当前位置:文档之家› 3-1微分中值定理

3-1微分中值定理

(完整版)利用微分中值定理证明不等式

微分中值定理证明不等式 微分中值定理主要有下面几种: 1、费马定理:设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有 0()0f x '=. 2、罗尔中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 3、拉格朗日中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; 则在开区间(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b a ξ-'=-. 4、柯西中值定理:若函数()f x ,()g x 满足如下条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()f x ',()g x '不同时为零; (4)()()g a g b ≠; 则在开区间(),a b 内存在一点ξ,使得 ()()()()()() f f b f a g g b g a ξξ'-='-. 微分中值定理在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例1、 设 ⑴(),()f x f x '在[,]a b 上连续; ⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b == ⑷在(,)a b 内存在点c ,使得()0;f c > 求证在(,)a b 内存在ξ,使()0f ξ''<. 证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以 1()0f x '=. 由泰勒公式:211111()()()()()(),(,)2! f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<. 例2 、设0b a <≤,证明ln a b a a b a b b --≤≤.

第3章-微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的关 系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便于 直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim ()x x f x → 那么就在0 x 附近展开。如果极限是 lim ()x f x →∞ ,

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

2.2微分中值定理

§2.2 微分中值定理 一、罗尔定理 设函数()f x 满足 (1)在闭区间[a ,b ]上连续; (2)在开区间(a ,b )内可导; (3)()()f a f b =. 则至少存在一点()a b x ?,,使得()0f x ¢=. 几何意义:条件(1)说明曲线()y f x =在(,())A a f a 和(,())B b f b 之间是连续曲线[包括点A 和点B ]. 条件(2)说明曲线()y f x =在A ,B 之间是光滑曲线,也即每一点都有不垂直于x 轴的切线[不包括点A 和B ] 条件(3)说明曲线()y f x =在端点A 和B 处纵坐标相等。 结论说明曲线()y f x =在A 点和B 点之间[不包括点A 和B ]至少有一点,它的切线平行于x 轴。 注意:构造辅助函数时,可考虑以下形式 (1)()()k F x x f x =(加法) (2)() ()k f x F x x = (加法) (3)()()kx F x f x e =(函数加导数) 【例1】设()f x 在[]0,3上连续,在()0,3内可导,且()()()0123f f f ++=, ()31f =,试证:必存在()ξ∈0,3,使()0f ξ'=。 证 ()f x Q 在[]0,3上连续,()f x ∴在[]0,2上连续,且有最大值M 和最小值m , 于是(0)m f M ≤≤;(1)m f M ≤≤;(2)m f M ≤≤,

故[]1 (0)(1)(2)3 m f f f M ≤ ++≤。 由连续函数介值定理可知,至少存在一点[]c ∈0,2,使得 ()[]1 (0)(1)(2)13 f c f f f = ++= 因此()()3f c f =,且()f x 在[]c ,3上连续,()c ,3内可导,由罗尔定理得出必存在()()03ξ∈?c ,3,,使得()0f ξ'=。 【例2】 设()f x 在[]0,1上连续,在()01,内可导,且()()2 3 1 3 0f x dx f =?. 求证:存在()0,1x ?使()0f x ¢ = 证 由积分中值定理可知,存在轾 ?犏臌 2,13c ,使得()()2 3 1 213f x dx f c ?? =- ??? ? 得到 ()()23 1 3 (0)f c f x dx f ==? 对()f x 在[]0c ,上用罗尔定理(三个条件都满足), 故存在() 0(01)c ,,x 翁,使()0f x ¢= 【例3】(07)设函数()f x ,()g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=。 分析:令()()()()F x f x g x F x =-?在[,]a b 连续,在(,)a b 可导,在题设条件下,要证存在(,)a b ξ∈,()0F ξ''=。已知()()0F a F b ==,只需由题设再证(,)c a b ?∈, ()0F c =。 证明:由题设11[,] (,),max ()()a b x a b M f x f x ?∈==, 22[,] (,),max ()()a b x a b M g x g x ?∈==。

微分中值定理论文

引言 通过对数学分析的学习我们知道,微分学在数学分析中具有举足轻重的地位,它是组成数学分析的不可缺失的部分。对于整块微分学的学习,我们可以知道中值定理在它的所有定理里面是最基本的定理,也是构成它理论基础知识的一块非常重要的内容。由此可知,对于深入的了解微分中值定理,可以让我们更好的学好数学分析。通过对微分中值定理的研究,我们可以得到它不仅揭示了函数整体与局部的关系,而且也是微分学理论应用的基础。微分中值定理是一系列中值定理总称,但本文主要是以拉格朗日定理、罗尔定理和柯西定理三个定理之间的关系[1-3]以及它们的推广为研究对象,利用它们来讨论一些方程根(零点)的存在性, 和对极限的求解问题,以及一些不等式的证明。 中值定理的内容及联系 基本内容[4][5] 对于,微分中值定理的了解,我们了解到它包含了很多中值定理,可以说它是一系列定理的总称。而本文主要是以其中的三个定理为对象,进行探讨和发现它们之间的关系。它们分别是“罗尔(Rolle )定理、拉格朗日(Lagrange )定理和柯西(Cauchy )定理”。这三个定理的具体内容如下: Rolle 定理 若()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,则至少存在一点(),a b ξ∈,使()0f ξ'=。 Lagrange 定理 若()f x 在[],a b 上连续,在(),a b 内可导,则至少存在一点(),a b ξ∈,使()()()() =f b f a f b a ξ-'- Cauchy 定理 设()f x ,()g x 在[],a b 上连续,在(),a b 内可导,且()0g x '≠,则至少存在一点 (),a b ξ∈,使得 ()()()()()() f b f a f g b g a g ξξ'-='-。 三个中值定理之间的关系 现在我们来看这三个定理,从这三个定理的内容我们不难看出它们之间具有一定的关系。那它们之间具体有什么样的关系呢?我们又如何来探讨呢?这是我们要关心的问题,我们将利用推广和收缩的观点来看这三个定理。首先我们先对这三个定理进行观察和类比,从中可以发现,如果把罗尔定理中的()()f a f b =这一条件给去掉的话,那么定理就会变成为拉格朗日定理。相反,如果在拉格朗日定理中添加()()f a f b =这一条件的话,显然就该定理就会成为了罗尔定理。通过这一发现,可以得到这样的一个结论:拉格朗日定理是罗尔定理的推广,而罗尔定理是拉格朗日定理的收缩,或是它的特例。继续用这一思路来看拉格朗日

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

微分中值定理和应用(大学毕业论文)

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书I 开题报告II 指导老师审查意见III 评阅老师评语IV 答辩会议记录V 中文摘要VI 外文摘要VII 1 引言1 2 题目来源1 3 研究目的和意义1 4 国外现状和发展趋势与研究的主攻方向1 5 微分中值定理的发展过程2 6 微分中值定理的基本容3 6.1 罗尔(Rolle)中值定理3 6.2 拉格朗日(Lagrange)中值定理4 6.3 柯西(Cauchy)中值定理4 6.4 泰勒(Taylor)定理4 7 微分中值定理之间的联系5 8 微分中值定理的应用5 8.1 根的存在性证明6 8.2 利用微分中值定理求极限8 8.3 利用微分中值定理证明函数的连续性10 8.4 利用微分中值定理解决含高阶导数的中值问题10 8.5 利用微分中值定理求近似值10 8.6 利用微分中值定理解决导数估值问题10 8.7 利用微分中值定理证明不等式11 9 微分中值定理的推广14 9.1 微分中值定理的推广定理15 9.2 微分中值定理的推广定理的应用17 参考文献18 致19

微分中值定理的推广及应用 学生:邓奇峰,信息与数学学院 指导老师:熊骏,信息与数学学院 【摘要】微分中值定理,是微积分的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,在微积分中起着极其重要的作用。本文首先介绍了微分中值定理的发展过程、微分中值定理的容和微分中值定理之间的在联系,接着再看微分中值定理在解题中的应用,如:“讨论方程根(零点)的存在性” ,“求极限”和“证明不等式”等方面的应用。 由于微分中值定理及有关命题的证明方法中往往出现的形式并非这三个定理中的某个直接结论,这就需要借助于一个适当的辅助函数,来实现数学问题的等价转换,但是,怎样构造适当的辅助函数往往是比较困难的。在此重点给出如何通过构造辅助函数来解决中值定理问题,从理论和实际的结合上阐明微分中值定理的重要性。 拉格朗日中值定理及柯西中值定理都是罗尔中值定理的推广。本文从其它角度归纳、推导了几个新的形式,拓宽了罗尔中值定理的使用围。同时,用若干实例说明了微分中值定理在导数极限、导数估值、方程根的存在性、不等式的证明、以及计算函数极限等方面的一些应用。 【关键词】微分中值定理罗尔中值定理拉格朗日中值定理柯西中值定理联系推广应用

论文拉格朗日中值定理

拉格朗日中值定理的 应用论文 论文题目拉格朗日中值定理 姓名 学号 所在学院 年级专业 完成时间年月日

拉格朗日中值定理的应用 摘要:以罗尔中值定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的重要理论基础,而拉格朗日中值定理因其中值性是几个中值定理中最重要的一个,在微分中值定理和高等数学中有着承上启下的重要作用。中值定理的主要用于理论分析和证明,例如利用导数判断函数单调性、凹凸性、取极值、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的重要工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,研究其定理的证明方法,力求正确地理解和掌握它,并在此基础上深入了解它的一些重要应用,是十分必要的,鉴于课本中对拉格朗日中值定理的应用只是简单的举了例子,而很多研究者也只是研究了它在某个方面的应用,并没有进行系统的总结,有鉴于此,本文将对其应用进行了深入的总结。 关键词:拉格朗日中值定理;应用;极限;收敛

Applications of Lagrange's mean value theorem Abstract:A group of mean value theorem which includes Rolle's mean value theorem , Lagrange's mean value theorem and Cauchy's mean value theorem is the theoretical basis of the differential calculus. And Lagrange's mean value theorem is the most important one of these mean value theorems because of its property median and continuity. Mean value theorems' main function include theory analysis and proof, such as providing theoretical basis for judging function monotonicity, convexity, inflection point,and calculating extreme value by derivative, so that we can grasp the various geometric characteristic function image. All in all, differential mean value theorem is the communication bridge between the derivative value and the function value. And it is even the tool of inferring the whole nature of function by the local nature of derivative. As a structure connecting ecosystem and individuals in differential mean value theorem, it is very important to research Lagrange's mean value theorem's way to prove, understand and master it correctly, even keep gaining insight into its important applications. There is no special explanation about the applications of Lagrange's mean value theorem and many researchers also just studied it in some applications and no systematic summary. This article will give the in-depth summary. Keywords:Lagrange's mean value theorem; Application; Limit; Convergence

微分中值定理历史与发展

微分中值定理历史与发展 卢玉峰 (大连理工大学应用数学系, 大连, 116024) 微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值 定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度. 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

最新3[1]1微分中值定理及其应用汇总

3[1]1微分中值定理 及其应用

3.2 微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:2学时 一、微分中值定理: 1. Rolle中值定理: 设函数在区间上连续,在内可导,且有.则?Skip Record If...?,使得?Skip Record If...?.

https://www.doczj.com/doc/e61964519.html,grange中值定理: 设函数在区间上连续,在内可导, 则?Skip Record If...?,使得?Skip Record If...?. 推论1 函数在区间I上可导且为I上的常值函 数. 推论2 函数和在区间I上可导且 推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有 (证) 但是, 不存在时, 却未必有不存在. 例如对函数 虽然不存在,但却在点可导(可用定义求得). Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在 内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函 数的连续点,要么是的第二类间断点.这就是说,当函数在区间I 上点点可导时,导函数在区间I上不可能有第二类间断点.

微分中值定理及其应用大学毕业论文

微分中值定理及其应用 大学毕业论文 Last revised by LE LE in 2021

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生姓名:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书................................................ I 开题报告..................................................... II 指导老师审查意见 ............................................ III 评阅老师评语................................................. IV 答辩会议记录.................................................. V 中文摘要..................................................... VI 外文摘要.................................................... VII 1 引言 (1) 2 题目来源 (1) 3 研究目的和意义 (1) 4 国内外现状和发展趋势与研究的主攻方向 (1) 5 微分中值定理的发展过程 (2) 6 微分中值定理的基本内容 (3) 罗尔(Rolle)中值定理 (3) 拉格朗日(Lagrange)中值定理 (4) 柯西(Cauchy)中值定理 (4) 泰勒(Taylor)定理 (4) 7 微分中值定理之间的联系 (5) 8 微分中值定理的应用 (5) 根的存在性证明 (6) 利用微分中值定理求极限 (8) 利用微分中值定理证明函数的连续性 (9) 利用微分中值定理解决含高阶导数的中值问题 (10) 利用微分中值定理求近似值 (10) 利用微分中值定理解决导数估值问题 (10) 利用微分中值定理证明不等式 (11) 9 微分中值定理的推广 (14) 微分中值定理的推广定理 (14) 微分中值定理的推广定理的应用 (16) 参考文献 (18) 致谢 (19)

微分中值定理及其应用大学毕业论文

微分中值定理及其应用大 学毕业论文 Newly compiled on November 23, 2020

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生姓名:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书................................................ I 开题报告..................................................... II 指导老师审查意见 ............................................ III 评阅老师评语................................................. IV 答辩会议记录.................................................. V 中文摘要..................................................... VI 外文摘要.................................................... VII 1 引言 (1) 2 题目来源 (1) 3 研究目的和意义 (1) 4 国内外现状和发展趋势与研究的主攻方向 (1) 5 微分中值定理的发展过程 (2) 6 微分中值定理的基本内容 (3) 罗尔(Rolle)中值定理 (3) 拉格朗日(Lagrange)中值定理 (4) 柯西(Cauchy)中值定理 (4) 泰勒(Taylor)定理 (4) 7 微分中值定理之间的联系 (5) 8 微分中值定理的应用 (5) 根的存在性证明 (6) 利用微分中值定理求极限 (8) 利用微分中值定理证明函数的连续性 (9) 利用微分中值定理解决含高阶导数的中值问题 (10) 利用微分中值定理求近似值 (10) 利用微分中值定理解决导数估值问题 (10) 利用微分中值定理证明不等式 (11) 9 微分中值定理的推广 (14) 微分中值定理的推广定理 (14) 微分中值定理的推广定理的应用 (16) 参考文献 (18) 致谢 (19)

微分中值定理及应用综述

微分中值定理及应用综述 谢娟 09211045 江苏师范大学 数学与统计学院 徐州 221116 摘 要:微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理、泰勒定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁和基石.本文对微分中值定理中的一些条件给予了相关说明,介绍了微分三大中值定理以及它们之间的关系,后又在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 关键词:微分中值定理;关系;应用 引言 微分中值定理是微分学的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,应用十分广泛. 1 浅谈微分中值定理 1.1 微分中值定理的基本内容 微分中值定理是反映导数值与函数值之间的联系的定理, 它们分别是罗尔定理、拉格朗日定理和柯西中值定理.具体内容如下: 1.1.1 罗尔定理 如果函数()y f x = 满足: ( 1) 在闭区间[],a b 上连续; ( 2) 在开区间(),a b 内可导; ( 3) 在区间端点的函数值相等, 即()()f a f b =, 那么在区间(),a b 内至少有一 点ε()a b ε<< , 使函数()y f x =在该点的导数等于零, 即 ()/0f ε= 几何分析 在(图1) 中可见()y f x =曲线在[],a b 上是一条连续光滑的曲线, 曲线()y f x =在 (),a b 内处处有切线且没有垂直于x 轴的切线.在曲线的两端点一般高(罗尔定理的三条件在 平面几何中成立), 因而在(),a b 内曲线()y f x =至少有一点处的切线平行于x 轴(罗尔定理的结论成立,/ ()0f x =).通过对罗尔定理的几何分析, 抽象的罗尔定理得到了具体化(这也反应了数学的一般思想, 抽象思维具体化)。对于我们理解和掌握罗尔定理大有帮助.

2016考研数学:三个微分中值定理

2016考研数学:三个微分中值定理 每年考研数学必有一道证明题,分值在10分左右,其中百分之九十涉及到的是微分中值定理及其应用。 而微分中值定理及其应用最难的就是三个微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。它们是考研数学的重难点,现分别从涉及的知识点、考查方式、方法选择、真题链接等四个方面进行分析。 一、涉及的知识点及考查形式 可涉及微分中值定理及其应用的知识点有,微分中值定理,洛必达法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分(数一、数二要求),曲率的概念(数一、数二要求),曲率圆与曲率半径(数一、数二要求)。 微分中值定理以间接考查或与其他知识点综合出题的比重很大,也可以直接出题,所以考查形式有多种。如利用导数的几何意义考查函数的特性,讨论导数零点存在性或方程根个数问题,不等式的证明,证明含中值的等式,求极限等。 二、方法选择 题目考查微分中值定理,那么选择哪一中值定理成为解题的关键。 针对题目的特点,可根据如下情况选择对应的微分中值定理:如果结论不包含端点,优先考虑罗尔定理;如果结论中包含端点,则考虑拉格朗日中值定理或柯西定理。那么选择拉式还是柯西定理,需要对结论做进一步的处理,化为定理的标准形式。如第一个标准,左边是只含端点,右边只含中值;第二个标准,左边进一步处理,分子分母减号,一侧只含右端点,一侧只含左端点。整理后,如果分母是端点相减,则选择拉格朗日定理;否则,选择柯西定理。 三、求解步骤及历年真题解析 涉及到微分中值定理,一般首先要找辅导函数。针对拉式中值定理和柯西定理,经过对要证明的结论化为标准形式,可直接得出辅助函数。而罗尔定理,需要把结论化为微分方程的一般形式,使用积分因子法可找到。 有了辅助函数,根据中值定理,列出定理对应的三个条件,得出结论。

数学分析微分中值定理及其应用

第六章 微分中值定理及其应用(计划课时: 8时 ) § 1中值定理( 3时 ) 一 思路: 在建立了导数的概念并讨论了其计算后,应考虑导数在研究函数方面的 一些作用。基于这一目的,需要建立导数与函数之间的某种联系。还是从导数的定义出发: 00)()(lim x x x f x f x x --→=)(0x f '.若能去掉导数定义中的极限符号,即 0) ()(x x x f x f --=?)(0x f ',则目的就可达到.这样从几何上说就是要考虑曲线的割线与切线之间的平行关系. 一方面 要考虑给定割线, 找平行于该割线的切线; 另一方面要考虑给定切线, 找平行于该切线的割线. (1)若给定的割线是水平的、斜的或曲线的方程以参数方程的形式给出,则分别可找出相应的切线平行于该割线,再分析所需要的条件,就可建立起Rolle 定理、Lagrange 定理、Cauchy 定理. 这三个微分中值定理用一句话概括:对于处处连续、处处有切线曲线的每一条割线都可以找到平行于该割线的切线. (2)若给定切线, 找平行于该切线的割线, 则不一定能实现. 二 微分中值定理: 1. Rolle 中值定理: 叙述为Th1. ( 证 ) 定理条件的充分但不必要性. 2. Lagrange 中值定理: 叙述为Th2.( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理. Lagrange 中值定理的各种形式. 关于中值点的位置. 系1 函数)(x f 在区间I 上可导且)( ,0)(x f x f ?≡'为I 上的常值函数. (证) 系2 函数)(x f 和)(x g 在区间I 上可导且,)()( ),()(c x g x f x g x f +=?'≡'.I ∈x 系 3 设函数)(x f 在点的某右邻域)(0x + 上连续,在)(0x + 内可导.若 )0()(lim 00 +'='+→x f x f x x 存在 , 则右导数)(0x f +'也存在, 且有).0()(00+'='+x f x f (证) 但是, )0(0+'x f 不存在时, 却未必有)(0x f +'不存在. 例如对函数 ??? ??=≠=.0 ,0,0 ,1sin )(2 x x x x x f 虽然)00(+'f 不存在,但)(x f 却在点0=x 可导(可用定义求得0)0(='f ). Th3 (导数极限定理)设函数)(x f 在点的某邻域 )(0x 内连续, 在)(0x 内可导.若极限 )(lim 0 x f x x '→存在, 则)(0x f '也存在, 且).(lim )(0 0x f x f x x '='→( 证 ) 由该定理可见, 若函数)(x f 在区间I 上可导,则区间I 上的每一点,要么是导函数 )(x f '的连续点,要么是)(x f '的第二类间断点.这就是说,当函数)(x f 在区间I 上点点可导时, 导函数)(x f '在区间I 上不可能有第二类间断点. 3. Cauchy 中值定理: Th 4 设函数和在闭区间],[b a 上连续, 在开区间),(b a 内可导, 和在),(b a 内不同时为零, 又).()(b g a g =/ 则在),(b a 内至少存在一点 使得

三微分中值定理及应用

(三)微分中值定理及应用 -、填空题 1.设由拉格朗日中值定理可得1x x e xe θ-=,其中01θ<<,则0 lim ()x x θ→= . 2.当0x ≥时,ln(1)1x x x θ+=+(01)θ<<,则0lim x θ→= . 3.函数()(1)(2)(3)(4)f x x x x x x =----,则()f x '有 个零点. 二、选择题 1.设函数()f x 在区间(,)a b 内可导,1x ,2x 为(,)a b 内任意两点,且12x x <,则至少存在一点ξ,使下列等式成立的是 ( ) (A ) ()()()()f b f a f b a ξ'-=-,(,)a b ξ∈ (B ) 1()()()()f b f x f b a ξ'-=-,1(,)x b ξ∈ (C ) 2121()()()()f x f x f x x ξ'-=-,12(,)x x ξ∈ (D ) 22()()()()f x f a f x a ξ'-=-,2(,)a x ξ∈ 2.设a ,b 是方程()0f x =的两个根,()f x 在[,]a b 上连续,在(,)a b 内可导,则()0f x '=在(,) a b 内 ( ) (A )只有一个实根 (B )至少有一个实根 (C )没有实根 (D )至少有两个实根 3.设在[0,1]上()0f x ''>,则(0),(1),(1)(0)f f f f ''-和(0)(1)f f -的大小顺序是 ( ) (A)(1)(0)(1)(0)f f f f ''>>- (B) (1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->> (D)(1)(0)(1)(0)f f f f ''>-> 三、解答题 1.求下列极限 (1)2240cos lim x x x e x -→-;

相关主题
文本预览
相关文档 最新文档