当前位置:文档之家› 发变组差动-4(标积制动式)

发变组差动-4(标积制动式)

发变组差动-4(标积制动式)
发变组差动-4(标积制动式)

发变组比率制动原理纵差保护

一、保护原理:

保护采用比率制动原理,见图一。为防止变压器空投及其他异常情况时变压器励磁涌流导致差动误动,比较各相差流中二次谐波分量对基波分量比(即I2ω/I1ω)的大小,当其大于整定值时,闭锁差动元件。当差流很大,达到差动速断定值时,直接出口跳闸。同时设置专门的TA断线判别环节,若判别差流是TA断线所致,发TA断线信号,并可选择是否闭锁差动保护出口。

图一变压器纵差保护逻辑框图

二、一般信息

2.3 出口跳闸方式

保护动作时只发信,不出口跳闸。

2.5定值整定(折算到基准侧)

注:CT断线闭锁差动控制符,1为闭锁,0为不闭锁

2.6投入保护

开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。(注:该保护投入时其运行指示灯是亮的。)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。

2.7 参数监视

点击进入变压器差动保护监视界面,可监视差动保护的整定值,差流和制动电流计算值,以及二次谐波计算值等信息。

2.8 通道平衡测试

本保护将发电机机端侧作为基准侧,设定基准侧电流5A,根据变压器各侧CT变比参

三、启动电流定值测试

在发电机机端侧、高厂变高压侧、发变组高压侧任一侧任一相中加入电流,外加电流达出口灯亮。

出口方式是否正确(打“√”表示):正确□错误□

信号指示是否正确(打“√”表示):正确□错误□

四、差流越限告警信号定值测试

当差流超过启动电流的1/3时,一般预示差动回路存在某种异常状态,需发信告警,提示运行人员加以监测。

在高厂变高压侧、发电机机端侧、发变组高压侧任一侧任一相中加入电流,外加电流超

五、比率制动特性测试

5.1比率动作方程测试:

()?????z d z d I I I I ;;q

I g I g

I +-q g z z I I I K >>><

其中: Id ――动作电流(即差流),c

h T d I I I I ++=

Iz ――制动电流,

()()()[](

)

φ--++=

3

`2`13213`2`1180cos ...max ......max I I I I I I I I I I z

φ——某同名相各侧电流最大者与其他侧反方向电流的夹角。 当φ<090时,标积制动I Z 取实际值;而当φ>900

时,I Z 取0

点击进入差动保护监视界面,监视差流和制动电流。在发电机中性点侧A 相(或B 相、C 相)加电流(0度),在主变高压侧(或在高厂变高压侧、高公变高压侧)A 相(或B 相、C 相)加反向电流(180度),差流为两侧折算电流的差值(数值差),制动电流为最大侧电流。固定基准侧电流,缓慢改变主变高压侧(或高厂变高压侧、高公变高压侧)A 相(或B 相或C 相)的电流幅值,直至发变组差动出口灯亮,按下表记录各电流。连续做六组数据即可。(注意:各侧电流的折算系数)

如果变压器的接线方式为Y/Δ-11,可由CT 接线方式Δ/Y 来校相位,也可由保护软件

校相位;软件校相位时差流算法为:A YB YA dA I I I I ?+-=.

.

.

.

,B YC YB dB I I I I ?+-=.

.

.

.

C YA YC dC I I I I ?+-=.

.

.

.

。以A 相差动比率制动特性测试为例,在中性点A 相和主变高压侧A

相加入电流,除了A 相有差流,C 相也有差流,则需要在中性点的C 相加入相应的平衡电流来消除C 相差流对A 相差动比率制动特性测试的影响。

I z

I q

I s

图二 变压器纵差比率制动特性曲线

5.2 二次谐波制动特性测试

动作方程: ??

?>≥

N N

I I I I I I I I 1.01.01.011212ωω

ωωωηη

其中: I 2ω、I 1ω——某相差流中的二次谐波电流和基波电流

η——整定的二次谐波制动比

I N 为二次CT 额定电流

模拟空投变压器状态,在主变高压侧A 相(或B 相、C 相)同时迭加基波和二次谐波电流;亦可在发电机中性点加基波,在主变高压侧加二次谐波,此时要注意平衡系数和变压器的接线方式。二次谐波制动有“闭锁三相”制动方式和“闭锁单相”制动方式,如果二次谐波制动方式选择为“闭锁三相”制动方式,还需要在发电机中性点相应相加平衡作用的基波电流,这是因为软件校Y/Δ相位时,在异相差流中会派生相当的二次谐波,先将测试相闭锁。以A 相二次谐波制动特性为例,在发电机中性点A 相加基波,在主变高压侧A 相加二次谐波,那么我们还需要在中性点C 相加一个平衡作用的基波,且C

A I I ωωη12<,保证

C 相不会抢先A 相被制动。

外加基波电流 (A )(必须大于启动电流),差动出口灯亮;增加二次谐波电流使差动出口灯可靠熄灭,记录数据。

5.3比率动作时间测试

在发电机中性点侧、主变高压侧、高厂变高压侧或高公变高压侧任一相突然加1.5Iq 电流,记录动作时间。

六、速断特性测试 6.1速断电流定值测试

将比率制动系数K z 整定值暂时整定为1.5(一个大于1的数值),减小拐点电流,增大启动电流,即增大当前的制动区,在任一侧任一相加电流,差流一直处于制动情况,继续加大电流,当差流大于速断定值时,变压器差动保护出口灯亮。

出口方式是否正确(打“√”表示):正确□错误□

信号指示是否正确(打“√”表示):正确□错误□

6.2速断动作时间测试

在发电机机端侧电流某一相端子突然外加1.5Is电流,记录动作时间。

七、T A断线

7.1发电机中性点侧、主变高压侧、高厂变高压侧或高公变高压侧中加入电流模拟变压器正

常运行(即各侧各相均有电流,且各相无差流)。

7.2在任一相将CT短接(模拟CT开路),速度要快、短接要可靠(检查短接相电流是否约

为0,否则短接不可靠)。TA断线灯亮

是否正确(打“√”表示):正确□错误□

7.3在同一侧任两相CT同时短接(模拟CT开路),速度要快、短接要可靠(检查短接相电

流是否约为0,否则短接不可靠)。TA断线灯亮

是否正确(打“√”表示):正确□错误□

由于高厂变高压侧电流较小,TA断线一般不会引起差动误动,因此高厂变高压侧TA 断线时可能不会闭锁差动保护动作。

八、差动保护出厂前例行调试

8.1测试发电机中性点侧、主变高压侧、高厂变高压侧或高公变高压侧中两两同名相反极性

加入5倍平衡电流,监视每相差流小于0.02 I e 。

是否正确(打“√”表示):正确□错误□

8.2测试AB相一侧同时加电流,保护动作无异常

是否正确(打“√”表示):正确□错误□

8.3测试BC相一侧同时加电流,保护动作无异常

是否正确(打“√”表示):正确□错误□

8.4测试CA相一侧同时加电流,保护动作无异常

是否正确(打“√”表示):正确□错误□

8.5测试ABC相一侧同时加电流,保护动作无异常

是否正确(打“√”表示):正确□错误□

8.6根据设计要求,测试二次谐波制动逻辑:一相制动闭锁三相差动(即“或”门制动)□

一相制动闭锁单相差动(即分相制动)□8.7检查保护压板是否正确投退保护(打“√”表示):正确□错误□

保护调试完,将定值恢复。

差动继电器实验报告

竭诚为您提供优质文档/双击可除差动继电器实验报告 篇一:变压器差动保护实验 实验内容实验二变压器差动保护实验 (一)实验目的 1.熟悉变压器纵差保护的组成原理及整定值的调整方法。 2.了解Y∕Δ接线的变压器,其电流互感器二次接线方式对减少不平衡电流的影响。 3.了解差动保护制动特性的特点。 (二)变压器纵联差动保护的基本原理1.变压器保护的配置 变压器是十分重要和贵重的电力设备,电力部门中使用相当普遍。变压器如发生故障将给供电的可靠性带来严重的后果,因此在变压器上应装设灵敏、快速、可靠和选择性好的保护装置。 变压器上装设的保护一般有两类:一种为主保护,如瓦斯保护,差动保护;另一种称后备保护,如过电流保护、低

电压起动的过流保护等。 本试验台的主保护采用二次谐波制动原理的比率制动 差动保护。 2.变压器纵联差动保护基本原理 如图7-1所示为双绕组纵联差动保护的单相原理说明图,元件两侧的电流互感器的接线应使在正常和外部故障时流 入继电器的电流为两侧电流之差,其值接近于零,继电器不动作;内部故障时流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。但是,由于变压器高压侧和低压侧的额定电流不同,为了保证正常和外部故障时,变压器两侧的两个电流相等,从而使流入继电器的电流为零。即: 式中:KTAY、KTA△——分别为变压器Y侧和△侧电流 互感器变比;KT——变压器变比。 显然要使正常和外部故障时流入继电器的电流为零,就必须适当选择两侧互感器的变比,使其比值等于变压器变比。但是,实际上正常或外部故障时流入继电器的电流不会为零,即有不平衡电流出现。原因是:(1)各侧电流互感器的磁化特性不可能一致。 (2)为满足(7-1)式要求,计算出的电流互感器的变比,与选用的标准化变比不可能相同; (3)当采用带负荷调压的变压器时,由于运行的需要

变压器差动保护的比率制动特性曲线及现场测试方法

变压器差动保护的比率制动特性曲线及现场测试方法 摘要:目前变压器都安装了差动保护,并引入比率制动式差动继电器继电器AL3 AL4 ,以保障电力系统的安全运行水平。为此,介绍变压器差动保护的制动特性曲线及现场测试方法。 关键词:变压器;差动保护;制动特性;测试方法 1前言 变压器是现代电力系统中的主要电气设备之一。由于变压器发生故障时造成的影响很大,故应加强对其继电保护装置功能的调试,以提高电力系统的安全运行水平。变压器保护装置中最重要一项配置——差动保护,就是为了防御变压器内部线圈及引出线的相间及匝间短路,以及在中性点直接接地系统侧的引出线和线圈上的接地短路。同时,由于差动保护选择性好,灵敏度高,因此,我们还应该考虑该保护能躲过励磁涌流和外部短路所产生的不平衡电流,同时应在变压器过励磁时能不误动。 2差动保护中引入比率制动特性曲线 变压器在正常负荷状态下,电流互感器电流互感器LDZ1 的误差很校这时,差动保护的差回路不平衡电流也很小,但随着外部短路电流的增大,电流互感器就可能饱和,误差也随之增大,这时的不平衡电流也随之增大。当电流超过保护动作电流时,差动保护就会误动,因此,为了防止变压器区外故障发生时差动保护误动作,我们希望引入一种继电器,其动作特性是:它的动作电流将随着不平衡电流的增大而按比例增大,并且比不平衡电流增大的还要快,这样误动就不会出现。因此,我们在差动保护中引入了比率制动式差动继电器,它除了以差动电流作为动作电流外,还引入了外部短路电流作为制动电流。当外部短路电流增大时,制动电流也随之增大,使继电器的动作电流也相应增大,从而有效地防止了变压器区外故障发生时差动保护误动作,制动特性曲线见图1。 由图1可知,该保护继电器能可靠地躲过外部故障时的不平衡电流,能有效地防止变压器区外故障发生时保护误动作,因此,差动保护的制动特性曲线的精确性是决定保护装置正确动作的关键,故制动特性曲线的测试是整套保护装置的调试重点。 3制动特性曲线的测试方法 以往在实际工作中,由于试验仪器所限,我们很容易忽略比率制动特性的测试,认为制动系数装置已固有,不用测试,结果往往造成保护装置因调试工作不细致而误动作。但随着现场

发变组继电保护原理与动作过程

发变组继电保护原理及动作过程 一、发变组继电保护配置的基本要求:发变组继电保护继电保护配置过程中必须满足四性(即:可靠性、选择性、速动性及灵敏性)的要求,必须保证在各种发电机异常或故障情况下正确的发信或出口动作。根据GB14285的规定,按照故障或异常运行方式性质不同,机组热力系统和调节系统的条件,我公司发变组保护的出口方式有以下几种: 1.全停:断开发电机-变压器组断路器、灭磁,关闭原动机主汽门,启动快切断开厂分支断路器。 2.降低励磁。 3.减出力。 4.程序跳闸:先关主汽门,待逆功率保护动作后断开主断路器并灭磁。 5.信号:发出声光信号。 二、我公司发变组保护配置情况介绍: 我公司发变组保护每台机共有三面屏柜,分别为发变组保护A柜、B 柜、C柜,A柜及B柜为冗余设计,两面柜的保护配置完全相同,都是发变组的电气量保护;C柜为主变和高厂变的非电量保护。 发变组电气量保护配置有以下几种类型: 1.定子绕组及变压器绕组部故障主保护:发电机差动、主变压器差动、发变组差动、高厂变差动、励磁变差动、发电机匝间保护、定子接地。

2.定子绕组及变压器绕组部故障后备保护:发电机对称过负荷、发电机不对称过负荷、低阻抗、高厂变复压过流、励磁变过流、励磁绕组过负荷。 3.转子接地保护 4.发电机失磁保护 5.发电机失步保护 6.发电机异常运行保护:发电机过励磁保护、发电机频率异常保护、发电机逆功率保护、发电机程跳逆功率保护、启停机保护、断口闪络保护、发电机断水、发电机热工。 7.主变(间隙)零序保护 8.厂用电后备保护:厂变分支过流、分支限时速断、分支零序过流。9.断路器失灵启动 变压器非电量保护: 1.变压器重瓦斯 2.变压器轻瓦斯 3.变压器压力释放 4.变压器油温异常 5.变压器油位异常 6.变压器冷却器全停 三、重要保护简绍 1.差动保护:包括发电机差动、发变组差动、主变差动、厂变差动、励磁变差动。我司保护装置的差动保护采用比率制动式保护,以各侧

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

比率差动继电器程序流程

比率差动继电器程序流程 输入参数(所需参数) S n :变压器额定容量。单位:MV A U n :变压器额定电压。单位:kV U%(X σ):短路电压百分比 n :电流互感器变比 α0:需要动作的最小匝间短路百分比 I n :变压器额定电流 n I = I cn :电流互感器额定电流n cn I I n = 短路电流计算部分 计算匝间短路百分比为α1~α2范围内(关心的范围)的短路电流(电流互感器中) 对每一个αi ,求其对应的短路电流I d i ()2HK 11X =1.11+X 2.120.1+2σααα?? - ?-?? ()2HL σ1.1 X 11X 1.112ααα??=-++ ?-?? ()2LK σ1.120.11X 1X 2+ααα??+- ??? =- ΣHK HL LK X X X X =++ H ΣLK X 0.5X X =- K ΣHL X 0.5X X =- d i nc I = 继电器动作特性整定部分 同样地,按上一部分计算α0对应的短路电流I d0 门槛电压I 0选为0.6I d0(0.6为安全系数) 双绕组变压器两侧电流互感器获取的电流分别为I 1和I 2 12d I I I =+ 12 res 2 I I I -= if I res <1.25I cn :I d >I 0就动作 if I res >1.25I cn :I d >I res +I 0-1.25I n 就动作 将获取的I d 和匝间短路百分比为α1~α2范围内(关心的范围)的短路电流进行对比或者插值就可以得到实际的短路匝数百分比

算例 S n =240MV A U n =500kV U%(X σ):短路电压百分比 n=60 α0=0.5% n I = = 0.277kA n cn I I n = =4.62A 关心匝间短路百分比为0~0.02,计算步长为0.001 I 0取0.6*1.968=1.181。 假设继电器获取的I d 为2.2A 。可以从表中得到短路匝数百分比为0.0111左右。 满足以下条件应动作 if I res <1.25I cn :I d >I 0 if I res >1.25I cn :I d >I res +I 0-1.25I n

300MW发变组保护原理

发变组保护原理 1.高压侧断路器失灵启动保护: 1)保护原理构成:断路器有保护动作需跳闸,但仍有电流流过断路器,且断路器仍然为闭合状态,则判断为断路器失灵而拒跳,去启动失灵保护。 断路器失灵启动主要有以下判据:相电流判据、零序电流判据、断路器辅助接点及保护出口继电器常开接点。 2)断路器失灵启动逻辑框图: 保护的输入电流为断路器侧TA二次三相电流,有时还引入零序TA的二次电流。 信号 失灵启动保护逻辑框图 图中:Ia、Ib、Ic、3Io——断路器侧TA二次三相电流和零序电流; K1——断路器辅助接点; K2——保护出口继电器辅助接点。 Ig、3I0g、t1、t2——失灵启动保护整定值。 为什么要解除失灵复压闭锁?

(1)早期的失灵保护装置回路没有复合电压闭锁,失灵保护经常误动。在失灵保护回路加装了复合电压闭锁,可有效防止失灵保护误动. (2) 发变组保护、起备变保护启动失灵时解除电压闭锁,主要是考虑到变压器低压侧故障,变压器存在内部阻抗引起高压侧残压过高,失灵保护本身是经电压闭锁的,这样高压侧失灵不能出口。而线路不存在此问题,所以线路不考虑失灵解除复压闭锁。 线路(或主变)失灵启动母差失灵出口回路,母差失灵出口回路会根据相应开关母线闸刀所在位置自动判别开关所在母线,再经相应母线的复合电压闭锁,第一延时跳母联开关,第二延时跳相应母线上所有设备。只是对于主变220kV 侧开关,失灵启动开入的同时,往往会开放母差保护的复合电压闭锁。 对于主变开关(220kV侧)失灵保护,除主变电气量保护动作启动外,还有母线差动保护动作启动,经主变220kV侧失灵电流继电器判别,第一延时跳本开关,以避免测试时的不慎引起误动而导致相邻开关的误跳,第二延时则是失灵出口启动,此时又可分两种情况:若为主变电气量保护启动,则失灵将启动母差失灵出口回路(同线路开关的失灵逻辑),若为母线差动保护动作启动的,则直接启动跳主变其他侧开关。 对于母联(分段)开关的失灵保护,由母线差动保护或充电保护启动,经母联失灵电流判别,延时封母联TA,继而母差保护动作跳相应母线上所有设备。 若故障点发生在母联开关和母联CT之间(死区故障),母差保护动作跳开相应母线,不能达到切除故障的目的,故障电流会依然存在,此种情况保护会根据母联开关的分开位置,延时50ms,封母联TA,令母差保护再次动作跳开另外一条母线以切除故障点。

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2) 其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为:

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

主变比率制动式差动保护

主变比率制动式差动保 护 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1.1.1. 主变比率制动式差动保护 比率制动式差动保护能反映主变内部相间短路故障、高压侧单相接地短路及匝间层间短路故障,既要考虑励磁涌流和过励磁运行工况,同时也要考虑TA 断线、TA 饱和、TA 暂态特性不一致的情况。 由于变压器联结组不同和各侧TA 变比的不同,变压器各侧电流幅值相位也不同,差动保护首先要消除这些影响。本保护装置利用数字的方法对变比和相位进行补偿,以下说明均基于已消除变压器各侧电流幅值相位差异的基础之上。 1.1.1.1. 比率差动动作方程 ? ?? ??-+-+≥-+≥>)I 6I (6.0)I I 6(S I I ) I I (S I I I I e res 0.res e 0.op op 0.res res 0.op op 0.op op ) I 6I ()I 6I I ()I I (e res e res 0.res res.0res >≤<≤ (6-3-1) op I 为差动电流,0.op I 为差动最小动作电流整定值,res I 为制动电流,0.res I 为最小制动电流整定 值,S 为动作特性折线中间段比率制动系数。op.0I ,res.0I ,S 需用户整定。 对于两侧差动: 21I I I op += (6-3-2) 2I 21res I I -= (6-3-3) 1I ,2I 分别为变压器高、低压侧电流互感器二次侧的电流。各侧电流的方向都以指向变压器为正方向。 1.1.1. 2. 比率差动动作特性 比率差动动作特性同图6-3-1所示: 图6-3-1 主变(厂变、励磁变)比率差动动作特性 注:只有主变比率差动保护动作特性才有速动区,厂变和励磁变均没有速动区。 1.1.1.3. 主比率差动启动条件 当三相最大差动电流大于倍最小动作电流时,比率制动式差动启动元件动作。 图6-3-2 主变增量差动保护动作特性图 1.1. 2. 主变差动保护逻辑图 主变差动保护逻辑如图6-3-3所示: 图6-3-3 主变(厂变、励磁变)差动保护逻辑图

微机型发变组保护基本原理及整定

龙源期刊网 https://www.doczj.com/doc/e01583386.html, 微机型发变组保护基本原理及整定 作者:邵子峻 来源:《中国科技博览》2018年第11期 [摘要]目前新建电厂的发变组保护装置已全部采用微机型,不管是国产还是进口的,发变组保护微机化减少了硬件设备,也使过去难以实现的保护原理通过软件设置很容易实现,从而大大降低了维护量。但随着保护装置微机化的普及,同时在定值设置上也增加了灵活性,不但要设置保护数值的大小,而且还要设置诸如CT、PT的参数、变压器参数、保护元件的运算方式等原来不需要设置的一些非传统定值量,这就为定值设置增加了难度;而值得注意的是在定值计算时计算方往往只提供传统的定值大小等数据,而忽略了一些非传统定值设置,结果把问题就留给了现场工作人员。 [关键词]微机型;保护;基本原理;整定;分析 中图分类号:TM771 文献标识码:A 文章编号:1009-914X(2018)11-0112-01 引言 随着微机继电保护技术的发展,微机型发变组保护已完全取代了电磁型、整流型、集中电路型保护,目前省内电厂机组保护基本上实现了微机化。微机型发变组保护装置显示了其独特的优点和强大的功能,在调试、运行维护方面己取得显著成果,实践证明正确动作率也是较高的。微机保护在保护配置和整定方面非常灵活,但也有厂家追求其灵活性,人为增加保护配置和整定的复杂程度,容易造成误整定。从执行保护的双重化配置反措规定,并推行强化主保护、简化后备保护的原则以来,后备保护的整定大大简化,甚至某些保护退出,逐步简化了保护的整定。本文从保护原理及结构出发,介绍微机型发变组中几种主要保护的整定方法,并且在这个基础之上提出了下文中的一些内容。 1.大型微机发变组保护主要特点 一是按规程要求,100MW以上机组电量保护按双重化保护配置,2套保护之间没有电气 联系,其工作电源取自不同的直流母线段,交流电流、电压分别取自互感器的不同绕组,每套保护出口与断路器的跳圈一一对应。二是双重化配置的2套保护均采用主后一体化装置,主保护与后备保护的电流回路共用,跳闸出口回路共用,主后一体化设计简化了二次回路、减少了运行维护工作量,装置组屏简洁方便。三是保护装置一般包含2套相互独立的CPU系统,低通、AD采样、保护计算、逻辑输出完全独立,任一CPU板故障,装置闭锁并报警,杜绝硬件故障引起的误动。四是配置整定灵活方便,适应于不同主接线方式,保护动作出口逻辑可以灵活整定,有些保护整定值按标幺值整定,大大简化了保护的整定,装置支持在线或通过调试软件离线整定。五是运行监视功能强大,实现GPSB码对时,装置能实时记录各种启动、告警、

变压器差动保护原理

主变差动保护 一、主变差动保护简介 主变差动保护作为变压器的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障 ,差动保护是输入的两端CT 电流矢量差,当两端CT 电流矢量差达到设定的动作值时启动动作元件。 差动保护是保护两端电流互感器之间的故障(即保护范围在输入的两端CT 之间的设备上),正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同,两者刚好抵消,差动电流等于零;故障时两端电流向故障点流,在保护内电流叠加,差动电流大于零。驱动保护出口继电器动作,跳开两侧的断路器,使故障设备断开电源。 二、纵联差动保护原理 (一)、纵联差动保护的构成 纵联差动保护是按比较被保护元件(1号主变)始端和末端电流的大小和相位的原理而工作的。为了实现这种比较,在被保护元件的两侧各设置一组电流互感器TA1、TA2,其二次侧按环流法接线,即若两端的电流互感器的正极性端子均置于靠近母线一侧,则将他们二次的同极性端子相连,再将差动继电器的线圈并入,构成差动保护。其中差动继电器线圈回路称为差动回路,而两侧的回路称为差动保护的两个臂。 (二)、纵联差动保护的工作原理 根据基尔霍夫第一定律,0 =∑ ? I ;式中∑? I 表示变压器各侧电流的向量和,其物理意义是:变 压器正常运行或外部故障时,若忽略励磁电流损耗及其他损耗,则流入变压器的电流等于流出变压器的电流。因此,纵差保护不应动作。 当变压器内部故障时,若忽略负荷电流不计,则只有流进变压器的电流而没有流出变压器的电流,其纵差保护动作,切除变压器。见变压器纵差保护原理接线。

(1)正常运行和区外故障时,被保护元件两端的电流和的方向如图1.5.5(a)所示,则流入继电器的电流为 继电器不动作。 (2)区内故障时,被保护元件两端的电流和的方向如图1.5.5(b)所示,则流入继电器的电流为 此时为两侧电源提供的短路电流之和,电流很大,故继电器动作,跳开两侧的断路器。 由上分析可知,纵联差动保护的范围就是两侧电流互感器所包围的全部区域,即被保护元件的全部,而在保护范围外故障时,保护不动作。因此,纵联差动保护不需要与相邻元件的保护在动作时间和动作值上进行配合,是全线快速保护,且具有不反应过负荷与系统震荡及灵敏度高等优点。 三、微机变压器纵差保护的主要元件介绍 主要元件有:1)比率差动保护元件,2)励磁涌流闭锁元件,3)TA饱和闭锁元件,4)TA断线闭锁(告警)元件,5)差动速断元件,6)过励磁闭锁元件 下面对各个元件的功能和原理作个简要的介绍:

主变差动保护

【摘要】本文简单分析了变压器励磁涌流对差动保护的影响,介绍了微机型保护装置中利用二次谐波制动原理的变压器差动保护及其整定值的计算方法。 关键词:微机变压器差动保护 变压器在电力系统中得到极其广泛的应用,占着非常重要的地位。因此,提高变压器运行可靠性,对于保证电力系统的安全具有十分重要的意义。现代生产的变压器,在设计和材料方面都有很大的提高,结构和性能上比较可靠,发生故障的机率较小。但由于电力系统的复杂性,情况千变万化,仍有发生故障和出现异常运行的可能。为了确保安全供电,并在事故时尽量减少停电范围,必需根椐变压器的容量和重要程度,装设性能可靠、动作迅速的继电保护装置。 变压器差动保护可以防御变压器绕组和引出线的相间及对地短路故障,是大型变压器最重要、最有效的保护之一。 一、变压器差动保护的特殊问题—励磁涌流 变压器的差动保护与输电线路的纵联差动保护相比,在原理上是一样的。它们之间的区别是,变压器各侧电流大小、相位都不尽相同,而且各侧是通过电磁联系的,在实现差动保护时将产生较大的不平衡电流,使差动保护处于更不利的工作条件下。其中最为突出的是变压器励磁涌流的影响。 我们知道,在稳态工作情况下,铁芯中的磁通滞后于外加电压90°,如图1(a)所示。当变压器空载合闸时正好在电压瞬时值u=0的瞬间,则

铁芯中的磁通应为-Φm,但由于铁芯中的磁通不能突变,因此将产生一个非周期分量的磁通,其幅值为Φm,这样在经过半个周期以后,铁芯中的总磁通就将达到2Φm,如图1(b)所示。此时变压器的铁芯将高度饱和,励磁电流剧烈增大,如图1(c)所示。该电流就称为变压器的励磁涌流,其数值最大可达到变压器额定电流的6~8倍,同时包含大量的非周期分量和高次谐波分量,如图1(d)所示。经过变换的励磁涌流流入差动继电器,就可能造成保护装置误动作。励磁涌流的起始部分衰减很快,一般经0.5~1秒后,其值不超过额定电流的0.25~0.5倍。变压器励磁涌流的大小和衰减时间与外加电压的相位、铁芯中剩余磁通的大小和方向、电源的大小、回路的阻抗、变压器容量的大小和铁芯材料的性质等有关。例如,当合闸时正好电压瞬时值为最大值,就不会出现励磁涌流。对于三相电力变压器,在任何瞬间合闸,至少有两相中要出现程度不同的励磁涌流。 图1 变压器励磁涌流的变化曲线

差动继电器调试

BCH-2、DCD-2型差动继电器 BCH-2、DCD-2型差动继电器躲避电力变压器励磁涌流的性能较其他形式继电器为好,也能提高保护装置躲避外部短路时暂态不平衡电流的性能;可作为双绕组和三绕组电力变压器、发电机以及母线的差动保护。 1.继电器的结构原理及各线圈的作用 (1)BCH-2型继电器的结构原理及内部接线。 BCH-2型继电器由执行元件DL-11/0.2型(2×500匝,Q-0.35)电流继电器及其具有带短路匝的速饱和变流器构成。其内部接线如图: 速饱和变流器由硅钢片交错叠成,中间柱截面比两边的截面大一倍。在中间柱上绕有差动线圈Wc(20匝,MF-1.56)和两个平衡线圈Wp1(19匝,MF-1.56)、Wp2(19匝,MF-1.56)且绕向相同,右侧铁芯柱上绕有与执行元件连接的二次线圈,W2(48匝,MF-1.0),两个短路线圈W D[28匝,MF-1.45(3、8、16匝抽头)]W D[56匝,MF-1.45(6、16、32匝抽头)]分别绕在中间及左侧铁芯柱上,对左边窗口来说是同向串联的,W D的匝数为W D匝数的两倍。 (2)DCD-2型继电器的内部接线。 DCD-2型差动继电器的技术数据除执行元件外均与BCH-2型差动继电器相同,DCD-2型差动继电器执行元件为DL-1型电流继电器(2×340匝,QQ-0.38)两只线圈串联。如图: (3)各线圈的作用

1)二次线圈W2的作用是:当速饱和变流器的总磁势达到某一动作值时能使执行元件动作。 2)平衡线圈WP1、WP2的作用是:当被保护的设备两侧二次回路电流不平衡时,改变其线圈的匝数以使饱和变流器的总磁势达到平衡。 3)差动线圈W C的作用是:反映被保护的设备故障时,在被保护系统中所产生的差流,它的磁势与短路线圈中电流所产生的磁势的合成结果,形成速饱和变流器的总磁势,作用于执行元件。 4)短路线圈W D的作用是:有效地躲过当速饱和变流器一次侧含有非周期分量的励磁涌流和不平衡电流的影响,使继电器正确地动作。短路线圈的匝数越多,直流助磁作用越强,躲避励磁涌流的性能也就越好。但是在保护范围内部发生故障时,故障电流初期也有非周期分量,差动继电器要到该非周期分量衰减到一定程度后才能动作,所以继电器的动作时间就会长一些,因此在作为发电机和母线的差动保护时,短路绕组匝数应少一些。 2.检验项目和要求 (1)一般性检查。 继电器执行元件的机械部分检查。 (2)差动、平衡和短路3个线圈匝数的正确性检查。 要求差动线圈和平衡线圈面板插孔上所标匝数与实际匝数相符合,短路线圈的抽头匝数与实际匝数应相符。 (3)执行元件动作电压、动作电流及返回电流检验。

比率制动式差动保护

比率制动式差动保护 变压器差动保护 :这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简 称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 :下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:

1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA, 11'流过变压器高压侧的一次电流; I ” :流过变压器低压侧的一次电流; 12'流过变压器高压侧所装设电流互感器即CT1的二次电流; I2 ”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:11'12 ' nh I”/12 ”= nl I2 ' I2 ” I1'/l”= nh/ n 1=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)

单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 动作电流lop 4 d Iopo 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; P:比率制动斜线上的任一点; e: p点的纵坐标; b: p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于 电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬 高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴 影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算岀此斜线的斜率,就等于算出了比率制动系数。以p点为例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2撮小制动电流Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流Il=6A,180度,低压侧电流I2=6A,0度,固定II升12,当12升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(11+12) /2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)= 1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 f Ires, o 图二 b 制动电流Ires

BCH-2差动继电器的校验方法

BCH-2差动继电器的校验方法 一:差动绕组、平衡绕组及短路绕组正确性检验 断开10,11端子间的连接片,使二次绕组开路,并将平衡绕组及制动绕组版面上的整定螺钉取下,差动绕组上的整定螺钉插在“20”位置,在差动绕组两端(3、8端子间)加一正玄电压,所加电压的大小,位方便起见可取200MV,即每匝绕组上的分布电压位200/20=10mv,然后用高内阻电压表检查各绕组抽头电压。 二、制动绕组与二次绕组间无互感检验 2、6接电流,9、11接电压。制动绕组全部接入,通以10A电流,用高内阻电压表测二次绕组上的电压不应超过40mv 三执行元件动作电压、动作电流及返回电流检验 试验时应打开10、11端子间的连接片,对执行元件单独进行试验。应特别注意,执行元件的动作电压是指执行元件启动后再用非磁性物质把舌片卡再位动作位置时的电压值。所用电压表的内阻应不小于1000殴母/V。动作电压应满足1.5~1.56V,动作电流满足220~230mA,返回系数为:0.7~0.85。测量应重复三次,其离散值不大于3%,否则应检查原因。如果试验时电源不是50HZ,应按每偏差1HZ电压值改变2%进行修正 BCH-2型测量要求: 1、额定频率50HZ,额定电流5A 2、无直流助磁时,继电器的动作安匝为60± 4安匝。 3、当用于保护三绕组电力变压器时,其动作 电流在3~12A的范围内进行调整(动作安匝 为60)。当用于保护双绕组电力变压器或发 电机时,其动作电流可在1.5~12A的范围内 进行调整。 4、继电器的直流助磁特性§=f(K)可以用 改变短路绕组匝数的方法进行分级调整。当 K=0.6时,短路绕组不同位置下的§值为 A- A位置§=1.6±0.13 B- B位置§=3±0.24 C- C位置§=5±0.38 D- D位置§=7±0.56 5、5倍动作电流时的可靠系数不小于1.35 2倍动作电流时的可靠系数不小于1.2 6、3倍动作电流时,继电器的多做事件 不大于0.035S

比率制动差动保护

1比率制动差动保护特性 随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。 所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。使制动电流在不平衡电流较大的外部故障时有制动作用。而在内部故障时,制动作用最小。 图1 图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。 曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。 曲线4为具有制动特性的差动继电器的差动保护特性。 在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为0B,即保护区内短路时的短路电流必须大于0B所代表的电流值时,保护才能动作。 在有制动时,曲线3与曲线4相交于A点,短路电流只要大于0A所代表的电流值,保护即能动作。OA <0B这说明在同样的保护区内短路状态下,有制动特性的差动保护比无制动特性的差动保护灵敏度要高。 在实际的变压器差动保护装置中,其比率制动特性如下图2所示: 图2中平行于横坐标的AB段称为无制动段,它是由启动电流和最小制动电流构成的,动作值不随制动电流变化而变化。我们希望制动电流小于变压器额定电流时无制动作用,通常选取制动电流等于被保护变压器高压侧的额定电流的二次值。即:lzd=le/nLH 图2中斜线的斜率为基波制动斜率,当区外故障时短路电流中含有大量生产非周期分量,制动Izdo增大,当动作电流Idzo大于启动电流时,制动电流和动作电流的交点D必落在制动区内。当区内故障时,差电流即动作电流为全部短路电流,制动电流则为流过非电源侧的短路电流,数值较小,平行于纵、横轴的二直线交点必落在动作区内,差动保护可靠动作。 2比率制动式差动保护的整定在比率制动式差动保护的整定计算时,通常按以下原则选取: 2.1 Icdsd即差动速断电流 当变压器空载投入或变压器外部故障切除后电压恢复时,励磁涌流高达额定电流的6? 8 倍,当差动保护电流互感器选择合适时,变压器外部短路流过差动回路的不平衡电流小于

变压器差动保护原理

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,降压变,具体参数如下:主变高压侧电压U高=110KV,主变低压侧电压U低=10KV,变压器容量Sn=240000KV A, 高压侧CT变比1000/5,低压侧的CT变比是1500/5.计算平衡系数。 I1’:流过变压器高压侧的一次电流;

I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们

DCD-4型差动继电器

DCD-4型差动继电器 1 用途 DCD-4型差动继电器(以下简称继电器)用于电力变压器差动保护线路中作为内部短路的主保护用于保护四端电源的多绕组电力变压器(三绕组或四绕组) 在正常情况及发生穿越性短路时全部电流通过制动绕组产生很大的制动作用在差动绕组里仅仅通过不平衡电流且其效应可以被清除到最小程度继电器处于可靠的制动状态区内短路时短路电流通过差动绕组继电器便能迅速动作切除故障2 结构和原理 差动继电器由下列两部分组成 a. DL-1型电流继电器 b. 中间速饱和变流器(以下简称变流器) 前者作为执行元件后者具有四个制动绕组并构成差动继电器的一些主要性能如制动特性躲避励磁涌流特性以及消除不平衡电流效应的自耦变流器性能等DL-1执行元件有A11K A11P A11H A11Q四种结构变流器有A32K A32P A32H A32Q四种结构其外形尺寸安装开孔尺寸及端子图分别如附图所示 应当指出在继电器工作过程中不能改变铭牌上指针的位置 3 技术数据 3.1 额定电流5A 50Hz 3.2 无制动时继电器的起始动作安匝AW0=60 4 3.3 继电器差动回路动作电流可以从2.2 15A范围内进行调整(AW0=60) 3.4 表征继电器动作安匝与制动安匝之间关系的制动特性AW P=f(AW T)如图3所示 a.当制动电流与差动电流的相位差为任意角度在改变制动安匝AW T值到20AW0时 AW P=f(AW T) 不应超出图3所示的范围 b.当制动电流与差动电流间相位差任意角度且AW T=600 AW P AW T <0.4继电器不动作

图2 原理接线图 图3 制动特性(图示曲线为极限范围) 图4 c. 在第b款条件下当 AW P AW T 0.6时继电器应动作 注制动电流与差动电流间的相角制动绕组的供电情况影响制动特性图3是按图1(a)到(c)供电情况下的极限范围其中AW T =2I T W T 3.5由动作电流与制动电流的比值所决定的制动系数K T可以在广泛的范围内变化在制动特 性的下限计算最小制动作用条件下的制动系数即AW T=600匝AW P AW T = 400 600 =0.4时计算 K T值用改变制动绕组匝数的方法来调整制动系数其变化范围如下a. 对于最大整定动作电流15A(W P=4) K T=2W T W P =0.4 2 1 20 4 =0.2 4W b. 对于最小整定动作电流2.2A(W P=27) K T=0.42W T W P =0.4 2 1 20 27 =0.0296 0.59 3.6 可靠系数K H不小于1.35 它是按下述方法确定的: 当差动继电器动作时其动作电流为I CP执行元件DL-1型继电器的正弦动作电流为I DLCP1然后转动指针拧紧螺丝使得差动继电器的动作电流为5I CP并测量DL-1型继电器相应的动作电流I DLCP5按下式计算出可靠系数 KH=I DLCP5 I DLCP1 3.7 三倍动作电流时差动继电器的动作时间不大于0.035s 3.8继电器具有一个动合触点在具有电感性负荷的直流电路中 (其时间常数为5 0.75ms) 且电压不大于220V 电流小于2A时触点的断开容量不小于50W 3.9 在电流为5A时继电器一相一侧的功率消耗不大于如下数值 a. 正常情况下一个制动绕组与平衡绕组的匝数全部接入时为7.5VA b. 区内故障时制动绕组平衡绕组与差动绕组的匝数全部接入时为20VA 3.10 变流器的差动绕组平衡绕组和制动绕组可长期通过电流10A 3.11 继电器的所有电路对于外壳的绝缘应能耐受2kV 50Hz的交流电压历时1min 3.12 继电器重量不大于5kg

相关主题
相关文档 最新文档