当前位置:文档之家› 平面电磁波在多分层介质中的传播特性研究

平面电磁波在多分层介质中的传播特性研究

平面电磁波在多分层介质中的传播特性研究
平面电磁波在多分层介质中的传播特性研究

平面电磁波在多分层介质中的传播特性研究

【摘要】本文在电磁波斜入射,各区域均由双轴介质组成条件下,用数学分析方法对多分层介质中平面电磁波的传播特性进行了理论计算,并用波阻抗法以及电磁场中的等效传输原理给出了多分层介质中各层介质的反射系数和透射系数。本研究对平面电磁波在多分层介质中的传播和散射中具有重要意义。

【关键词】平面电磁波;多层介质;反射系数;透射系数;波阻抗

0 引言

电磁波为电磁振荡在介质中的传播,广义的电磁波包括无线电波,微波,红外线,可见光,紫外线,伦琴射线(X射线),伽玛射线。电磁波技术在通讯、遥控、制导、探测等诸多领域得到广泛应用。研究电磁波在介质中的传播问题,不仅对电磁场理论本身具有重要的理论意义,而且在实际应用中具有广泛的参考价值。电磁波在两种介质分界面的反射与透射是描述电磁波传播过程中的两个重要参数。对于电磁波在两种均匀介质和单个分界面下的反射与透射,根据麦克斯韦方程组及边界条件,理论已经比较成熟。随着电磁波在多层介质中传播的研究,还面临许多问题需要进行深入研究。

组成地球的物质性质变化是逐层变化的,因此我们认为地球具有分层结构[1]。特别在进行地下物质和目标探测时,需要考虑处在多层介质中被探测的目标,所以必须研究电磁波在多分层介质中的反射和透射问题。电磁波在多层介质中的传播问题,实质上都是解决电磁场在边界上的折射和反射问题[2]。本文将从分层介质中平面电磁波的传播和散射的问题,对多层或单层介质应用电磁场在边界上的条件,在介质中的传播,再到边界等等,直到最后一层的界面上折射及反射,以求出分层介质的反射系数和透射系数。在电磁波斜入射时,我们以波阻抗法求出了各层介质中反射系数和透射系数的理论计算公式。

1 平面电磁波在两种介质分界的反射和折射

考虑两种介质,平面电磁波入射到交界面上,则在两种介质中存在有如下三个电磁波:入射波,反射波和折射波。根据电磁场理论,可以求出垂直极化波的反射系数和投射系数:

R= T=(1)

同理可以求出平行极化波的反射系数和投射系数:

R= T=(2)

当入射角θ→0时,上述情况变为正投射,当θ→时,由(1),和(2)式可知R=R→-1,T=T→0,这就表明入射波全部被反射,且反射波同入射波大小相

电磁场与电磁波试题.

1. 如图所示, 有一线密度 的无限大电流薄片置于平面上,周 围媒质为空气。试求场中各点的磁感应强度。 解: 根据安培环路定律, 在面电流两侧作一对称的环路。则 由 2. 已知同轴电缆的内外半径分别为 和 ,其间媒质的磁导率 为,且电缆 长度 , 忽略端部效应, 求电缆单位长度的外自感。 解: 设电缆带有电流则 3. 在附图所示媒质中,有一载流为的长直导线,导线到媒质分界面的距离为。 试求载流导线单位长度受到 的作用力。 解: 镜像电流 镜像电流在导线处产生的值为 单位长度导线受到的作用力

力的方向使导线远离媒质的交界面。 4. 图示空气中有两根半径均为a ,其轴线间距离为 d 的平行长直圆柱导体,设它们单位长度上所带的电荷 量分别为和 , 若忽略端部的 边缘效应,试求 (1) 圆柱导体外任意点p 的电场强度的电位的表达式 ; (2) 圆柱导体面上的电荷面密度与值。 解: 以y 轴为电位参考点,则 5. 图示球形电容器的内导体半径 , 外导体内径 ,其间充有 两种电介质与, 它们的分界面的半径为。 已知与的相对 6. 电常数分别为 。 求此球形电容器的电 容。 解

6. 一平板电容器有两层介质,极板面积为,一层电介质厚度,电导率,相对介电常数,另一层电介质厚度,电导率。相对介电常数,当电容器加有电压 时,求 (1) 电介质中的电流; (2) 两电介质分界面上积累的电荷; (3) 电容器消耗的功率。 解: (1) (2) (3) 7. 有两平行放置的线圈,载有相同方向的电流,请定性画出场中的磁感应强度分布(线)。 解:线上、下对称。

第四章电磁波的传播

第四章 电磁波的传播 §4.1 平面电磁波 1、电磁场的波动方程 (1)真空中 在0=ρ,0=J 的自由空间中,电磁强度E 和磁场强度H 满足波动方程 012222=??-?t E c E (4.1.1) 012 222=??-?t H c H (4.1.2) 式中 80 010997925.21 ?== μεc 米/秒 (4.1.3) 是光在真空中的速度。 (2)介质中 当电磁波在介质内传播时,介质的介电常数ε和磁导率μ一般地都随电磁波 的频率变化,这种现象叫色散。这时没有E 和H 的一般波动方程,仅在单色波 (频率为ω)的情况下才有 012222=??-?t E v E (4.1.4) 012 222=??-?t H v H (4.1.5) 式中

()()() ωμωεω1 = v (4.1.6) 是频率ω的函数。 2、亥姆霍兹方程 在各向同性的均匀介质内,假设0=ρ,0=J ,则对于单色波有 ()()t i e r E t r E ω-= , (4.1.7) ()()t i e r H t r H ω-= , (4.1.8) 这时麦克斯韦方程组可化为 () εμω ==+?k E k E , 02 2 (4.1.9) 0=??E (4.1.10) E i H ??-=μω (4.1.11) (4.1.9)式称为亥姆霍兹方程。由于导出该方程时用到了0=??E 的条件,因此,亥姆霍兹方程的解只有满足0=??E 时,才是麦克斯韦方程的解。 3、单色平面波 亥姆霍兹方程的最简单解是单色平面波 ()()t r k i e E t r E ω-?= 0, (4.1.12) ()()t r k i e H t r H ω-?= 0, (4.1.13) 式中k 为波矢量,其值为 λ π εμω2= =k (4.1.14) 平面波在介质中的相速度为 εμ ω 1 = = k v P (4.1.15) 式中ε和μ一般是频率ω的函数。

第六章 平面电磁波的传播

第六章 平面电磁波的传播 习题6.1 已知自由空间中均匀平面电磁波的电场: y e x t E )210cos(37.738 ππ-?=V/m ,求 (1)电磁波的频率,速度,波长,相位常数,以及传播方向。 (2)该电磁波的磁场表达式。 (3)该电磁波的坡印廷矢量和坡印廷矢量的平均值。 题意分析: 已知均匀平面电磁波的一个场量求解另一个场量,以及相关的参数,这是均匀平面波问题中经常遇到的问题。求解问题的关键在于牢记均匀平面电磁波场量表达形式的基本特点,场矢量方向和波的传播方向之间的关系以及相关公式。 解: (1)求电磁波的频率,速度,波长,相位常数,以及传播方向 沿x 轴正方向传播的电磁波的电场强度瞬时表达式为: y y y e x t E E )c o s (2φβω+-= 电场表达式的特点有: 电磁波角频率 8103?=πω (rad/s ) 由f πω2=,可以得到 电磁波的频率为: 8 10 5.12?==π ω f (Hz ) 电磁波在自由空间的传播速度 8103?==c v (m/s ) 电磁波的波长λ满足式 f v vT = =λ 210 5.110 38 8=??= = ∴f v λ(m ) 相位常数: πβ2= (rad/m ) 分析电磁波的传播方向: 方法一:直接判断法 比较均匀平面电磁波的电场表达式可以看出,均匀平面电磁波的电场表达式中x π2项前面的符号为“-”,该电磁波是沿x 轴正方向传播的电磁波。

方法二:分析法 电场表达式是时间t 和坐标x 的函数,若要使E 为不变的常矢量,就应使组合变量(x t ππ21038-?)在t 和x 变化时为一定值。即,当时间变量t 变为t t ?+,位置变量x 变为x x ?+时,有下式成立: )(2)(10321038 8x x t t x t ?+-?+?=-?ππππ 由上式可得: t x ??= ?π π21038 这说明在电磁波的传播过程中,随着时间的增加(0>?t ),使电场保持定值的点的坐标也在增加(0>?x ),所以电磁波的传播方向是由近及远,沿x 轴正方向逐步远离原点。 (2)求该电磁波的磁场表达式 电磁波的传播方向为x 轴正方向,电场分量为y 轴方向,根据坡印廷矢量的 定义:H E S ?=,电场,磁场以及电磁波的传播方向应遵循右手螺旋定律,所 以本题中磁场的方向应为z 轴方向,三者的方向关系下如图所示。 z 在自由空间中,正弦均匀平面电磁波的电场和磁场分量的比值为固定值,是 空间的波阻抗:Ω=3770Z ,所以磁场分量H 的表达式为: z z z e x t e x t e Z E H )210cos(31.0)210cos(3377 7.738 80ππππ-?=-?== (A/m ) (3)求该电磁波的坡印廷矢量表达式和坡印廷矢量的平均值 根据坡印廷矢量的定义:H E S ?=,得 ])210cos(31.0[])210cos(37.73[8 8z y e x t e x t H E S ππππ-??-?=?= x e x t )210(3cos 773.8 2ππ-?= (W/m 2) 坡印廷矢量的平均值:

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

实验二电磁波在介质中的传播规律

电磁场与微波技术实验报告 课程实验:电磁波在介质中传播规律 班级__________________ 姓名____________________ 指导老师: _____________________ 实验日期: __________________

(4) 电磁波在介质中的传播规律 一、实验目的: 1、 用MATLAB?序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、 结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、 学会使用Matlab 进行数值计算,并绘出相应的图形,运用 MATLAB 寸其进行可视化 处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同 性均匀线性的,即( 0, j 0)的情形。麦克斯韦方程组的解既是空间的函数又 是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。寸于这种解,其 形式可表示成一个与时间无关的复矢量和一个约定时因子 exp j t 相乘,这里 是 角频率。在这种约定下,麦克斯韦方程组便可表示成 j H (2) (3) 寸方程( 1 )两边同取旋度,并将式 (2) 代入便得 5) 利用如下矢量拉普拉斯算子定义以及方程( 3) (1)

类似地,可得B 所满足的方程为 k 2 B 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对 单色平面波的研究具有重要的理论和实际意义。假定波动方程( 7)和(8)式的单色平 面波的复式量解为3 E E 0 exp j t k r (10) B B °exo j t k r (11) 式中E 。,B 0分别为E , B 振幅, 为圆频率, k 为波矢量(即电磁波的传播方向)。 exp j kx t 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等 相位的传播速度。很显然等相位面由下面方程决定 1 t kr const ( 12) 方程(12)两边对时间t 求导可得 (6) 方程(5)式变为 2 E k 2 E 0 (7) (8) (9)

电磁场与电磁波波试卷3套含答案

《电磁场与电磁波》试卷1 一. 填空题(每空2分,共40分) 1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 。另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 。 2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。 3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。 4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件。第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。在每种边界条件下,方程的解是 唯一的 。 5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分 界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ?-=,12()s n H H J ?-=。 6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。 二.简述和计算题(60分) 1.简述均匀导波系统上传播的电磁波的模式。(10分) 答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波。 (2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。因为它只有纵向电场分量,又成为电波或E 波。 (3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。因为它只有纵向磁场分量,又成为磁波或M 波。 从Maxwell 方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。 2.写出时变电磁场的几种场参量的边界条件。(12分) 解:H 的边界条件 12()s n H H J ?-= E 的边界条件

11.5 电磁波传播特性

实验11.5 电磁波传播特性 Part 1 电磁波参量的测量 一、实验目的 1. 研究电磁波在良导体表面的反射。 2. 利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v 。 二、实验仪器 (1)三厘米固态信号发生器1台; (2)电磁波综合测试仪1套; (3)反射板(金属板)2块; (4)半透射板(玻璃板)1块。 三、实验原理和方法 1. 自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路程上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 2K v f K πλλω=?? ==? 得到电磁波的主要参数K 和v 等。 电磁波参量测试原理如图1所示,P T 和P R 分别表示发射和接收喇叭天线,A 和B 分别表示固定和可移动的金属反射板,C 表示半透射板(有机玻璃板)。由P T 发射平面电磁波,在平面波前进的方向上放置成45°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A 板方向传播,另一束向B 板方向传播。由于A 和B 为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线P R 处。于是P R 收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。

移动反射板B ,当P R 的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波 0j i E E e φ-= 当入射波以入射角θ1向介质板C 斜入射时,在分界面上产生反射波r E 和折射波t E 。设C 板的反射系数为R ,T 0为由空气进入介质板的折射系数,T c 为由介质板进入空气的折射系数。固定板A 和可移动板B 都是金属板,反射系数均为-1。在一次近似的条件下,接收喇叭天线P R 处的相干波分别为 12100200j r c j r c E RT T E e E RT T E e φφ--=-=- 这里 ()()()1131 223132 K l l KL K l l K l l L KL φφ=+==+=++?= 其中,ΔL =|L 2-L 1|为B 板移动距离,而1r E 与2r E 传播的路程差为2ΔL 。 由于1r E 与2r E 的相位差为21=2K L φφφ?-=?,因此,当2ΔL 满足 ()20,1,2, L n n λ?== 1r E 与2r E 同相相加,接收指示为最大。 当2ΔL 时满足 图1 电磁波参量测试原理图

20200128电磁波传播介质存在吗

电磁波传播介质存在吗? Benjamin Peng 20200128 狭义相对论抛弃了电磁波的传播介质——以太。本文在解决狭义相对论自洽性问题时得出了相反的结论:电磁波的传播是需要介质的,这种介质就是以太。如果以太存在,物理世界会怎样? 一.以太存在 以太存在吗?如何解决以太存在的困难? 1.以太的历史背景 十七世纪,法国科学家笛卡儿认为物体之间的作用力都是通过客观存在的介质来传递的,不存在超距作用、瞬时作用,这种介质就是以太,并率先把亚里士多德提出的名词“以太”引入物理学。胡克、惠更斯认为光也类似声波依赖于自身的传播介质,光的传播介质就是以太。根据光、电磁波的传播现象与性质,科学家们也赋予了以太一些物理性质:(1)以太充满整个宇宙,也充满在任何物体之中。 (2)以太没有惯性质量,且“绝对静止”。 (3)以太对任何宏观物体的运动都没有阻碍作用。 (4)由于光具有横波的特征,以太应该是弹性较高的物质,以至于应类似固态形式。 (5)当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动,即以太部分拽引假说。 以太从来没有显现它的踪影,人们从未感知到以太的存在,也从未通过实验证明以太的存在。以太存在的最大困难在于以太的性质:以太如何穿过物体而不影响物体的运动。随着迈克尔逊-莫雷实验、以及电磁理论的普及,人们抛弃了以太观念,认为电磁波就是一种客观存在,它不需要传播介质而存在。 物理学中,关于以太是否存在的争论却并没有停止。 2.孤立波与孤立子 十九世纪三十年代,苏格兰科学家J.S.罗素(J. Scott Russell,或译为拉塞尔)发现了一种奇特的波,并首次对它进行了研究。这种波只有一个波峰,没有波谷,传播运动过程中,速度、能量几乎不衰减,传播距离非常远。半个世纪后,通过数学研究,才弄清楚了它的性质。这种波属于孤立波的一种,是在传播过程中不发生色散的非线性波。 (1)某些孤立波具有能量、动量、质量、电性。所以人们把这种具有粒子性质的孤

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0A ????= 2.

无线电波的传播特性修订版

无线电波的传播特性 Document number:PBGCG-0857-BTDO-0089-PTT1998

无线电波的传播特性 无线电通信就是不用导线,而利用电磁波振荡在空中传递信号,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。 在莫尔斯和贝尔先后发明了有线电报和电话之后,很多科学家对电磁现象大量研究。直到1831年,在英国,法拉弟首先发现了电磁感应现象,并且预言:电与磁的传播是和光一样的一种波。 英国科学家麦克斯韦从1850年就开始对法拉弟提出的课题展开研究。他总结了前人的研究成果,用数学方法对法拉弟的电磁场思想做了严格的论证,并在1864年做出“电与磁的交替转化过程,是一种波的传播形式,是一种光波”的论断,他称这种波为电磁波。 在麦克斯韦首先提出电磁理论后,又过了24年,才由德国伟大的物理学家赫兹通过实验证实了麦氏理论的正确。赫兹设计了一个能够接收电火花的装置,结构极简单。把一根导线弯成圆形,使两端之间仅留一微小的间隙,称它为“共振子”。“共振子”为什么也有火花发生呢赫兹认为,这一定是电振荡以电磁波形式通过空间传播过去的。赫兹于1888年公布了自己的实验结果,证实了电磁波的存在。 赫兹的实验成果震惊了世界,许多科学家继续开展对电磁波的研究。1890年,法国物理学家布朗利发现,将金属粉末即紧缩成块,但是它的电阻减小了,使电流容易通过。这种装有金属粉未的玻璃管被称为“布朗利管”,又称“粉末检波器”,它接收电磁波的灵敏度比赫兹的“共振子”要高得多。 1894年,20岁的意大利青年马可尼从杂志上读到悼念赫兹的文章和他生前的感人事迹,受到极大启发:“如果利用赫兹发现的电磁波,不需要导线也可以实现远距离通信了”。马可尼为自己的大胆设想所激动下宏愿,决心开拓无线电通信事业,把赫兹的研究成果付诸实际应用。在家人的支持下,马可尼就在自己家中进行实验,他用赫兹的火花放电器作发射机,用布朗利的金属粉未检波器作接收机经过一个多月的努力,终于完成了电磁波的发送和接收实验,并在实

电磁波传播

电磁波传播特性实验报告 Part1 电磁波参量的测量 一、实验目的 1、了解电磁波综合测试仪的结构,掌握其工作原理 2、利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v。 二、实验原理 1、自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 得到电磁波的主要参数K和v等。 电磁波参量测试原理如图1-1所示,和分别表示发射和接收喇叭天线,A和B分别表示固定和可移动的金属反射板,C表示半透射板(有机玻璃板)。由TP发射平面电磁波,在平面波前进的方向上放置成°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A板方向传播,另一束向B板方向传播。由于A和B为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线处。于是收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。 移动反射板B,当的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波

当入射波以入射角向介质板C斜入射时,在分界面上产生反射波和折射波。设C板的反射系数为R,为由空气进入介质板的折射系数,为由介质板进入空气的折射系数。固定板A和可移动板B都是金属板,反射系数均为1?。在一次近似的条件下,接收喇叭天线处的相干波分别为 这里 其中,为B板移动距离,而与传播的路程差为2ΔL。 由于与的相位差为,因此,当2ΔL满足 和同相相加,接收指示为最大。 当2ΔL时满足 和反相抵消,接收指示为零。这里,n表示相干波合成驻波场的波节点数。

电磁场与电磁波试卷(1)

2009——2010学年第一学期期末考试 ?电磁场与微波技术?试卷A 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分,共20分) 1. 静电场是( ) A. 无散场 B. 旋涡场 C.无旋场 D. 既是有散场又是旋涡场 2. 已知(23)()(22)x y z D x y e x y e y x e =-+-+- ,如已知电介质的介电常数为0ε,则自由电荷密度ρ为( ) A. B. 1/ C. 1 D. 0 3. 磁场的标量位函数的单位是( ) A. V/m B. A C. A/m D. Wb 4. 导体在静电平衡下,其内部电场强度( ) A.为零 B.为常数 C.不为零 D.不确定 5. 磁介质在外部磁场作用下,磁化介质出现( ) A. 自由电流 B. 磁化电流 C. 传导电流 D. 磁偶极子 6. 磁感应强度与磁场强度的一般关系为( ) A.H B μ= B.0H B μ= C.B H μ= D.0B H μ= 7. 极化强度与电场强度成正比的电介质称为( )介质。 A.各向同性 B. 均匀 C.线性 D.可极化 8. 均匀导电媒质的电导率不随( )变化。 A.电流密度 B.空间位置 C.时间 D.温度 9. 磁场能量密度等于( ) A. E D B. B H C. 21E D D. 2 1B H 10. 镜像法中的镜像电荷是( )的等效电荷。 A.感应电荷 B.原电荷 C. 原电荷和感应电荷 D. 不确定 二、填空题(每空2分,共20分) 1. 电场强度可表示为_______的负梯度。 2. 体分布电荷在场点r 处产生的电位为_______。 0ε0ε

电磁波在介质中的传播规律

电磁波在介质中的传播规律 电磁波的传播是电磁场理论的重要组成部分。我们只考虑电磁波在各向同性均匀线性介质中传播,分别对电磁波在线性介质和非线性介质中的传播规律进行讨论。 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同性均匀线性的,即(0,j 0)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子ex) j t相乘,这里是角频率。在这种约定下,麦克斯韦方程组便可表示成1 (1) H j E (2) E 0 ⑶ H 0 ⑷ 对方程(1)两边同取旋度,并将式(2)代入便得 E 2E (5) 利用如下矢量拉普拉斯算子定义以及方程(3) (6) 方程(5)式变为 类似地,可得B所满足的方程为 k2B(9) 2E k2E 0

方程(7)和(9)式称为亥姆霍兹(Helmholtz)方程,是电磁场的波动方程。

2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对 单色平面波的研究具有重要的理论和实际意义。假定波动方程( 7)和(8)式的单色平 面波的复式量解为3 E E 0 exp j t k r (10) B B °ex3 j t k r (11) 式中E 0, B 0分别为E , B 振幅, 为圆频率, k 为波矢量(即电磁波的传播方向)。 exp j kx t 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等 相位的传播速度。很显然等相位面由下面方程决定 1 t kr const 方程(12)两边对时间t 求导可得 dr v dt k 由式(8)可知 1 v ----- 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得 3 由(17)和(18 )可以看出,介质中传播的电磁波是横波,电场与磁场都与传播方向垂直;(12) (13) (14) E 。 k B o B 0 k k E o E o k B o 0 (15) (16) (17) (18)

电磁场与电磁波试题及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D ?和电场E ? 满足的 方程为: 。 2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位 所满足的方程为 。 3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。 5.表达式()S d r A S ? ????称为矢量场)(r A ? ?穿过闭合曲面S 的 。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。 二、简述题 (每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为S d t B l d E S C ???????-=???,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题 (每小题10分,共30分) 15.矢量函数 z x e yz e yx A ??2+-=? ,试求 (1)A ? ?? (2)A ? ?? 16.矢量 z x e e A ?2?2-=? , y x e e B ??-=? ,求 (1)B A ? ?- (2)求出两矢量的夹角

电磁波的传播

实验二电磁波的传播 实验目的: 1、掌握时变电磁场电磁波的传播特性; 2、熟悉入射波、反射波和合成波在不同时刻的波形特点; 3、理解电磁波的极化概念,熟悉三种极化形式的空间特点。 实验原理: 平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。若E的末端总在一条直线上周期性变化,称为线极化波;若E末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。 实验步骤: 1、电磁波的传播 (1)建立电磁波传播的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中电磁波随时间的传播规律 2、入射波、反射波和合成波 (1)建立入射波、反射波和合成波的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种波形在不同时刻的特点和关系 3、电磁波的极化 (1)建立线极化、圆极化和椭圆极化的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种极化形式的空间特性 实验报告要求: (1)抓仿真程序结果图 (2)理论分析与讨论

1、电磁波的传播 clear all w=6*pi*10^9; z=0::; c=3*10^8; k=w/c; n=5; rand('state',3) for t=0:pi/(w*4):(n*pi/(w*4)) d=t/(pi/(w*4)); x=cos(w*t-k*z); plot(z,x,'color',[rand,rand,rand]) hold on end title(‘电磁波在不同时刻的波形’) 由图形可得出该图形为无耗煤质中传播的均匀电磁波,它具有以下特点:(1)在无耗煤质中电磁波传播的速度仅取决于煤质参数本身,而与其他因素无关。 (2)均匀平面电磁波在无耗煤质中以恒定的速度无衰减的传播,在自由空间中其行进速度等于光速。 2、入射波、反射波、合成波 (1)axis equal; n=0;%改变n值得到不同时刻的电磁波状态z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); axis([0 10 ]); (2)axis equal; n=1/4;;%改变n值得到不同时刻的电磁波状态 z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); 电磁波在不同时刻的波形

实验二电磁波在介质中的传播规律

电磁场与微波技术实验报告 (二) 课程实验:电磁波在介质中传播规律 班级: 姓名: 指导老师: 实验日期:

电磁波在介质中的传播规律 一、实验目的: 1、用MATLAB 程序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、学会使用Matlab 进行数值计算,并绘出相应的图形,运用MATLAB 对其进行可视化处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同性均匀线性的,即(0,0==j ρ)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子()t j ωex p 相乘,这里ω是角频率。在这种约定下,麦克斯韦方程组便可表示成[]1 ΗE ωμj -=?? (1) ΕΗωεj =?? (2) 0=??Ε (3) 0=??Η (4) 对方程(1)两边同取旋度,并将式(2)代入便得 ΕΕεμω2=???? (5) 利用如下矢量拉普拉斯算子定义以及方程(3) ()ΕΕΕ????-???=?2 (6) 方程(5)式变为[]2

022=+?ΕΕk (7) μεω=k (8) 类似地,可得Β所满足的方程为 022=+?ΒΒk (9) 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对单色平面波的研究具有重要的理论和实际意义。假定波动方程(7)和(8)式的单色平面波的复式量解为[]3 ()[]r k ΕΕ?-=t j ωex p 0 (10) ()[]r k ΒΒ?-=t j ωex p 0 (11) 式中0Ε,0Β分别为Ε,Β振幅,ω为圆频率,k 为波矢量(即电磁波的传播方向)。 ()[]t kx j ω-ex p 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等相位的传播速度。很显然等相位面由下面方程决定[]1 const kr t =-ω (12) 方程(12)两边对时间t 求导可得 k dt dr v ω == (13) 由式(8)可知 εμ 1 = v (14) 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得[]3

电磁场与电磁波试题及答案.

1、 写出非限定情况下麦克斯韦方程组得微分形式,并简要说明其物理意义。 2、答非限定情况下麦克斯韦方程组得微分形式为,(3分)(表明了电磁场与它们得源之间得全部关系除了真实电流外,变化得电场(位移电流)也就是磁场得源;除电荷外,变化得磁场也就是电场得源。 1、 写出时变电磁场在1为理想导体与2为理想介质分界面时得边界条件。 2、 时变场得一般边界条件 、、、。 (或矢量式、、、) 1、 写出矢量位、动态矢量位与动态标量位得表达式,并简要说明库仑规范与洛仑兹规范得意义。 2、 答矢量位;动态矢量位或。库仑规范与洛仑兹规范得作用都就是限制得散度,从而使得取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1、 简述穿过闭合曲面得通量及其物理定义 2、 就是矢量A 穿过闭合曲面S 得通量或发散量。若Ф> 0,流出S 面得通量大于流入得通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面得通量大于流出得通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面得通量等于流出得通量,说明S 面内无源。 1、 证明位置矢量 得散度,并由此说明矢量场得散度与坐标得选择无关。 2、 证明在直角坐标系里计算 ,则有 若在球坐标系里计算,则 由此说明了矢量场得散度与坐标得选择无关。 1、 在直角坐标系证明 2、 ()[()()()]()()()0y x x x z z x y z x y z y y x x z z A A A A A A A e e e e e e x y z y z z x x y A A A A A A x y z y z x z x y ????????????? =++?-+-+-??????????????????=-+-+-=????????? 1、 简述亥姆霍兹定理并举例说明。 2、 亥姆霍兹定理研究一个矢量场,必须研究它得散度与旋度,才能确定该矢量场得性质。 例静电场 有源

实验二-电磁波在介质中的传播规律

实验二-电磁波在介质中的传播规律

电磁场与微波技术实验报告 (二) 课程实验:电磁波在介质中传播规律 班级: 姓名: 指导老师: 实验日期: 2015.11.21

电磁波在介质中的传播规律 一、实验目的: 1、用MATLAB 程序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、学会使用Matlab 进行数值计算,并绘出相应的图形,运用MATLAB 对其进行可视化处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向 同性均匀线性的,即(0,0==j ρ)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子()t j ωex p 相乘,这里ω是角频率。在这种约定下,麦克斯韦方程组便可表示成[]1 ΗE ωμj -=?? (1) ΕΗωεj =?? (2) 0=??Ε (3) 0=??Η (4) 对方程(1)两边同取旋度,并将式(2)代入便得 ΕΕεμω2=???? (5) 利用如下矢量拉普拉斯算子定义以及方程(3) ()ΕΕΕ????-???=?2 (6) 方程(5)式变为[]2

022=+?ΕΕk (7) μεω=k (8) 类似地,可得Β所满足的方程为 022=+?ΒΒk (9) 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对单色平面波的研究具有重要的理论和实际意义。假定波动方程(7)和(8)式的单色平面波的复式量解为[]3 ()[]r k ΕΕ?-=t j ωex p 0 (10) ()[]r k ΒΒ?-=t j ωex p 0 (11) 式中0Ε,0Β分别为Ε,Β振幅,ω为圆频率,k 为波矢量(即电磁波的传播方向)。 ()[]t kx j ω-ex p 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等相位的传播速度。很显然等相位面由下面方程决定[]1 const kr t =-ω (12) 方程(12)两边对时间t 求导可得 k dt dr v ω== (13) 由式(8)可知 εμ1 =v (14) 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得[]3

相关主题
文本预览
相关文档 最新文档