当前位置:文档之家› Meson Screening Masses at high Temperature in quenched QCD with improved Wilson Quarks

Meson Screening Masses at high Temperature in quenched QCD with improved Wilson Quarks

a r

X

i

v

:h e p

-

l

a t

/

1

3

3

7v

1

2

9

M

a

r

2

1

BI-TP 2001/03February 1,2008Meson Screening Masses at high Temperature in quenched QCD with improved Wilson Quarks Edwin Laermann and Peter Schmidt Fakult¨a t f¨u r Physik,Universit¨a t Bielefeld,D-33615Bielefeld,Germany Abstract We report on a lattice investigation of improved quenched Wilson fermions above and below the con?nement-decon?nement phase transition.Results on meson screening masses as well as spatial wave functions are presented.Moreover,the meson dispersion relation is studied.Below the critical temperature we do not observe any signi?cant temperature e?ect while above T c the data are consistent with a leading free quark behavior.

1Introduction

An important goal of analytical as well as lattice investigations of QCD at non-vanishing temperature has been to gain more insight into the temperature depen-dence of hadron properties below and into the nature of hadronic excitations above the transition temperature from the hadronic to the plasma phase of QCD.

When the temperature is raised towards the transition point,approaching(ap-proximate)chiral symmetry restoration and decon?nement is expected to change the properties of hadrons.In particular,the lightest vector mesons and the temperature dependence of their masses and decay widths have received quite some attention be-cause of their possible relevance to the observed enhancement of low mass dileptons in heavy ion collisions[1].The theoretical predictions of these properties are,however, model dependent,see e.g.[2]for a recent review.In the plasma phase,the e?ective, temperature dependent coupling constant becomes small at large temperatures.One is thus lead to expect that the plasma consists of a gas of only weakly interacting quarks and gluons.In this case,correlation functions of operators with hadron quan-tum numbers should be described by the exchange of two or three almost free quarks. On the other hand,there are arguments that even at high temperature the hadronic excitation spectrum might be more complicated because of non-perturbative e?ects in particular in the chromo-magnetic sector of QCD[3].Thus,in both temperature regimes ab-initio QCD computations are highly desirable.

Hadronic correlation functions at non-vanishing temperature T have been the sub-ject of lattice investigations for quite a while.Most of these studies are based on the staggered quark formulation[4–14]while only few so far utilized the Wilson discretiza-tion[15–17]and,just recently,domain wall fermions[18].Moreover,because of the limited extent of the lattice in the Euclidean time direction,0

Below the transition temperature,detailed lattice investigations and comparisons of hadron masses at T=0and at T

At temperatures above T c,the available lattice results on hadronic correlation functions re?ect chiral symmetry restoration because the masses[17]and screening masses[4–8,10,13,14]in the vector(ρ)and axial vector(a1)channel become degen-erate.In the pseudoscalar and scalar channels it is observed thatπand f0/σbecome degenerate at T c[14]while the mass di?erence betweenπand a0/δseems to van-

ish only at higher temperatures,see in particular[18]for a chiral extrapolation at temperatures closely above T c.These?ndings are in accord with the expected restora-tion of SU R(N F)×SU L(N F)and indicate that the anomalous U A(1)symmetry is not e?ectively restored at the critical temperature.

As far as the values are concerned,in the staggered discretization vector and axial vector screening masses are compatible with the prediction of lowest order perturbation theory i.e.the propagation of(almost)free quarks.Scalar and pseudoscalar channels, however,show substantial deviations from this expectation,at least in the temper-ature interval between T c and2T c.One might argue that this observation indicates the existence of(pseudo)scalar bound states.However,the lowest mass hadron is unlikely to change from a mesonic state to a quark-like quasi-particle at a non-critical temperature.In addition,studies which apply di?erent boundary conditions[11]sug-gest that the spectral function is dominated by a two quark cut.For Wilson quarks it is observed[17]that already at a temperature of about1.5T c the pseudoscalar and vector screening masses are very close to each other.There it also is found that a near degeneracy holds true for the masses.Depending on the source operator utilized,the pseudoscalar is sometimes even heavier than the vector meson.While this behavior can at least qualitatively be explained by the propagation of(almost)free quarks,[17] provides con?icting evidence since their study of the wave functions,on the other hand,indicates the presence of bound states.

In addition to these observables,also spatial wave functions have been analyzed [19].Here one has found a similar behavior as at zero temperature.The observed exponential decay has then been taken as to suggest that the relevant hadronic excita-tions are bound states also in the plasma phase,at least at temperatures just above T c. According to[20],this behavior could,however,also be explained by the fact that the dimensionally reduced,3-D e?ective theory and correspondingly spatial Wilson loops in3+1dimensions show con?nement[21–23].Solving a two-dimensional Schr¨o dinger equation with a potential which includes a temperature dependent(spatial)string tension leads to exponentially decreasing spatial wavefunctions.The corresponding e?ect on the screening masses[24]would be an O(10%)correction at the investigated temperatures[23]which so far could not yet be checked quantitatively.

None of the lattice investigations of hadronic masses at non-vanishing temperatures has attempted to carry out the continuum limit.Most of the mentioned analyses are based on the staggered discretization.A straightforward computation in the Wilson formulation of lattice QCD and a comparison of the results with the staggered ones would thus help to gain an idea about the discretization e?ects.This is the main goal of this paper.

Since we are extracting screening masses and Lorentz invariance is lost at?nite T due to the heat bath,we have also computed spatial correlation functions projected onto some non-vanishing momenta and on the lowest non-vanishing bosonic Matsubara frequency.The purpose of this attempt is to test for a sizeable di?erence between

spatial and temporal momentum contributions to the vacuum polarization tensor.As a by-product of the attempt to construct meson operators with good overlap to the groundstate we also were able to obtain information about the Bethe-Salpeter amplitudes of the investigated mesons,the pion and the ρ.

The paper is organized as follows:in the next section we present some details of the simulation.This is followed by the presentation and discussion of the obtained screen-ing masses in the pion and the ρchannel,both below and above the decon?nement transition.In section 4we test the dispersion relation at non-vanishing temperature.Section 5contains our estimates of the wave functions.

2The simulation

The results to be presented here are based on gauge ?eld con?gurations which have been generated with the standard Wilson gluon action.We used a pseudo-heatbath algorithm [26]with FHKP updating [27]in the SU (2)subgroups.Each heatbath it-eration is supplemented by 4overrelaxation steps [28].We have simulated at three values of the bare coupling,β=6/g 2=6.0,6.2and 6.4.At these βvalues the lattice spacing has been determined from quite a variety of observables.Depending on the quantity,the results spread over a range of about 10%of the central value,however,within the error bars,agreement is observed.In order to obtain the physical temper-ature of the lattices in units of the critical one,for de?niteness

we have consistently

chosen to set the scale by the string tension [29],T/T c =(T/√σ/T c ),taking

T c /√

the(latest)values of the critical hopping parameter at zero temperature de?ned by the vanishing of the pion mass have been determined asκc=0.14556(6)[33]and κc=0.14549(2)[34]atβ=6.0,κc=0.14315(2)[35]andκc=0.14315(1)[34] atβ=6.2as well asκc=0.14143(3)[34]atβ=6.4.These numbers may be used to convert the various values of the hopping parameter into an estimate of the corresponding bare quark masses by means of

m q a=ln 1+1κ?1

βa[fm]κm q[MeV]

163×320O(100)

243×80.93O(100)

323×80.93O(40)

6.20.0770.141150

0.130800

0.128950

0.142820

0.1423260

0.14151100

0.136450

0.128950

242×64×8 1.63O(100)

σhas been taken as420MeV.

From the computed quark propagators we constructed correlation functions of op-

erators with the quantum numbers of the pseudoscalar and the vector meson.To improve the projection onto the lowest energy state,a gauge invariant extended oper-ator was used on the sink site[36]:

M R(x)= ± e

Ψare a quark and an antiquark?eld separated by a distance R,i,j denote color indices andα,βare spinor ones.Both indices are to be summed over. The quantum numbers are selected by choosingΓ=γ5for the pseudoscalar andΓ=γμfor the vector channel respectively.In the vector channel we have averaged over the polarizationsμperpendicular to the correlation direction.The explicit sum in eq.(2) is over all unit vectors e perpendicular to the correlation direction.This extended operator is made gauge invariant by introducing the color parallel transporter U from x to x+R e.In order to further improve the projection and in an attempt to resemble the gluon cloud[36]the parallel transporter is built from smeared link?elds.At the source site a strictly local operator(R=0)was put on the lattice.

The most general correlation function C R( p,t)is thus obtained as

C R( p,t)= x e?i p x P R( x,t)P?( 0,0)

=<0|P R|P( p)><0|P|P( p)>? e?E P( p)t+e?E P( p)(Nτ?t) + (3)

where in this particular example the pseudoscalar correlation in the temporal direction was chosen.In eq.(3),the exponential fall-o?is given by the energy E P( p)of the state |P( p)>at momentum p.The dots indicate contributions from excited states with the right quantum numbers.At non-vanishing temperature,because of the limited extent of the lattices in the temporal direction,t≤1/T,we computed spatial correlation functions in the z direction,C R( ?p,z),where ?p denote the momentum components perpendicular to the z direction, ?p=(p x,p y,p t).

The improvement procedure described above leaves quite some freedom in choosing optimal parameters.As for the distance R between quark and antiquark,on each con?guration we have computed the correlation functions for a variety of di?erent R values.This allowed us to?nd the optimal separation for each lattice spacing and temperature individually.An example of how the separation R changes the projection to the lowest mass state is shown in Figure1.Here we plot the e?ective mass,de?ned as M e?(t)=ln{C R(t)/C R(t+1)}for p= 0,of the pseudoscalar as a function of t for various R values.The data has been obtained on the zero temperature lattice atβ=6.2atκ=0.141.The plot illustrates that the contribution of excited states becomes considerably smaller when R is raised from1to5lattice spacings in this example.The data?attens o?and reaches a plateau at smaller time separations between source and sink.This allows to extract the lowest mass much more reliably. At R≥7the large t limit is approached from below as a single term contributing to

eq.(3)is not positive-de?nite.At the rightmost data point in the?gure the e?ective mass drops slightly because the periodicity of the lattice is being felt by the correlation

function.Whenβis varied we observe that the optimal distance in lattice units approximately scales with the lattice spacing i.e.stays constant in physical units.

Contrary to the strong R dependence of the e?ective masses which appears to be

physical,details of the gauge?eld smearing procedure do not seem to matter so much. We have adopted the APE prescription[37]with a weight of2for the link term and

1for the contribution of the staples.As noted also in[36],the precise value of the

ratio is not too important,contrary to the case of Wilson loops.The smeared links were projected back to SU(3)elements.In test runs it turned out that varying the

number of smearing iterations between4and12does not have a big impact on the length of the plateau in e?ective mass plots,see Figure1.Moreover,between theβ

values analyzed we did not observe signi?cant di?erences.

3Masses

In this section we present our results on the masses.These were obtained from corre-lation functions C R( p=0,t),eq.(3),at zero momentum in which case the exponential

fall-o?is given by the mass,E H( p=0)=M H.For spatial correlation functions the exponential fall-o?de?nes the screening mass.

In order to obtain an estimate of the mass of the lowest state contributing to a

given correlation function we?rst compared the e?ective mass plots,e.g.Figure1,for various quark pair distances R in search of the optimal R value with regard to the onset

and stability of the plateau.Subsequently,at the chosen R value?ts over intervals

[t min,Nτ?t min]with varying t min(similarly for the spatial correlations at T=0)were performed,again checking for stability of the mass value.Likewise,we symmetrized

the correlation functions around midpoint,Nτ/2and Nσ/2respectively,and carried out?ts including the full covariance matrix.Again,the minimum separation from the source was varied.The results quoted,mass values as well as errors,are obtained from the latter?ts,selecting the?t interval by the bestχ2value.The errors given include an estimate of the systematic error as suggested by a remaining dependence of the mass on R and t min.Finally,also two-state?ts were applied to correlation functions including data at next-to-optimal R values and smaller separations from the source in order to further check for consistency.

The results for the ground state masses in the pseudoscalar and the vector channel

at the temperatures investigated are summarized in Tables2to4and are compared with the available zero temperature data in Figures2and3.In the?gures we have

00.2

0.4

0.6

0.81

1.2

05101520

M e f f a t a = 0.077 fm R = 0a R = 1a R = 3a R = 5a R = 7a R = 8a

00.2

0.4

0.6

0.81

1.2

05101520

M e f f a t

a = 0.077 fm R = 0a, N = 0 R = 4a, N = 0 R = 4a, N = 4 R = 4a, N = 8 R = 4a, N = 12Figure 1:The e?ective mass M e?(t )as a function of t .The example shows the pseudoscalar channel at zero temperature at β=6.2and κ=0.141.The upper ?gure demonstrates the e?ect of varying the distance R between quark and antiquark while the number of smearing iterations was ?xed to 4in this example.In the lower plot,R is ?xed at 4and the number of smearing iterations is varied between 0and 12.plotted the so-called pole mass

m H =2sinh M H

Eq.(4)arises from a lattice meson action with a nearest neighbor symmetric di?erence discretization which appears to be favored by studies of lattice dispersion relations [34,38].Using m H instead of the coe?cient M H of the exponential fall-o?partly corrects for O(am)lattice artefacts.We observe that m V for the vectormeson at zero temperature,unlike M V,is strikingly linear in the quark mass up to values in the vicinity of the charm quark mass.For small meson masses the di?erence between m H and M H is of course negligible.

Figure2summarizes the results atβ=6.0which on the high temperature lattice corresponds to a temperature of0.93T c.The upper part of the?gure shows m V and m2P at small quark mass values while the lower part covers the entire quark mass range explored.The meson masses are plotted as function of m q where the quark mass is obtained from eq.(1)withκc(T=0)determined from a linear?t in m q to the combined zero temperature literature data on m2P[33,34]up to quark mass values m q a<0.08.As can be seen from the lowest lying line drawn in the upper part of Figure2,the linear?t works well and deviations begin to emerge at m q a?0.1.Our result for the critical kappa value isκc(T=0)=0.14542(2)which deviates marginally from the values quoted in[33,34,39]because we have chosen a?t procedure slightly di?erent from the one adopted there.Note however,that our value is well within the spread of the quotedκc values.Moreover,the upper part of Figure2shows that the?nite temperature pion(screening)mass retains a small but non-vanishing value atκc(T=0).A?t to the m2P data at quark mass values up to0.08of the form c+s m q,shown as the second lowest dotted line,leads to an intercept c=0.006(3)at m q=0.The slope s=3.07(8)is a little larger than the value of s=2.87(3)obtained from the equivalent?t to the T=0data.Alternatively,one can perform a?t with a temperature dependentκc leading to a slightly di?erent value,κc(T)=0.14550(4).

For the vectormeson masses,when plotted as a function of the zero temperature quark mass,we?nd that,as a whole,they apparently tend to be somewhat larger than the zero temperature values.In both cases,?ts linear in the quark mass work well and we obtain m V=0.42(2)at T?0.93T c as opposed to0.38(1)at T=0in the chiral limit.This is shown as the appropriate lines in the upper part of Figure2.At least part of this di?erence could,however,be absorbed into the shift inκc mentioned above.

In the lower part of Figure2m V and m P are shown linearly over the entire quark mass range explored.At zero temperature,the vectormeson mass is linear in m q over the entire range.A?t ansatz including a term quadratic in the quark mass returns a value of0.05(19)for its coe?cient which is compatible with0.The intercept is obtained as0.381(6).Within errors this intercept is in agreement with the result of a linear?t,m V=0.379(2)+2.588(5)m q which is shown in the?gure.Note,that these numbers are in agreement with the results for the intercept obtained from the ?t to the small quark mass data only.The mass of the pseudoscalar shows a behavior proportional to√

163×32,β=6.0,T=0

κ2M V

0.1280 1.284(4) 0.1300 1.162(3)

0.14100.630(4)

243×8,β=6.0,T=0.93T c

κ2M V

0.1280 1.29(1) 0.1300 1.168(6)

0.14100.64(1)

323×8,β=6.0,T=0.93T c

κ2M V

0.141000.64(1)

0.463(6)

0.144500.57(1)

0.42(1)

0.144000.51(2) 0.14400.300(1)

0.145000.47(2)

0.273(7)

0.145000.44(3) 0.14500.20(1)

κ1M P

0.1280 1.124(2)

0.1300 1.040(2) 0.14100.333(2)

κ1M P

0.1280 1.110(4)

0.1300 1.011(4) 0.14100.350(4)

κ1M P

1.20(2)

0.13600 1.07(1) 0.128000.96(1)

0.14232 1.01(2)

0.95(2)

0.136000.91(2)

0.78(1)

0.142320.85(3)

0.76(1)

0.141510.76(2) 0.141510.65(2)

0.142800.76(3)

0.64(2)

0.142800.75(3) 0.142800.63(1)

242×64×8,β=6.4,T=1.63T c

κ2M V

0.13000 1.085(2)

0.140000.720(4)

0.140300.757(4)

0.140600.719(3)

0.140900.755(4)

Table4:Meson masses M H of the pseu-

doscalar and vector meson atβ=6.4,T=

1.63T c on a242×64×8lattice.

theory,which turns into a linear one at larger m q values.Correspondingly,we chose a ?t ansatz of the form

m P=

00.2

0.4

0.60.81

00.020.040.060.080.1

(m P a )2

, m V a m q a β = 6.0P, T=0.0 T C P, deg, T=0.9 T C P, non-deg, T=0.9 T C V, T=0.0 T C V, deg, T=0.9 T C V, non-deg, T=0.9 T C 00.2

0.4

0.6

0.811.21.4

00.050.10.150.20.250.30.350.4

m P a , m V a m q a β = 6.0

P, T=0.0 T C P, deg, T=0.9 T C P, non-deg, T=0.9 T C V, T=0.0 T C V, deg, T=0.9 T C V, non-deg, T=0.9 T C Figure 2:Meson masses at T ?0.93T c compared with the zero temperature results as a function of the quark mass.The zero-temperature data is partially taken from the literature [33,34,39].The upper plot features the vectormeson mass and the pseudoscalar mass squared in the vicinity of the chiral limit while in the lower part the data for the entire quark mass range are shown.Here both masses are plotted linearly.The lines are ?t results explained in the text.

00.2

0.4

0.6

0.8

1

1.2

1.4

00.050.10.150.20.250.30.350.4

m q a

β = 6.2 2πT m P a,m V a free field P, deg, T=0P, non-deg, T=0P, deg, T=1.2 T C P, non-deg, T=1.2 T C V, deg, T=0V, non-deg, T=0V, deg, T=1.2 T C V, non-deg, T=1.2 T C 00.2

0.4

0.6

0.8

1

1.2

00.050.10.150.20.250.3

m q a

β = 6.4 2πT m P a,m V a P, T=0.0 T C P, T=1.6 T C V, T=0.0 T C V, T=1.6 T C Figure 3:Meson masses at T ?1.23T c and 1.63T c compared with zero temperature data partially taken from the literature [33,34,39].

The results for the meson masses at β=6.2and 6.4corresponding to the two tem-peratures above T c which are investigated here,T ?1.23T c and 1.63T c respectively,are summarized in Figure 3.Again,we show m V and m P as a function of the quark mass m q with κc (T =0)determined as explained above from ?ts to the combined zero temperature pion mass results [34,35]at small quark mass.The resulting critical κvalues are κc =0.14313(2)and 0.14141(3)at 6.2and 6.4,respectively.

The zero temperature data shows the same behavior as atβ=6.0,including the linearity in m q of the vector meson mass up to the largest quark masses explored.At β=6.2we?tted m V at T=0over the entire quark mass range both,quadratically in m q,leading to m V=0.283(2)+2.61(2)m q+0.10(4)m2q as well as linearly,m V= 0.279(1)+2.65(5)m q.Again,the quadratic term was found to be small and the intercepts are https://www.doczj.com/doc/e71579899.html,ing only data close to the chiral limit leads to an extrapolated value of mρ=0.267(8),so that the deviation from the?ts to the full data set is a little larger than atβ=6.0.The dotted lines given in Figure3are the quadratic?ts. Note,that the data points labelled by“non-deg”indicate meson masses obtained from propagators with two quarks of non-degenerate masses.They are plotted as a function of an”e?ective”quark mass

The lowest value of quark“momentum”in the temporal direction,i.e.the smallest Matsubara frequency isπT due to the antiperiodic boundary condition for fermions in

the t direction.This leads to the lowest“energy”contributing to spatial correlation functions of mesonic operators of

m H=2

m q=(m q,1+m q,2)/2,are above the ones for degenerate quarks would?t into this picture as2 m2q+(πT)2<

m2q,2+(πT)2.At large quark masses the Monte Carlo data exceed the free quark curve.This could be explained by noting that in the lattice version of eq.(6)we have used the bare quark mass.At the temperatures investigated one should presumably compare with an e?ective quark mass which also accounts for a thermal contribution [9].In addition,it has been argued in the context of dimensional reduction that the (con?ning)potential of the reduced three-dimensional theory leads to modi?cations

of eq.(6)for screening masses[24].These modi?cations will be positive and of order √

actions.In the Wilson case,at 1.63T c the pion screening mass is almost degenerate with the ρand close to 2π,with a πto ρratio of 0.95(1).The same approximate degeneracy of πand ρscreening masses has been observed in the only other quenched analysis with Wilson quarks available so far

[17].Here a ratio of 0.955(7)has been ob-tained at a temperature of about 1.5T c .Quite contrary,the staggered pion screening mass is much smaller than the ρ,m π/m ρ=0.75(2)at 1.8T c ,and even at 5T c reaches only about 75%of two times the lowest Matsubara frequency.There is no immediate explanation at our hands at least.Possible reasons include the di?erent symmetries of the lattice actions at non-vanishing lattice spacing although the lattice spacings are below 0.1fm,the di?erent aspect ratios although it is hard to see why this should a?ect the πto ρratio,and ?nite volume e?ects although those would be expected to go the opposite way.Thus,it is hoped that future systematic studies help to resolve this discrepancy between the two lattice fermion formulations.

01

2

3

456

M / T T / T C

Figure 4:Comparison with the results of quenched staggered simulations below [12]and above T c [5,7].The data have been rescaled by the appropriate ratio of 2π,eq.(6),to its ?nite lattice size corrected value so that the data can immediately be compared with the continuum expectation for free quarks shown as the horizontal line.4Dispersion relation

At non-zero temperature,Lorentz invariance is broken because the temporal direction is distinguished as the direction of the four-velocity of the heat bath.As a consequence,unlike the zero temperature case where it depends on the Lorentz invariant scalar p 2,

in this case the spectral density will depend on temporal and spatial components p0 and p separately.At temperatures below the con?nement-decon?nement transition the spectrum will still consist of particle excitations,yet,their dispersion relations might be more complicated and re?ect the breaking of Lorentzian invariance.The spectral density will be of the form

ρ(p0, p)=2π?(p0)δ(p20?ω2( p,T))(7) where

ω2( p,T)=m2+ p2+Π( p,T)(8) contains the temperature dependent vacuum polarization tensorΠ( p,T).As a simple example,assume that the temperature e?ects can be absorbed into a temperature de-pendent mass m(T)and a coe?cient A(T)which might also be temperature dependent and di?erent from1,

ω2( p,T)?m2(T)+A2(T) p2(9) Such an approximation might hold at least at small temperatures.In this case,at zero momentum the temporal correlator will decay with the so-called pole mass m(T)

C( p=0,t)~exp(?m(T)t)(10)

whereas the spatial correlation function has an exponential fall-o?

C( ?p=0,z)~exp(?m sc(T)z)(11)

determined by the screening mass m sc(T)=m(T)/A(T)which di?ers from the pole mass if A(T)=1.At non-vanishing“momentum”, ?p=0,the exponential decrease of the spatial correlator is described byωsc,

C( ?p,z)~exp(?ωsc z)(12)

where in this particularly simple exampleωsc is given as

ω2sc= p2⊥+

ω2n

2 = k sin2 p k2 (14)

arising from an e?ective boson action with a nearest-neighbor kinetic term,is best capable to describe lattice data at non-zero momentum.

We investigated the lattice dispersion relation of mesons below T c ,T ?0.93T c ,for di?erent quark masses and compared it with T =0data.In Figure 5we show our results obtained in the pseudoscalar channel at κ=0.141.We have plotted M πa obtained by subtracting the momentum contribution sin 2(p k a/2)from both sides of eq.(14)where E is the ?tted coe?cient of the exponential fall-o?in z of the spatial correlation function.Results at other κvalues investigated are very similar.

0.4

0.5

0.6

0.7

0.8

00.20.40.60.81

1.2 1.40.3

0.40.50.60.70.8M

Σk (p k a)2 T=0.0 T c , 163x32, dir=x

T=0.9 T c , 243x8 , dir=x

T=0.9 T c , 243x8 , dir=t

T=0.9 T c , 323x8, dir=x

T=0.9 T c , 323x8 , dir=t

Figure 5:The lattice dispersion relation shown for the pseudoscalar channel at κ=0.141.In the ?gure,“dir ”indicates whether spatial or temporal components of (p x ,p y ,p t )were chosen to be di?erent from 0.The horizontal lines denote the dis-persion relation eq.(14).Note that the T =0data has been shifted upwards,right scale.

In Figure 5,a p k independence of the data indicates that eq.(14)is the correct dispersion relation.Indeed,it seems to be favored by the zero temperature data.As in [38],using a di?erent dispersion relation led to data points rising or falling with p k .Regarding the data at T =0.93T c ,again we observe that the zero-temperature dispersion,eq.(14),is describing the data for non-vanishing spatial momentum com-ponents properly.Note that the ?gure contains data from two di?erent lattice sizes,leading to di?erent values for the spatial momenta.Moreover,the single data point for

the lowest bosonic Matsubara frequencyω1=2πT is also lying on the horizontal line, suggesting that the coe?cient A of eq.(13)is not too far from unity.Of course,this conclusion is tied to the applicability of eq.(13),moreover,the statistical signi?cance is certainly not overwhelming.Nevertheless,this result might be taken as further support for the di?erence between pole and screening masses not being too large at T?0.93T c,see also[17].

In addition to the investigation below T c,we also computed the dispersion relation in mesonic channels in the decon?ned phase.The results are shown and compared with the free quark case in Figure6.The former have been determined by?ts in the same way as the masses while for the latter,to be de?nite we use the e?ective energies at Nσ/4,obtained from sink operators with R=4.Both,Monte Carlo as well as free quark results are somewhat dependent on the quark-antiquark distance. As can be read o?the?gure,at1.23T c the data for spatial momenta show systematic deviations from the preferred zero-temperature dispersion relation.These di?erences have almost disappeared at1.63T c and the data are becoming consistent with the zero-temperature dispersion relation which also happens to describe the free quark case. For the lowest temporal mesonic“momentum”,p t=2πT,at1.23T c pseudoscalar and vector“energy”both are systematically lower than the corresponding results for a spatial momentum of exactly the same value showing that Lorentzian symmetry is disturbed.At1.63T c the data follow the free quark behavior,in particular insofar in the vector channel the“energy”at p t=2πT is much smaller than the“energy”at the same spatial momentum a.

5Wave function

Bethe-Salpeter amplitudes provide information about the probability of?nding a pre-arranged con?guration of quarks inside a hadron.Their general de?nition is given by

Φ( R)= 0|O( R)|H( p) (15) where,for|H being a meson state,the operator O( R)annihilates a quark-antiquark pair with the appropriate quantum numbers separated by R.The choice of the operator is not unique.On the lattice,Bethe-Salpeter amplitudes have been stud-ied in Coulomb and in Landau gauge or by using various gauge-invariant de?ni-tions[36,40–43].The various methods treat the gluon?ux tube connecting quark and antiquark in a di?erent way so that it may not be surprising that di?erent de?ni-tions of the amplitudes have lead to di?erent results(see however[43]).Moreover,an

0.40.5

0.6

0.7

0.8

0.9

1

1.1

1.2

00.10.20.30.4

0.50.60.70.8M Σk (p k a)2 T = 1.23 T C P, dir=x P, dir=t V, dir=x V, dir=t 0.40.5

0.6

0.7

0.8

0.9

1

1.1

1.200.10.20.30.4

0.50.60.70.8M Σk (p k a)2

T = 1.63 T C P, dir=x P, dir=t V, dir=x V, dir=t 0.40.5

0.6

0.7

0.8

0.9

11.1

1.2

00.10.20.30.40.5

0.60.70.8M Σk (p k a)2 free case

P, dir=x P, dir=t V, dir=x V, dir=t Figure 6:The lattice dispersion relation at two temperatures above T c and in the free quark case.Shown are both the results for the pseudoscalar and the vector channel.The bare quark mass is roughly equal to m s .Again,“dir ”indicates whether spatial or temporal components of (p x ,p y ,p t )were chosen to be di?erent from 0.The horizontal lines denote the dispersion relation eq.(14).

多功能6位电子钟说明书

多功能6位电子钟说明书 一、原理说明: 1、显示原理: 显示部分主要器件为2位共阳红色数码管,驱动采用PNP型三极管驱动,各端口配有限流电阻,驱动方式为扫描,占用P1.0~P1.6端口。冒号部分采用4个Φ3.0的红色发光,驱动方式为独立端口驱动,占用P1.7端口。 2、键盘原理: 按键S1~S3采用复用的方式与显示部分的P3.5、P3.4、P3.2口复用。其工作方式为,在相应端口输出高电平时读取按键的状态并由单片机支除抖动并赋予相应的键值。 3、迅响电路及输入、输出电路原理: 迅响电路由有源蜂鸣器和PNP型三极管组成。其工作原理是当PNP型三极管导通后有源蜂鸣器立即发出定频声响。驱动方式为独立端口驱动,占用P3.7端口。 输出电路是与迅响电路复合作用的,其电路结构为有源蜂鸣器,4.7K定值电阻R16,排针J3并联。当有源蜂鸣器无迅响时J3输出低电平,当有源蜂鸣器发出声响时J3输出高电平,J3可接入数字电路等各种需要。驱动方式为迅响复合输出,不占端口。 输入电路是与迅响电路复合作用的,其电路结构是在迅响电路的PNP型三极管的基极电路中接入排针J2。引脚排针可改变单片机I/O口的电平状态,从而达到输入的目的。驱动方式为复合端口驱动,占用P3.7端口。 4、单片机系统: 本产品采用AT89C2051为核心器件(AT89C2051烧写程序必须借助专用编程器,我们提供的单片机已经写入程序),并配合所有的必须的电路,只具有上电复位的功能,无手动复位功能。 二、使用说明: 1、功能按键说明: S1为功能选择按键,S2为功能扩展按键,S3为数值加一按键。 2、功能及操作说明:操作时,连续短时间(小于1秒)按动S1,即可在以上的6个功能中连

七彩闹钟说明书

七彩时钟使用说明书 本产品融合了万年历之时间、日期、星期、温度的显示,特别适合居家办公使用。 一、功能简介 ★正常时间功能:显示时间、日期(从2000年至2099年)、星期、温度,并可实现12/24小时制的转换。 ★闹钟和贪睡功能:每日闹铃,闹铃音乐有8首可选,同时可开启贪睡功能。 ★环境温度显示功能:温度测量00C-500C或320F-1220F并可进行摄氏/华氏温度转换。★七彩灯功能:可发出七种颜色的光,循环变色。 二、功能操作 ⑴.时间日期设置 ★上电后显示正常状态.按SET键进入时间、日期的设置,并以下列顺序分别设置小时分钟、年、月、日、星期等,通过UP/DOWN键配合来完成设置。 时→分→年→月→日→正常显示 ★设置范围:时为1-12或0-23,分为0-59,年为2000-2099.月为1-12.日为1-31;在日期设置的同时,星期由MON 3=. SUN相应的自动改变。 ★在设置状态,也可按AL键或无按键1分钟退出设置,并显示当前所设置的时间。 ★在正常状态,按UP键进行12和24小时转换。 ⑵、闹钟和贪睡设置 ★在正常状态,按AL键一次进入闹钟模式。 ★在闹钟状态,按SET键进入闹铃设定状态,以下列顺序分别设置小时、分钟、贪睡、音乐,通过UP/DOWN键配合来完成其设置。 时→分→贪睡→音乐→退出 ★在设置状态,如果无按键1分钟或按MODE键退出设置,并显示当前所设置的时间。 ★在闹钟状态,通过UP键开启闹铃的标志,按第二次UP键开启贪睡功能。 闹铃→Zz贪睡→OFF ★当闹钟到达设定时间,响闹1分钟;当贪睡时间到达响闹,按SET键取消响闹或按任意键停止响闹。 ★贪睡的间隔延续时间范围设定:1-60分钟。 ★当闹铃及贪睡的标志未开启时,即闹铃和贪睡同时关闭,只有在闹铃标志开启时,重按UP,贪睡功能才有效。 ⑶、温度转换 在正常状态,按DOWN键可以进行摄氏l华氏温度间的相互转换。 ⑷、按TAP可开启夜灯,5秒钟自动熄灭。 ⑸、把开关置ON或DEMO位置开启七彩灯。 ⑹、可使用外接直流电源:4.5V 100MA的变压器。 三、注意事项: 1、避免猛烈冲击、跌落。 2、勿置阳光直射、高温、潮湿的地方。 3、避免使用带有腐蚀性化学成份的液体和硬布来抹擦本产品表面。 4、当屏幕显示混乱时,拔出钮扣电池,重新装上恢复原始状态,使显示恢复正常。 5、切勿新旧电池混在一起使用,在屏幕显示不清楚时请及时更换新电池。 6、如长时间不使用时钟时,请将电池取出,以免电池漏液损坏本机。 7、请勿随意拆开产品调整内部元件参数。

电子闹钟说明书

本电子闹钟的设计是以单片机技术为核心,采用了小规模集成度的单片机制作的功能相对完善的电子闹钟。硬件设计应用了成熟的数字钟电路的基本设计方法,并详细介绍了系统的工作原理。硬件电路中除了使用AT89C51外,另外还有晶振、电阻、电容、发光二极管、开关、喇叭等元件。在硬件电路的基础上,软件设计按照系统设计功能的要求,运用所学的汇编语言,实现的功能包括‘时时-分分-秒秒’显示,设定和修改定时时间的小时和分钟、校正时钟时间的小时、分钟和秒、定时时间到能发出一分钟的报警声。 一芯片介绍 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C51是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案,外形及引脚排列如图1-1所示。 图1-1 AT89C51引脚图 74LS573 的八个锁存器都是透明的D 型锁存器,当使能(G)为高时,

Q 输出将随数据(D)输入而变。当使能为低时,输出将锁存在已建立的数据电平上。输出控制不影响锁存器的内部工作,即老数据可以保持,甚至当输出被关闭时,新的数据也可以置入。这种电路可以驱动大电容或低阻抗负载,可以直接与系统总线接口并驱动总线,而不需要外接口。特别适用于缓冲寄存器,I/O 通道,双向总线驱动器和工作寄存器。外形及引脚排列如图1-2所示。 图1-2 74LS573引脚图

小型数字系统-定时闹钟说明书

XX 学院 课程设计说明书(20XX / 20XX学年第一学期) 课程名称:嵌入式系统设计 题目:定时时钟 专业班级:XXXXXXXXXXXX 学生姓名:XXX 学号:XXXXXXXX 指导教师:XXXXXX 设计周数:2周 设计成绩: 二OXX年X 月XX 日

定时时钟设计说明书 1.选题意义及背景介绍 电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。所以设计一个简易数字电子钟很有必要。本电子钟采用AT89C52单片机为核心,使用12MHz 晶振与单片机AT89C52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管显示时间的小时、分钟和秒,并在计时过程中具有整点报时、定时闹钟功能。时钟设有起始状态,时钟显示,设置时钟时,设置时钟分,设置闹钟时和设置闹钟分共六个状态。电子钟设有四个操作按钮:KEY1(MODE)、KEY2(PLUS)、KEY3(MINUS)、KEY4(RESET),对电子钟进行模式切换和设置等操作。 2.1.1方案设计 2.1.2系统流程框图 AT89C52 按钮 数码管显示 开启电源 初始显示d.1004-22 循环检测按键状态 闹铃 KEY1是否按下模式切换KEY2是否按下 数字加 KEY3是否按下 数字减

2.1.3电路设计 (整体电路图)

(已封装的SUB1 内部图) 2.1.4主要代码 1)通过循环实现程序的延时 void delay(uint z) { uint x, y; for (x = 0; x=second1 && second

C++电子闹钟设计说明书

电子闹钟设计说明书 一、实现的功能 一个简单的电子闹钟设计程序,和一般的闹钟的功能差不多。首先此程序能够同步电脑上的显示时间,保证时间的准确性;24小时制,可以根据自己喜欢的铃声设置闹钟提示音,还能自己设置提示语句,如“时间到了该起床了”,“大懒虫,天亮了,该起床了”等等,所以这是一个集实用和趣味于一体的小程序。 二、设计步骤 1、打开Microsoft Visual C++ 6.0,在文件中点击新建,在弹出框内选择MFC AppWizard[exe]工程,输入工程名张卢锐的闹钟及其所在位置,点击确定,如图所示。 2、将弹出MFC AppWizard-step 1对话框,选择基本对话框,点击完成,如图所示。

然后一直点下一步,最后点完成,就建立了一个基于对话窗口的程序框架,如图所示。 3、下面是计算器的界面设计 在控件的“编辑框”按钮上单击鼠标左键,在对话框编辑窗口上合适的位置按下鼠标左键并拖动鼠标画出一个大小合适的编辑框。在编辑框上单击鼠标右键,在弹出的快捷莱单中选择属性选项,此时弹出Edit属性对话框,以显示小时的窗口为例,如图所示,在该对话框中输入ID属性。

在控件的“Button”按钮上单击鼠标左键,在对话框上的合适的位置上按下鼠标左键并拖动鼠标画出一个大小合适的下压式按钮。在按钮上单击鼠标右键,在弹出的快捷菜单中选择属性选项,此时也弹出Push Button属性对话框,以数字按钮打开为例,如图所示,在该对话框中输入控件的ID值和标题属性。 按照上面的操作过程编辑其他按钮对象的属性。 表1 各按钮和编辑框等对象的属性 对象ID 标题或说明 编辑框IDC_HOUR 输入定时的整点时间 编辑框IDC_MINUTE 输入定时的分钟数 编辑框IDC_FILE 链接提示应所在地址 编辑框IDC_WARING 自己编辑显示文本 按钮IDC_OPEN 打开 按钮IDC_IDOK 闹钟开始 按钮IDC_CHANGE 重新输入 静态文本IDC_STATIC 界面上的静态文本,如时,分,备注完成后界面如图所示。

超高分辨率显微镜技术

超高分辨率显微镜技术 为了更好地理解生命过程和疾病发生机理,生物学研究需要观察细胞内器官等细微结构的精确定位和分布,阐明蛋白等生物大分子如何组成细胞的基本结构,重要的活性因子如何调节细胞的主要生命活动等,而这些体系尺度都在纳米量级,远远超出了常规的光学显微镜(激光共聚焦显微镜等)的分辨极限。为了解决生命科学研究面临的这一难题,超高分辨率显微技术应时而生,并且一经问世就得到了广泛的响应,2008年Nature Methods将这一技术列为年度之最。 为了达到纳米量级的分辨率和极快速的成像,超高分辨率显微镜引入了许多突破时代的创新技术,了解这些技术将带领我们走入超高分辨率显微镜的奇妙世界。 3D-SIM(结构照明技术): 荧光样品通过不同方向和相位的光源照射,并且在成像后利用特点的运算方法重构,产生突破光学极限的超高分辨率图像。 ●完全兼容现有荧光分子和荧光染料、不改变任何实验流程 ●轴向分辨率提高到80-120nm,空间分辨率提高到激光共聚焦显微镜观察极限的8 倍。 搭载3D-SIM技术的DeltaVision OMX超高分辨率显微镜已经成功运用到了很多样品,比如微生物、脊椎动物细胞、组织切片甚至整个胚胎等。大大提高的分辨率在鉴定和研究亚细胞结构中成效显著,比如对微管和肌动蛋白的观察中可以解析到单根微管纤维。 Monet (单分子成像与定位技术): 通过在极短时间内对单个或几个荧光分子的激发和获取发射光信号,上千次获取后重构图像,从而获得突破百纳米极限的超高分辨率图像。这种技术需要使用独特的光敏蛋白来做荧光染料,通过独特的算法可以分辨衍射极限上重叠的荧光团位置。 ●搭载PALM的DeltaVision OMX可在极短时间内完成图像获取和重构 ●能够处理极大密度的图像,使高浓度标记的和更高激活能量的样品的成像变成 可能。 超高速成像: 研究者对于成像速度进入“亚秒时代”的需求已经十分的迫切。以往的速度瓶颈主要在曝光时间以及CCD成像速度,利用高效光路和改进的新型照相机,大大提高了成像速度。

C电子闹钟设计说明书

C电子闹钟设计说 明书

电子闹钟设计说明书 一、实现的功能 一个简单的电子闹钟设计程序,和一般的闹钟的功能差不多。首先此程序能够同步电脑上的显示时间,保证时间的准确性;24小时制,能够根据自己喜欢的铃声设置闹钟提示音,还能自己设置提示语句,如“时间到了该起床了”,“大懒虫,天亮了,该起床了”等等,因此这是一个集实用和趣味于一体的小程序。 二、设计步骤 1、打开Microsoft Visual C++ 6.0,在文件中点击新建,在弹出框内选择MFC AppWizard[exe]工程,输入工程名张卢锐的闹钟及其所在位置,点击确定,如图所示。 2、将弹出MFC AppWizard-step 1对话框,选择基本对话框,点

击完成,如图所示。 然后一直点下一步,最后点完成,就建立了一个基于对话窗口的程序框架,如图所示。 3、下面是计算器的界面设计 在控件的“编辑框”按钮上单击鼠标左键,在对话框编辑窗口上合适的位置按下鼠标左键并拖动鼠标画出一个大小合适的编辑框。在编辑框上单击鼠标右键,在弹出的快捷莱单中选择属性选

项,此时弹出Edit属性对话框,以显示小时的窗口为例,如图所示,在该对话框中输入ID属性。 在控件的“Button”按钮上单击鼠标左键,在对话框上的合适的位置上按下鼠标左键并拖动鼠标画出一个大小合适的下压式按钮。在按钮上单击鼠标右键,在弹出的快捷菜单中选择属性选项,此时也弹出Push Button属性对话框,以数字按钮打开为例,如图所示,在该对话框中输入控件的ID值和标题属性。 按照上面的操作过程编辑其它按钮对象的属性。 表1 各按钮和编辑框等对象的属性

闹钟功能说明文档

一、功能描述 本工程包括矩阵键盘和数码管显示模块,共同实现一个带有闹钟功能、可以设置时间的数字时钟。具体功能如下: 1.数码管可以显示时十位、时个位、分十位、分个位、秒十位、秒个位。 2.上电后,数码管显示000000,并开始每秒计时。 3.按下按键0进入时间设置状态。再按下按键0退出时间设置状态,继续 计时。 4.在时间设置状态,通过按键1来选择设置的时间位,在0~5之间循环选 择。 5.在时间设置状态,通过按键2来对当前选择的时间位进行加1。 6.在计时状态下,按下按键14,进入闹钟时间点设置状态。再按下按健 15,退出闹钟设置状态。 7.在闹钟设置状态,按下按键13选择设置的时间位,此时可以按下所需要 的按键序号设置对应闹钟时间。 8.当前时间与所设置的时间点匹配上了,蜂鸣器响应5秒。 二、平台效果图

三、实现过程 首先根据所需要的功能,列出工程顶层的输入输出信号列表。

我们把工程分成四个模块,分别是数码管显示模块,矩阵键盘扫描模块,时钟计数模块,闹钟设定模块。 1.数码管显示模块 本模块实现了将时钟数据或者闹钟数据显示到七段译码器上的功能。 七段译码器引脚图: 根据七段译码器的型号共阴极或者共阳极,给予信号0或1点亮对应的led灯,一个八段数码管称为一位,多个数码管并列在一起可构成多位数码管,它们的段选(a,b,c,d,e,f,g,dp)连在一起,而各自的公共端称为位选线。显示时,都从段选线送入字符编码,而选中哪个位选线,那个数码管便会被点亮。数码管的8段,对应一个字节的8位,a对应最低位,dp 对应最高位。所以如果想让数码管显示数字0,那么共阴数码管的字符编码为00111111,即;共阳数码管的字符编码为11000000。 在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。 本模块采用6个七段译码器显示闹钟小时分钟秒位,使用一个计数器不停计数0-5,每个数字代表一个七段译码器,在对应的七段译码器给予对应的字符编码,以此达到扫描数码管显示数据的功能。 信号列表如下:

木头闹钟说明书

木头闹钟说明书 产品功能 ●同屏显示年、月、日、时、分、星期功能: ●闹钟及贪睡功能:贪睡功能开启后,闹钟可以6次闹响,每次闹响间隔5分钟。没有开启贪睡功能,闹响 1分钟后,闹钟功能自动关闭; ●时间记忆功能:不使用AC / DC适配器时,LED屏不显示,但时钟内部会继续正常计时,当连接上适配器时,时钟会自动显示当前正常的时间,无需重新设置; ● 1/4小时制转换功能; ●省电模式:每天下午6点至第二天早上7点,LED显示亮度会自动降低,使人的视觉感到舒适。 使用方法 走时及闹铃设置 ●将AC / DC适配器插上电源,把6V直流电压插头接入时钟6V接口,LED数字屏即发亮显示; ●按住SET键3秒进入设定模式,再按动SET键,每按动一次,年、月、日、时、分将依次闪烁。要设置年、月、日、时、分,只要改变在闪烁的数字即可,按动UP和DOWN 键均可调节,设置结束按SET键,时 钟回到正常的走时状态。星期的设定是全自动的, 它会随着时间的设置而自动改变。●设置闹铃时间,

按动DOWN键显示屏出现AL:- -或AL:on ,每按动DOWN键一次即会转换一次。按住DOWN键3秒,时的数字在闪烁时,即可通过UP 和DOWN键进行调节,要调节分的数字,先按动SET键切换到分的闪烁,同样用UP和DOWN键进行调 节,设置结束按SET键,时钟回到正常的走时状态。闹铃闹响时,按下SET或UP键,闹铃闹响停止,并 且关闭闹钟功能,如果闹铃闹响时,按下DOWN 键闹响停止,则贪睡功能自动开启,闹铃会每隔5分钟 闹响一次,可连续6次。若贪睡闹响未达到第6次,在任何一次闹响时,按下SET或UP键,不但闹响停止,同时自动关闭贪睡功能,如果是按下DOWN键,每隔分钟会再闹响一次,直至达到6次闹响为止; ●在设定模式下,15秒内不按任何键,时钟将恢复时间显示。 12/24小时制设置 正常时间显示下,每按一次UP键,可以实现1/4小时制的转换。在12小时制式下,数字走到12,这 时在时钟的左上角将会出现亮点,表示这时已是下午时间。 电源供电 AC / DC适配器输入电压:220-230V 0HZ ,输出电压:6V /00mA。功率是:6V*0.2=1.2W将适配器6V直

木头闹钟说明书

精品文档 木头闹钟说明书 产品功能 ●同屏显示年、月、日、时、分、星期功能: ●闹钟及贪睡功能:贪睡功能开启后,闹钟可以6次闹响,每次闹响间隔5分钟。没有开启贪睡功能,闹响 1分钟后,闹钟功能自动关闭; ●时间记忆功能:不使用AC / DC适配器时,LED屏不显示,但时钟内部会继续正常计时,当连接上适配器时,时钟会自动显示当前正常的时间,无需重新设置; ● 1/4小时制转换功能; ●省电模式:每天下午6点至第二天早上7点,LED显示亮度会自动降低,使人的视觉感到舒适。 使用方法 走时及闹铃设置 ●将AC / DC适配器插上电源,把6V直流电压插头接入时钟6V接口,LED数字屏即发亮显示; ●按住SET键3秒进入设定模式,再按动SET键,每按动一次,年、月、日、时、分将依次闪烁。要设置年、月、日、时、分,只要改变在闪烁的数字即可,按动UP和DOWN 键均可调节,设置结束按SET键,时

钟回到正常的走时状态。星期的设定是全自动的, 它会随着时间的设置而自动改变。●设置闹铃时间,2016全新精品资料-全新公文范文-全程指导写作–独家原创 11/ 1. 精品文档 按动DOWN键显示屏出现AL:- -或AL:on ,每按动DOWN键一次即会转换一次。按住DOWN键3秒,时的数字在闪烁时,即可通过UP 和DOWN键进行调节,要调节分的数字,先按动SET键切换到分的闪烁,同样用UP和DOWN键进行调 节,设置结束按SET键,时钟回到正常的走时状态。闹铃闹响时,按下SET或UP键,闹铃闹响停止,并且关闭闹钟功能,如果闹铃闹响时,按下DOWN 键闹响停止,则贪睡功能自动开启,闹铃会每隔5分钟 闹响一次,可连续6次。若贪睡闹响未达到第6次,在任何一次闹响时,按下SET或UP键,不但闹响停止,同时自动关闭贪睡功能,如果是按下DOWN键,每隔分钟会再闹响一次,直至达到6次闹响为止; ●在设定模式下,15秒内不按任何键,时钟将恢复时间显示。 12/24小时制设置 正常时间显示下,每按一次UP键,可以实现1/4小时制的转换。在12小时制式下,数字走到12,这

桌面闹钟概要设计说明书

在线招聘系统 概 要 设 计 说 明 书 《桌面闹钟应用程序》项目组日期:2011 年 09 月 18日

1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3定义 (3) 1.4参考资料 (3) 2总体设计 (4) 2.1需求规定 (4) 2.2运行环境 (4) 2.3基本设计概念和处理流程 (4) 2.4结构 (5) 2.5功能器求与程序的关系 (6) 2.6人工处理过程 (6) 2.7尚未问决的问题 (6) 3接口设计 (6) 3.1用户接口 (6) 3.2外部接口 (6) 3.3内部接口 (6) 4运行设计 (7) 4.1运行模块组合 (7) 4.2运行控制 (7) 4.3运行时间 (7) 5系统数据结构设计 (7) 5.1逻辑结构设计要点 (7) 5.2物理结构设计要点 (8) 5.3数据结构与程序的关系 (8) 6系统出错处理设计 (8) 6.1出错信息 (8) 6.2补救措施 (8) 6.3系统维护设计 (9)

概要设计说明书 1引言 1.1编写目的 本文档为“桌面闹钟应用程序概要设计说明书”,主要用于为实现桌面闹钟的概要说明,描述桌面应用程序的结构框架、数据流图及数据流说明字典,以对以后程序的建设起到指导和约束作用。 1.2背景 a.软件系统的名称:桌面闹钟应用程序 b.任务提出者:乐山师范学院计算机科学与信息技术学院 开发者:陈巧林 1.3定义 与已有的桌面闹钟应用程序的繁杂、操作麻烦等特点相比,该桌面闹钟应用程序的简单易操作等特点使得其用起来更方便。 1.4参考资料 [1] 谢炎桦.《数据库管理系统构建实例》.清华大学出版社 [2] 萨师煊,王珊.<<数据库系统概论>>.北京高等教育出版社:2003.6 [3] Jeffrey P.Monanus、赵年锁译.《数据访问技术》.机械工业出版社:1999.7 [4]朱元三.《软件工程技术概论[M] 》.北京科学出版社:2002.7.1~320 [5]陈汶滨,朱小梅,任冬梅.<<软件测试技术基础>>(21世纪高等学校计算机教育实用 规划教材).清华大学出版社出版时间:2008.07.1~96 [6] 朱成立.《数据结构》.清华大学出版社:2005.12 [7]王克宏著.Java技术教程(基础篇).北京:高等教育出版社,2002.04 [8]Bruce Eckel 著.Java编程思想.北京:机械工业出版社,2004.01 [9]孙燕主编.Java2入门与实例教程.北京:中国铁道出版社,2003.01 [10]叶核亚,陈立著.Java2程序设计实用教程.北京:电子工业出版社,2003.5 [11]柯温钊著.JA V A例解教程.北京:中国铁道出版社,2001.03

【最新2018】闹钟说明书word版本 (10页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 闹钟说明书 篇一:七彩闹钟说明书 七彩时钟使用说明书 本产品融合了万年历之时间、日期、星期、温度的显示,特别适合居家办公使用。 一、功能简介 ★ 正常时间功能:显示时间、日期(从201X年至2099年)、星期、温度,并可实现12/24小时制的转换。 ★ 闹钟和贪睡功能:每日闹铃,闹铃音乐有8首可选,同时可开启贪睡功能。 ★ 环境温度显示功能:温度测量00C-500C或320F-1220F并可进行摄氏/华氏温度转换。★ 七彩灯功能:可发出七种颜色的光,循环变色。 二、功能操作 ⑴.时间日期设置 ★ 上电后显示正常状态.按SET键进入时间、日期的设置,并以下列顺序分别设置小时分钟、年、月、日、星期等,通过UP/DOWN键配合来完成设置。 时→分→年→月→日→正常显示 ★ 设置范围:时为1-12或0-23,分为0-59,年为201X-2099.月为1-12.日为1-31;在日期设置的同时,星期由MON 3=. SUN相应的自动改变。 ★ 在设置状态,也可按AL键或无按键1分钟退出设置,并显示当前所设置的时间。★ 在正常状态,按UP键进行12和24小时转换。 ⑵、闹钟和贪睡设置 ★ 在正常状态,按AL键一次进入闹钟模式。

★ 在闹钟状态,按SET键进入闹铃设定状态,以下列顺序分别设置小时、分钟、贪睡、音乐,通过UP/DOWN键配合来完成其设置。 时→分→贪睡→音乐→退出 ★ 在设置状态,如果无按键1分钟或按MODE键退出设置,并显示当前所设置 的时间。★ 在闹钟状态,通过UP键开启闹铃的标志,按第二次UP键开启贪 睡功能。 闹铃→Zz贪睡→OFF ★ 当闹钟到达设定时间,响闹1分钟;当贪睡时间到达响闹,按SET键取消响闹或按任意键停止响闹。 ★ 贪睡的间隔延续时间范围设定:1-60分钟。 ★ 当闹铃及贪睡的标志未开启时,即闹铃和贪睡同时关闭,只有在闹铃标志开启时,重按UP,贪睡功能才有效。 ⑶、温度转换 在正常状态,按DOWN键可以进行摄氏l华氏温度间的相互转换。 ⑷、按TAP可开启夜灯,5秒钟自动熄灭。 ⑸、把开关置ON或DEMO位置开启七彩灯。 ⑹、可使用外接直流电源:4.5V 100MA的变压器。 三、注意事项: 1、避免猛烈冲击、跌落。 2、勿置阳光直射、高温、潮湿的地方。 3、避免使用带有腐蚀性化学成份的液体和硬布来抹擦本产品表面。 4、当屏幕显示混乱时,拔出钮扣电池,重新装上恢复原始状态,使显示恢复正常。 5、切勿新旧电池混在一起使用,在屏幕显示不清楚时请及时更换新电池。 6、如长时间不使用时钟时,请将电池取出,以免电池漏液损坏本机。 7、请勿随意拆开产品调整内部元件参数。

七彩变色闹钟说明书

七彩变色闹钟 商品规格:8*8*8cm 商品包装:英文彩盒包装(使用说明见宝贝描述最下方)。 ■分为OFF、ON二种作业模式: 1.选择OFF模式:在此模式下,灯光关闭并处于待机状态,只要轻轻按压「极光炫彩桌钟」就会散发随出柔和的彩色灯光,方便您夜间查看时间。 2.选择ON模式:灯光保持明亮,极光炫彩桌钟会持续发光,7种色彩自动更换 ■视觉、听觉双重唤醒 响亮地闹铃音警示,搭配绚烂的12彩光闪烁提示 ■超清晰LCD荧幕 超大型数字显示,夜光模式让你即使在漆黑的房间里也能一览无遗 ■ONE TOUCH控制 只要轻轻一个触碰,「极光炫彩桌钟」就会散发30秒的柔和照明,帮你轻松找到床头的边的水杯 ■理疗功能 钟体可渐进变换出7大光谱7种有利于人体的彩光,即“色光疗法”。可对人体自身所具有的“内在色彩平衡感”产生良性的刺激与调节,从而达到愉悦心情、稳定情绪、缓解压力、消除疲劳的功效。对于现代快节奏生活与工作压力所引起的各种心理疾病有着非常积极的缓解与辅助治疗功能。 【常见问题】 问:这个七彩闹钟可以调成24小时制显示当前时间吗? 答:可以的,只要当前时钟在下午的时候(就是有PM显示),直接按UP键,就可以直接转换成24小时制显示 问:这个桌钟确实很诱惑,但减压功能是什么意思? 答:早在20世纪初,瑞典科学家就发现特定的颜色可以调节人的情绪,而该款钟的设计正是以柔和的炫光变幻起到缓解压力的效果,给您每个放松的夜晚 问:可以放在小孩子房间吗? 答:当然可以,而且这样有启发智力的效果,如同在小孩床上方放多彩气球一样,变幻的柔和色彩可以引发思考,非常适合婴儿。贴心的妈妈不妨一试。

问:什么是one-touch功能? 答:当您半夜醒来要看时间(在没有开启炫光的时候),只需轻轻一压,就会发出30秒柔和的炫光,不必起来开灯了。 问:可以外接电源吗? 答:考七彩变色心情闹钟特别设计了支持外接电源的插口,在任何商店可以购买到的4.5-6v 变压器接上就可以了(都是通用的,价格在8元左右)。 转发 2009-02-08 22:07:30 分类: 天下杂谈浏览(1425) 评 论(1) 1、时间日期设置 ★上电后显示正常状态。按SET键进入时间、日期的设置,并以下列顺序分别 设置 小时、分钟、月、日、星期等,通过UP/DOWN键配合来完成设置。 ★设置范围:时为1-12或0-23、分为0-59、月为1-12、日为1-31 在日期设置的同时,星期由MON至SUN相应的自动改变. ★在设置状态,也可按AL键或无按键1分钟退出设置,并显示当前所设置的时 间。 ★在正常状态,按UP键进行12和24小时转换。 2、闹钟和贪睡设置 ★在正常状态,按AL键一次进入闹钟模式。 ★在闹钟状态,按SET键进入闹铃设定状态,以下列顺序分别设置小时、分钟、 贪睡 音乐,通过UP/DOWN键配合来完成其设置。 ★在设置状态,如果无按键1分钟或按SET键到退出设置状态,并显示当前所 设置的时间。 ★在闹钟状态,通过UP键开启闹铃样的标志,按第二次UP键开启贪睡功能。 ★当闹钟到达设定时间,响闹1分钟;当贪睡时间到达响闹,按SET键取消响 闹或按任意 键停止响闹。 ★ 贪睡的间隔延续时间范围设定:1-60分钟。 ★当闹铃及贪睡的标志未开启时,即闹铃和贪睡同时关闭,只有在闹铃标志开启

闹钟的说明文

介绍闹钟的说明文 我有一个可爱的小闹钟,它的外形象一只小白兔。 小白兔的头圆圆的,有一对红红的小眼睛,,小眼睛下面有一个突出的鼻子,鼻子上面有一个黑点。鼻子两边有三根胡子,在鼻子的下面有一个三瓣嘴。 小兔的样子是手捧一只大大的红萝卜,红萝卜的叶子就是一个按纽,只要按下按纽就可以报时。小兔子的肚子就是一个钟面,钟里有从一到十二这几个数字和时针、分针、秒针,小兔穿着一件蓝色的牛仔裤。在小兔身后有两个转纽,是调节时间的。 有一天,到了要起床的时间,爸爸妈妈还没有起床,可时间一分一秒的过去了,突然我的小闹钟叫了起来,嘟嘟……快起床了、快起床了,嘟嘟……快起床了、快起床了,爸爸马上从床上爬了起来,叫我起床。爸爸急匆匆做好了早饭。才使我上学没有迟到,爸爸妈妈上班也没有迟到。我要感谢我的小闹钟,我爱我的小闹钟。 新疆龚温娜 “快起床呀!起来呀,起床了……”“嘀嗒嘀嗒……”早晨,放在我书桌 【简评】 十四、我的小闹钟 ——学写说明文 【习作要求】 能写简单的说明文。 【教学目标】 1、指导学生仔细观察小闹钟,按一定的顺序把它写具体。 2、要抓住小闹钟的特点来写。 3、掌握说明文的基本写作方法,可以有条理地向大家介绍一种物品或一件事情的经过。 【教学重点】 1、让学生了解什么是说明文,说明文的说明方法有哪些? 2、按一定的顺序观察,抓住小闹钟特点来写。 【教学难点】 引导学生抓住事物的特点来说明,恰当使用动词和修辞手法把文章写具体、写生动。 【课前准备】 1、让学生准备自己喜欢的一个玩具 2、可爱的小闹钟。 3、有关闹钟的谜语。 【教学过程】 一、谈话导入: 师:老师这里有一道密令,谁愿意帮老师读一读?(生读)是什么呢? 生:说明书 师:对,是溜溜球的说明书。说明书是属于说明文的一种,除了说明书还包括:广告、解说词等,都属于说明文的范畴。通过说明书,我们可以看出,说明文的特点:言简意赅、通俗易懂。像平时我们在超市里经常看见的推销员说的话,整理成文字的形式,也属于我们说明文的范围。今天老师就来看看大家谁有成为一名合格推销员的潜力。老师也带来了一样东西,看你们谁能高价推销出去,首先,先来猜一个谜语,这个谜底就是今天老师给大家带来的东西。 师:出示谜语: 小小圆形运动场 三个选手比赛忙

数字闹钟说明书

说明书 一、主程序、子模块流程图电子闹钟主流程图:

调时、调日期、调星期流程图: 倒计时结束流程图:

音乐播放流程图: 闹铃功能流程图:

二、功能介绍: 有计时,计日期,计星期,调时、调日期、调星期、闹钟、调闹钟、音乐闹铃、秒表、99秒倒计时、60秒倒计时、5秒倒计时、倒计时结束播放提醒音乐、直接按键播放音乐共计15个小的功能,分为四个功能模块,用四个按键来实现 1.调时,查看日期以及调日期,查看星期以及调星期 按键1进入该模块后,显示该模块的界面“1234”,分别代表在该界面中要用到的按键编号。此时按1即进入调时界面,显示当前时间,按1秒加1,按2分加1,按3时加1,按4退出该界面而回到模块界面。此时按2即进入查看日期以及调日期的界面,显示当前日期,按1天加1,按2月加1,按3年加1,按4退出该界面而回到模块界面。此时按3即进入查看星期以及调星期的界面,显示当前星期,按1星期加1,按4退出该界面而回到模块界面。此时按4则退出功能模块1而回到主界面。 2.调闹钟 进入该模块时,显示闹钟时间,按1秒加1,按2分加1,按3时加1,按4退出调闹钟模块而回到主界面 3.秒表,倒计时 进入该模块后,显示界面“12 4”,分别代表在该界面中要用到的按键编号。此时按1进入秒表计时状态,按4退出,回到模块界面。此时按2进入99秒倒计时状态,按1切换到60秒倒计时,按1切换到5秒倒计时,在倒计时进行中,按4可以回到模块界

面。此时按4,可以回到主界面 4.音乐 进入该界面后,显示界面“00-00-00”,按1播放歌曲1,按2播放歌曲2,按3播放歌曲3,按4播放歌曲4,在播放歌曲时,按4可以结束播放音乐并且回到主界面。

ipod闹钟说明书

1产品简介 1.1音频播放 1.1.1本产品是一个主要应用在床头的小型音响装置; 1.1.2本产品内置数字调谐FM收音机; 1.1.3本产品具备IPOD接口,可作为IPOD外接音箱及为其充电 1.1.4本产品具备一个3.5mmAUX输入,方便接入其它音源如NOTBOOK,ZUNE等。 1.1.5本产品可通过“MODE”键去选择播放音源,默认音源为I Pod。 1.2闹钟和时间功能 1.2.1有时钟显示,并可选择12/24小时制显示. 1.2.3具有闹钟功能. 1.2.3.1可在同一天设置两个闹钟,闹钟“1”为天天闹,闹钟“2”为当天闹。 1.2.3.3每个闹钟均可选择I Pod、FM、AUX作为闹铃,但默认音源为I Pod。 1.2.3.4闹钟时LCD背光点亮,同时对应的闹钟符号闪烁。 1.3显示 本机正面有一个大型STN液晶显示屏,可显示时间、闹钟、音源、FM频道和频率、音量、SNOOZE和SLEEP。 1.4音频性能 1.4.1功放输出功率:2W+2W(THD1%) 1.4.2功放频率响应:20-20Khz 1.5电源供应 本机配备外接电源适配器,规格为Input 90-240V,output:9V1A,另内置一个3V150mA的纽扣电池。 2按键介绍 2.1“SNOOZE”键 在闹铃时按此键可暂停闹铃10分钟后重新闹,在FM状态下长按该键可进入手动调台,在其它工作状态下按此键可点亮LCD背光1分钟。 2.2“play/pause”键, 2.2.1IPod播放状态下,按此键一次暂停播放,再按一次恢复播放。 2.2.2在FM状态下,按此键一次静音,再按一次恢复播音,长按进入FM自动搜台。 2.2.4,AUX状态下,按一次为静音,再按一次为恢复播音。 2.3“MODE”键 在开机状态下,按此键可依次选择IPOD、FM、AUX音源。 2.4音量“+”键 2.4.1在播放状态下,按此键可增加音量。 2.4.2在设置闹钟时可调整闹钟的时间和闹铃的音量,可切换闹钟“ON”/“OFF”状态显示。 2.4.3在设置时间时可调整数值。

韩文版电子闹钟说明书翻译

韩文版电子闹钟说明书翻译 按“UP”键:在正常状态下按12124小时模式切换。 “DOWN”键:温度的华氏和摄氏度切换。 “SNOOZE/LIGHT”键:后背灯光被打开。 键:打开/关闭显示。 当报警模式时,显示“AL”,UP/DOWN选择报警音乐,按SET键即可设置,有6种音乐旋律,2种哔哩哔哩音。闹钟的话,会发出1分钟的警报声,如果想要继续睡觉,按SNOOZE/LIGHT键,请注意,LED灯光持续3秒。 “MODE”键可以进入生日记忆提醒功能,使用“UP/DOWN”键调节时间和日期,按下SET键即可完成设置。生日那天,音乐响5分钟。 计时功能启动时,显示“TIMER”定时功能,定时范围为00:00-29:59(详细说明在后部分)相反,当倒计时时,显示“TIMER”倒计时功能,定时范围为00:00-29:59。(详 细说明在后部分) 无论发生什么情况,只要1分钟不按任何键,就会重新进入正常模式。 1.正常时间模式 开始显示时间为12:00 新设置 按“SET”键,按时间>分钟>年度>月>日>退出顺序,按“SET”键后,在相应的部分按“UP/DOWN”键调整好数字后,再次按“SET”键,按照上述顺序依次设定。一旦设定完毕,最后按“SET”键完全设定好。 设置范围:1900-2099年,1-12月,1-31日,1-12时,0-23点,0-59分。 星期数是根据日期自动设置的。 12/24小时模式 在正常状态下,按“UP”键,可上午/下午兼容。 2.报警功能 按下“MODE”键,进入报警模式。 设置报警 闹钟指示按“UP”键,有无表示。按”SET“键按时间,分钟,音乐声顺序,按“UP/DOWN”键调节,一旦调节完成,按“SET”键完成。 警报鸣响约1分钟,按任意键就会停止。 在闹钟响的时候,按“SNOOZE/LIGHT”键,可以同时启动LED灯亮。 3.生日记忆报警 第4次按下“MODE”键,进入生日记忆提醒模式。 操作方法 按“SET”键后,用“UP/DOWN”调节数字,再按“SET”键进入下一个步骤,最后再按一下一阶段结束 一旦设定好日期,音乐就会响5分钟 4.秒表功能 按2次“MODE”键,进入这个功能

相关主题
文本预览
相关文档 最新文档