能满足最大需求就满足当前进程的申请,否则推迟分配,这样能够保证至少有一个进程可以得到所需的全部资源而执行到结束,然后归还资源,若OS能保证所有进程在有限的时间内得到所需资源则称系统处于安全状态。

数据结构课程设计之综合排序代码及使用方法

题目1: 利用随机函数产生N个随机整数(20000以上),对这些数进行多种方法进行排序。 要求: 1)至少采用三种方法实现上述问题求解(提示,可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序)。并把排序后的结 果保存在不同的文件中。 2)统计每一种排序方法的性能(以上机运行程序所花费的时间为准进行对比),找出其中两种较快的方法。 代码如下: #include //标准输入输出头文件 #include //定义杂项函数及内存分配函数 #include //字符串处理 #include //定义关于时间的函数 #define N 20000 clock_t Start,Now;//时钟 void Wrong()//错误输出 { printf("\n*****按键错误!请重新输入*****\n"); getchar();//从标准输入获取字符并返回下一个字符 } void change(int a[])//十个一行输出 { int i; system("cls");//清除之前的操作 for(i=0;i

数据结构课程设计(内部排序算法比较 C语言)

课题:内部排序算法比较 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。 第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------|

|-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。 (2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| (3.1) (II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

操作系统之调度算法和死锁中的银行家算法习题答案

1.有三个批处理作业,第一个作业10:00 到达,需要执行2 小时;第二个作业在10:10 到达,需要执行1 小时;第三个作业在10:25 到达,需要执行25 分钟。分别采用先来先服务,短作业优先和最高响应比优先三种调度算法,各自的平均周转时间是多少? 解: 先来先服务: (结束时间=上一个作业的结束时间+执行时间 周转时间=结束时间-到达时间=等待时间+执行时间) 短作业优先: 1)初始只有作业1,所以先执行作业1,结束时间是12:00,此时有作业2和3; 2)作业3需要时间短,所以先执行; 最高响应比优先: 高响应比优先调度算法既考虑作业的执行时间也考虑作业的等待时间,综合了先来先服务和最短作业优先两种算法的特点。 1)10:00只有作业1到达,所以先执行作业1; 2)12:00时有作业2和3, 作业2:等待时间=12:00-10:10=110m;响应比=1+110/60=2.8; 作业3:等待时间=12:00-10:25=95m,响应比=1+95/25=4.8; 所以先执行作业3 2.在一单道批处理系统中,一组作业的提交时刻和运行时间如下表所示。试计算一下三种作业调度算法的平均周转时间T 和平均带权周转时间W。 (1)先来先服务;(2)短作业优先(3)高响应比优先

解: 先来先服务: 短作业优先: 作业顺序: 1)8:00只有作业1,所以执行作业1; 2)9:00有作业2和3,作业3短,所以先执行3; 3)9:12有作业2和4,作业4短,所以先执行4; 高响应比优先: 作业顺序: 1)8:00只有作业1,所以执行作业1; 2)9:00有作业2和3 作业2等待时间=9:00-8:30=30m,响应比=1+30/30=2; 作业3等待时间=9:00-9:00=0m,响应比=1+0/12=1; 所以执行作业2; 3)9:30有作业3和4 作业3等待时间=9:30-9:00=30m,响应比=1+30/12=3.5; 作业4等待时间=9:30-9:06=24m,响应比=1+24/6=5;

综合课程设计1题目2016-2017.2

综合课程设计1 一、考核方法和内容 根据课程设计过程中学生的学生态度、题目完成情况、课程设计报告书的质量和回答问题的情况等按照10%、40%、30%、20%加权综合打分。成绩评定实行优秀、良好、中等、及格和不及格五个等级。评分标准: 优秀:答辩所有问题都能答出+报告良好 或报告良好+实现“提高部分”的功能; 良好:答辩所有问题都能答出+报告一般; 或报告一般+实现“提高部分”的功能; 中等:答辩大部分问题能答出+报告良好; 及格:答辩大部分问题能答出+报告一般; 以下四种,都不及格: 1)答辩几乎答不出问题; 2)报告几乎都是代码; 3)雷同部分达到60%以上; 4)课设报告与数据结构和c/c++关联不大。 课设报告的装订顺序如下: 任务书(签名,把题目要求贴在相应位置,注意下划线)-----目录(注意目录的格式,页码)-----1、设计任务(题目要求)-----2、需求分析(准备选用什么数据逻辑结构?数据元素包含哪些属性?需要哪些函数?为什么要这样设计?最后列出抽象数据类型定义)-----3、系统设计(设计实现抽象数据类型,包含选择什么物理存储方式?数据元素的结构体或类定义,以及各函数的设计思路,算法,程序流程图等)----4、编码实现(重要函数的实现代码)-----5、调试分析(选择多组测试数据、运行截图、结果分析)-----6、课设总结(心得体会)-----7、谢辞-----8、参考文献; 课设报告打印要求: B5纸张打印,报告总页数控制在10—15页内,报告中不能全是代码,报告中代码总量控制在3页内。版式:无页眉,有页码,页码居中 字号:小四,单倍行距 字体:宋体+Times new Romar 截图:截图要配图的编号和图的题目,如:“图1 Insert函数流程图” 二、课程设计的具体内容 1.想要优,必须实现“提高部分”的功能,但,实现“提高部分”不代表一定优; 2.其他成绩,不用完成“提高部分”。 要求:全部采用数据结构课程中的内容实现,采用C或C++实现,逻辑结构只能选线性结构、树型结构、图型结构、集合结构中的一种,不能用数据库。 1、算术表达式求解 基本要求:给定一个算术表达式,通过程序求出最后的结果。 (1)从键盘输入要求解的算术表达式; (2)采用栈结构进行算术表达式的求解过程;

相关主题
文本预览
相关文档 最新文档