当前位置:文档之家› 贝叶斯判别习题

贝叶斯判别习题

贝叶斯判别习题
贝叶斯判别习题

1. 办公室新来了一个雇员小王,小王是好人还是坏人大家都在猜测。按人们主观意识,一个人是好人或坏人的概率均为0.5。坏人总是要做坏事,好人总是做好事,偶尔也会做一件坏事,一般好人做好事的概率为0.9,坏人做好事的概率为0.2,一天,小王做了一件好事,小王是好人的概率有多大,你现在把小王判为何种人。 解:A :小王是个好人 a :小王做好事

B :小王是个坏人 B :小王做坏事

()(/)

(/)()(/)()(/)P A P a A P A a P A P a A P B P a B =

+0.5*0.90.820.5*0.90.5*0.2

==+

()(/)0.5*0.2

(/)()(/)()(/)0.5*0.90.5*0.2

P B P a B P B b P A P a A P B P a B =

=++=0.18

0.82>0.18 所以小王是个好人、

2. 设 m = 1,k = 2 ,X 1 ~ N (0,1) ,X 2 ~ N (3,2 2 ) ,试就C(2 | 1) = 1,C(1 | 2) = 1,且不考虑先验概率的情况下判别样品2,1 属于哪个总体,并求出 R = (R1, R2 ) 。 解:

2222

121/821

()()/}1,2

21(2)(20)}0.054

21(2)(23)/4}0.176

2i i i P x x i P P μσ--=

--==

--===--== 由于1(2)P <2(2)P ,所以2属于2π

21/2

121/221(1)(10)}0.242

21(1)(13)/4}0.120

2P P --=

--===--==

1(1)P >2(1)P ,所以1属于1π

1()P x

22211

}()(3)/4}22x P x x -==--

即221

exp{}2

x -=21exp{(69)}8

x x --+

2211

ln 2(69)28

x x x -

=--+ 解得

1

x =1.42

2

x =-3.14.所以

R=([-3.41,1.42],(-∞,-3.41)U(1.42,+∞)).

3.已知1π,2π的先验分布分别为1q =3

5

,2q =25

,C(2|1)=1,C(1|2)=1,且

11,01()2,120,x x f P x x x <≤??==-<≤???其他 22

(1)/4,13

()(5)/4,350,x x f P x x x -<≤??

==-<≤???

其他 使判别1x = 95

,2x =2所属总体。

解:1p (9/5)=2-9/5=1/5 1p (2)=2-2=0 2p (9/5)=(9/5-1)/4=1/5

2p (2)=(2-1/4)=1/4

11q p = 35*15= 325> 22q p = 25*15 =2

25

11q p =0<22q p =25*14=1

10

所以判1x =9

5

属于1π。同理可知2x =2属于2π。

4. 假设在某地区切片细胞中正常(ω1)和异常(ω2)两类的先验概率分别为P(ω1)=0.9,P(ω2)=0.1。现有一待识别细胞呈现出状态x ,由其类条件概率密度分布曲线查得p(x|ω1)=0.2,p(x|ω2)=0.4,试对细胞x 进行分类

解:利用贝叶斯公式,分别计算出状态为x 时ω1与ω2的后验概率

根据贝叶斯决策有

P(ω1|x)=0.818>P(ω2|x)=0.182 判断为正常细胞,错误率为0.182 判断为异常细胞,错误率为0.818 因此判定该细胞为正常细胞比较合理 5 简述贝叶斯判别法的基本思想和方法

基本思想:设k 个总体k G G G ,,,21 ,其各自的分布密度函数

)(,),(),(21x x x k f f f ,假设k 个总体各自出现的概率分别为k q q q ,,,21 ,

0≥i q ,11

=∑=k

i i q 。设将本来属于i G 总体的样品错判到总体j G 时造成的损

失为)|(i j C ,k j i ,,2,1, =。

设k 个总体k G G G ,,,21 相应的p 维样本空间为 ),,,(21k R R R R =。 在规则R 下,将属于i G 的样品错判为j G 的概率为

x x d f R i j P j

R i )(),|(?= j i k

j i ≠=,,2,1,

则这种判别规则下样品错判后所造成的平均损失为

∑==k

j R i j P i j C R i r 1)],|()|([)|( k i ,,2,1 =

则用规则R 来进行判别所造成的总平均损失为

∑==k

i i R i r q R g 1),()(

∑∑===k i k

j i R i j P i j C q 1

1

),|()|(

贝叶斯判别法则,就是要选择一种划分k R R R ,,,21 ,使总平均损失)(R g 达到极小。

基本方法:∑∑===k

i k

j i R i j P i j C q R g 1

1

),|()|()(

x x d f i j C q k i k

j R i i j

∑∑?===1

1

)()|(

∑?∑===k

j R k

i i i j

d f i j C q 1

1

))()|((x x

令1

(|)()()k i i j i q C j i f h ==∑x x ,则 ∑?==k

j R j j

d h R g 1

)()(x x

若有另一划分),,,(**2

*

1

*

k

R R R R =,∑?==k

j R j j

d h R g 1

*

*)()(x x

则在两种划分下的总平均损失之差为

∑∑?

==?-=-k

i k

j R R j i j

i d h h R g R g 11*

*)]()([)()(x x x

因为在i R 上)()(x x j i h h ≤对一切j 成立,故上式小于或等于零,是贝叶

斯判别的解。从而得到的划分),,,(21k R R R R =为1{|()min ()}i i j j k R h h ≤≤==x x x k i ,,2,1 =。

6.已知:P(ω1)=0.005,P(ω2)=0.995,

p(x=阳|ω1)=0.95,p(x=阴|ω1)=0.95, p(x=阳|ω2)=0.01,p(x=阴|ω2)=0.99 试计算判断阙值。 解:利用贝叶斯公式,有:

323

.0995

.001.0005.095.0005

.095.0)()|()()|()

()|()

()

()|()|(221111111=?+??=

=+===

===

=ωωωωωωωωωP x p P x p P x p x p P x p x P 阳阳阳阳阳阳 似然比:950.010.95

)|p(x )|p(x 2112=====

ωω阳阳l

判决阈值:1970.005

0.995

)P()P(1221===ωωθ

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

贝叶斯决策例题

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。根据过去的经验,在计划实施工期天气好的可能性为30%。为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。问如何进行决策。 解:采用贝叶斯决策方法。 (1)先验分析 根据已有资料做出决策损益表。 根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8 (2)预验分析 完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)

=1.36(万元) 完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。 (3)后验分析 ①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。 从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9 ②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。 预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+ =0.31 预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+ =0.69 预报天气好且天气实际也好的概率:

贝叶斯决策的经典例题练习

一、贝叶斯决策(Bayes decision theory) 【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:0.2,0.5和0.3。方案在各种情况下的利润及期望利润如下表。 企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为0.9、0.06和0.04;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为0.05、0.9和0.05;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为0.04、0.06和0.9。问:企业是否委托专业市场调查机构进行调查? 解: 1.验前分析: 记方案d1为批量生产,方案d2为出售专利 E(d1)=0.2*80+0.5*20+0.3*(-5)=24.5(万元) E(d2)=40*0.2+7*0.5+1*0.3=11.8(万元) 记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=24.5(万元) 因此验前分析后的决策为:批量生产 E1不作市场调查的期望收益 2.预验分析: (1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示 由全概率公式 P(H1)=0.9*0.2+0.06*0.5+0.04*0.3=0.232 P(H2)=0.05*0.2+0.9*0.5+0.05*0.3=0.475 P(H3)=0.04*0.2+0.06*0.5+0.9*0.3=0.308 (2)由贝叶斯公式有 P(?1|H1)=0.9*0.2/0.232=0.776 P(?2|H1)=0.06*0.5/0.232=0.129 P(?3|H1)=0.04*0.3/0.232=0.052 P(?1|H2)=0.05*0.2/0.475=0.021 P(?2|H2)=0.9*0.5/0.475=0.947 P(?3|H2)=0.05*0.3/0.475=0.032 P(?1|H3)=0.04*0.2/0.308=0.026 P(?2|H3)=0.06*0.5/0.308=0.097 P(?3|H3)=0.9*0.3/0.308=0.877 (3)用后验分布代替先验分布,计算各方案的期望收益值 a)当市场调查结果为畅销时 E(d1|H1)=80* P(?1|H1)+20* P(?2|H1)+(-5)* P(?3|H1)

贝叶斯决策分析文献综述

管理决策分析 贝叶斯决策分析文献综述 单位:数信学院管理07 小组成员:0711200209 王双 0711200215 韦海霞 0711200217 覃慧 完成日期:2010年5月31日

有关贝叶斯决策方法文献综述 0. 引言 决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素 ,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 1.贝叶斯决策分析的思想及步骤 从信息价值的经济效用的角度,讨论贝叶斯公式在风险决策中的应用。首先根据期望值原则,以先验概率为基础,找到最优方案及其期望损益值和风险系数,然后用决策信息修正先验分布,得到状态变量的后验分布,并用后验分布概率计算各方案的期望损益值,找出最满意方案,并计算其风险系数(这里计算的风险系数应比仅有先验条件下计算的风险系数要小),最后求出掌握了全部决策信息值的期望损益值。用全部决策信息值的期望损益值减去没有考虑决策信息时的期望收益,就得到了决策信息的价值。 步骤如下: (1)已知可供选择的方案,方案的各状态概率,及各方案在各状态下的收益值。 (2)计算方案的期望收益值,按照期望收益值选择方案。 (3)计算方案的期望损益标准差和风险系数。运用方案的风险系数来测度其风险度,即得到每个方案每一单位期望收益的离散程度指标。该指标越大,决策风险就越大。期望损益标准差公式: ∑=-= n 12A )()(i i Ai x P EMA CP δ 风险系数: )() (1i i u E u D V =δ (4)利用贝叶斯公式对各种状态的概率进行修正。先算出各个状态下的后验概率,计算掌握了决策信息后的最满意方案的期望收益值和风险系数,最后算出信息的价值。 2. 贝叶斯决策分析的应用领域 2.1 港口规划等问题 港口吞吐量()i s 与其预测出现的现象()j z 为相互独立的事件。事件,i j s z 发生的概率分别是()i P s 、()j P z 。在事件j z 发生的条件下,事件i s 发生的概率为(/)i j P s z 。运用贝叶斯公式进行事件的原因分析和决策。根据贝叶斯定理可求得

浅谈贝叶斯公式及其应用

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现,这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且1n i i B ==Ω ,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1 ()(/) (/),1,2,...,()(/) i i i n j j j P B P A B P B A i n P B P A B == =∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) () (/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1 ()(/) (/),1,2,...,()(/) i i i n j j j P B P A B P B A i n P B P A B == =∑ 结论的证。

贝叶斯决策例子

贝叶斯决策练习 某石油公司拟在一片估计含油的荒地上钻井。如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。

解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。 若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。由题意可知: 1211211222()0.55 ()0.45 (|)0.8 (|)0.2(|)0.15 (|)0.85 P A P A P B A P B A P B A P B A ====== 由贝叶斯公式计算得到: 11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075 P A P B A P A B P A P B A P A P B A = ===++ 同理,有: 2112220.0675(|)0.1330.5075 0.11(|)0.2230.4925 0.3825(|)0.7770.4925P A B P A B P A B = ===== 该问题对应的决策树图 采用逆序的方法,先计算事件点②③④的期望值: 事件点 期望值 ② 800×0.867+0×0.133=693.6(万元) ③ 800×0.223+0×0.777=178.4(万元) ④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。 在事件点①处期望值为:543.6×0.5075+100×0.4925=325.13万元 最后在决策点1,按max[(325.13-20),290]=305.13万元,故选择进行地震试验方案。 故为了使该公司的期望收入为最大的决策是:先进行地震试验,当试验结果为油气显示好时,选择钻井;而油气显示不好时,选择出让开采权,该策略下期望收入为305.13万元。

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

贝叶斯决策方法课后习题

1.什么叫贝叶斯决策?如何进行贝叶斯决策? 风险型决策方法是根据预测各种事件可能发生的先验概率,然后再采用期望值标准或最大可能性标准来选择最佳决策方案。这样的决策具有一定的风险性,因为先验概率是根据历史资料或主观判断所确定的概率,未经试验证实,为了减少这种风险,需要较准确的掌握和估计这些先验概率。这就要通过科学实验,调查,统计分析等方法获得较为准确的情报信息,以修正先验概率,并据以确定各方案的期望损益值,拟订可供选择的决策方案,协助决策者做出正确的决策。一般来说,利用贝叶斯定理要求得后验概率,据以进行决策的方法称为贝叶斯决策方法。贝叶斯决策方法步骤: (1)进行预后验分析,决定是否值得搜集补充资料以及从补充资料中可能得到的结果和如何决定最优对策。 (2)收集补充资料,取得条件概率,包括历史概率和逻辑概率,对历史概率要加以检验,辨明其是否适合计算后验概率。 (3)用概率的乘法定理计算联合概率,用概率的加法定理计算边际概率,用贝叶斯定理计算后验概率。 (4)用后验概率进行决策分析。 2.如何进行预后验分析和后验分析? 预后验分析是后验概率决策分析的一种特殊形式的演算,这里的特殊形式是指用一套概率对多种行动策略组合进行多次计算,从中择优。 预后验分析有两种形式,一是扩大型,预后验分析,这实际上是一种反推决策树分析,二是常规型预后验分析,这实际上是一种正向分析,用表格形式进行。扩大型分析要解决的问题是搜集追加信息对决策者有多大的价值,如果试验应采取

什么行动策略,常规型分析要解决的问题是,如果试验应采取什么行动策略,但是这两种分析方法所得出的结论是一致的。 根据预后验分析,如果认为采集信息和进行调查研究是值得的,那么就应该决定去做这项工作。一旦取得了新的信息,决策者就结合这些新信息进行分析,计算各种方案的期望损益值,选择最佳的行动方案,结合运用这些信息并修正先验概率,称为后验分析,这正是发挥贝叶斯决策理论威力的地方。 3.什么是先验分析? 先验分析就是决策者要详细列出各种自然状态及其概率,各种备选行动方案与自然状态的损益值,并根据这些信息对备选方案作出抉择的决策过程,当时间,人力和财力不允许搜集更完备的信息时,决策者往往用这类方法进行决策,在贝叶斯决策中,先验分析是进行更深入分析的必要条件。 4.贝叶斯决策有哪些优点?哪些局限? 贝叶斯决策的优点表现在以下几个方面: (1)如果说在第14章中大多用的是不完善的信息或主观概率的话,那么贝叶斯决策则提供了一个进一步研究的科学方法,也就是说,它能对信息的价值或是否需要采集新的信息作出科学判断。 (2)它能对调查结果的可能性加以数量化的评价,而不是像一般的决策方法那样对调查结果,或者是完全相信,或者是完全不相信。 (3)如果说任何调查结果都不可能是完全准确的,而先验知识或主观概率也不是完全可以相信的,那么贝叶斯决策则巧妙的将这两种信息有机的结合起来了。(4)它可以在决策过程中,根据具体情况不断的使用,使决策逐步完善和更加科学。贝叶斯决策方法也有其局限性,主要表现在以下几个方面:

贝叶斯决策模型及实例分析(doc 12页)

贝叶斯决策模型及实例分析(doc 12页)

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步

确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下内容 贝叶斯决策模型中的组成部分:)(,θθP S A a 及∈∈。概率分布S P ∈θθ)(表示决策者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E ,E e ∈,无情报试验e0通常包括在集合E 之内。 一个试验结果Z 取决于试验e 的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z ∈表示在自然状态θ的条件下,进行e 试验后发生z 结果的概率。这一概率分布称为似然分布。 一个可能的后果集合C ,C c ∈以及定义在后果集合C 的效用函数u(e,Z,a,θ)。 每一后果c=c(e,z,a,θ)取决于e,z,a 和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可

作业一:贝叶斯决策

1、问题表述: []T l x x x x ,...,,21=是一个用特征向量表示的位置样本, M ωωω,...,,21是预先已知的M 个类,则形成了M 个条件。概率)(x P i ω(后验概率),表示i x ω∈的概率。用概率最大来进行分类是一种无意义的选择,必须采用Bayes 规则和实验数据进行后验概率密度函数的计算和分类。 2、全概率公式和贝叶斯准则 ),...2,1(M i A i =是M 个事件,设每个事件发生的概率为)(i A P ,则有∑==M i i A p 1 1)(; 任意事件B 的概率为: ∑== M i i i A P A B P B P 1 )()|()( (1-1) 其中)|(i A B P 是条件i A 在B 的条件概率。据此有定义: ) (),()|(A P A B P A B P = (1-2) 为A 下B 的全条件概率,其中),(A B P 是两个事件A 、B 的联合概率。式(1-1)就是著名的全概率公式。 由全概率公式(1-1)可以得到全条件概率: ) (),()|(B P B A P B A P = (1-3) 因为),(),(A B P B A P =,则由(1-2)、(1-3)式可以导出著名的Bayes 准则: )()|()()|(B P B A P A P A B P = (1-4) 将Bayes 准则扩展到随机变量、随机向量: ) ()|()()|()()|()()|(x p x y p y p y x p x p x A P A P A x p ==随机向量: 随机变量: ∑ == M i i i A P A x p x p 1 )()|()(全概率: 3、贝叶斯决策的原理: 首先假定一个具有两个类21ωω、的情况,贝叶斯分类规则可以描述为:

贝叶斯决策的例题练习

贝叶斯决策的例题练习公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

一、贝叶斯决策(Bayes decision theory) 【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:,和。方案在各种情况下的利润及期望利润如下表。 企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为、和;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为、和;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为、和。问:企业是否委托专业市场调查机构进行调查解: 1.验前分析: 记方案d1为批量生产,方案d2为出售专利 E(d1)=*80+*20+*(-5)=(万元) E(d2)=40*+7*+1*=(万元) 记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=(万元) 因此验前分析后的决策为:批量生产 E1不作市场调查的期望收益

2.预验分析: (1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示由全概率公式 P(H1)=*+*+*= P(H2)=*+*+*= P(H3)=*+*+*= (2)由贝叶斯公式有 P(?1|H1)=*= P(?2|H1)=*= P(?3|H1)=*= P(?1|H2)=*= P(?2|H2)=*= P(?3|H2)=*= P(?1|H3)=*= P(?2|H3)=*= P(?3|H3)=*= (3)用后验分布代替先验分布,计算各方案的期望收益值 a)当市场调查结果为畅销时 E(d1|H1)=80* P(?1|H1)+20* P(?2|H1)+(-5)* P(?3|H1) =80*+20*+(-5)*=(万元) E(d2|H1)=40* P(?1|H1)+7* P(?2|H1)+1* P(?3|H1) =40*+7*+1*=(万元)

贝叶斯经典例子

贝叶斯经典例子 我发现他有其他女人内衣,他出轨的可能性有多大? 2015-03-17 07:57 大数据文摘原创文章,如要转载,务必后台留言申请。 如果在男友的衣柜中发现了其他女人的内衣,你一定认为这个没良心的家伙出轨了,对不起你了,瞬间,你已经想出来N种对策——马上跳楼?不,我先去砍了他!哦,不!我得先砍了她再砍了他!不,我还是... 小编已经不敢再想了,太血腥了... 庆幸吧,你看到了这篇文章! 在你决定采取动作之前,请务必完整阅读,其实男友出轨的概率并没有你想象的那么高! 这个问题,老先生早就给出了答案 我们在计算一个事件发生的概率时需要考虑其他事件的信息则需要用到的概念。如果事件B的发生要以事件A的发生为前提,则 当然我们还可以用其他方法来计算条件概率。事件“B与A”与事件“A与B”是相同的,而又有 所以可得: 这便是由数学家托马斯×贝叶斯(Thomas Bayes)提出的著名(也称为贝叶斯定理)。这位18世纪英国教士留下的不起眼的公式给整个科学界和统计学界都带来了深远的影响。因为如果直接计算P(B|A)非常简单,但是想要反向计算P(A|B)就不是那么容易了。贝叶斯法则使得这种计算易如反掌。贝叶斯法则还有更加复杂的变形,现在常见的电子邮件垃圾过滤器与互联网里都用到了它。 分析男友出轨概率 不论你相信与否,对于这样的问题,贝叶斯定理总能给出答案——假如你知道(或者有意愿预估)下列三个量: 第一,你需要预测出自己伴侣在出轨的情况下,这件内衣出现的概率。(P(x|B))

这里一定要注意不能因为你手上拿了一件合格产品,就说是100%,实际上这个概率是要根据以下这个公式(即全概率公式)计算出来的:

贝叶斯分类

贝叶斯分类 1、定义:依据贝叶斯准则(两组间最大分离原则)建立的判别函数集进行的图像 分类。 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。 2、贝叶斯定理: (|)() (|) () P A B P B p B A P A 说明:(|) p A B表示事件B发生的前提下,事件A发生的概率;() p A表示事件A发生的概率;() p B事件B发生的概率。则可以求得事件A发生的前提下,事件B 发生的概率。贝叶斯定理给出了最小化误差的最优解决方法,可用于分类和预测。 将前面贝叶斯公式变化如下: 上述公式中,C代表类别,X代表特征,很明显,我们做出预测肯定是利用当前的特征,来判断输出的类别。当然这里也可以很明显的看到贝叶斯公式先验与后验概率之间的转换,很明显,P(c|x)在我们的定义里面是后验概率,也是我们想要得到的东西。而P(x)、P(c) 以及P(x|c)都是先验概率,它们分别X特征出现的概率,C类出现的概率,C类中,出现X的概率。而第一项对于多类分类来说,都是一样,都是当前观察到的特征,所以此项可以略去。那最终的结果就是计算P(x|c)*P(c)这一项,P(c)是可以通过观察来解决的。重点也就全部落在了P(x|c)上,上面对于此项的解释是在C类中,X特征出现的概率,其实简单来讲,就是X的概率密度。 3、特点 1)。贝叶斯分类并不是把一个对象绝对地指派给某一类,而是通过计算得出属于某一类的概率。具有最大概率的类便是该对象所属的类。2)。一般情况下在贝叶斯分类中所有的属性都潜在的起作用,即并不是一个或几个属性决定分类,而是所有的属性都参与分类。3)贝叶斯分类的属性可以是离散的、连续的、也可以是混合的。 4、分类:(1) 朴素贝叶斯算法。(2) TAN算法 1)朴素贝叶斯算法成立的前提是各属性之间互相独立。当数据集满足这种独立性假设时,分类的准确度较高,否则可能较低。另外,该算法没有分类规则输出。 设每个数据样本用一个n维特征向量来描述n个属性的值,即:X={x1,x2,…,xn},假定有m个类,分别用C1, C2,…,Cm表示。给定一个未知的数据样本X(即没有类标号),若朴素贝叶斯分类法将未知的样本X分配给类Ci,则一定是

决策理论一道习题

决策理论 与方法 P85 12(1)(2) 晨光公司生产的圆珠笔芯成箱批发给商业部门,每500件装成一箱,每箱产品的次品率有三种,即10%,20%,30%,相应的概率分别是0.7,0.2,0.1.出厂前的检验方案有两种,一是整箱产品逐一检验,二是整箱不检验,但必须承担商家更换次品费用,一件次品更换费用平均为0.77元。 (1)该公司应该选择哪一种检验方案? (2)如果整箱产品逐一检验前,允许从每箱中抽取十件产品进行检验,设X=“其中所含次品个数”。试进行抽样贝叶斯决策分析。 解:(1)先进行验前分析。 先验状态变量的概率矩阵为 P =(0.7,0.2,.01)T 由题设给出的条件,方案a 1在各状态的收益值为 Q (a 1,θj )=q 1j =-0.1×500-0×θj =-50,j=1,2,3 方案a 2在各状态的收益值为 Q (a 2,θj )=q 2j =-0.77×500θj =(38.5,77,115.5),j=1,2,3 于是,收益矩阵为 Q =(q ij )2×3=???? ??-115.5-77-38.5-50-50-50 相应的损失矩阵为 R =(r ij )2×3=???? ??65.527000 11.5 方案a 1,a 2,的期望损失值 E [R (a 1,θj )]=∑3 j r 1j P (θj )=-11.5×0.7+0×0.2+0×0.1=8.05 E [R (a 2,)]=∑3 j r 2j P (θj )=0×0.7+27×0.2+65.5×0.1=11.95 因此,验前最满意行动方案a *=a 1,即整箱产品逐一检验。 (2)一箱产品中最多有次品500×30%=150件, 即所抽取的10件产品中所含次品数X =0,1,2,··· ,10 则条件概率P (X =i |θj )=i C 10 i j θ()i j --?101θ

贝叶斯后验分布例子

为了更好的理解后验分布我们来看一个例子 例1:为提高某产品的质量,公司经理考虑增加投资来改进生产设备,预计需投资90万元,但从投资效果上看下属两个部门有两种意见: 1θ:改进生产设备后,高质量产品可占90% 2θ:改进生产设备后,高质量产品可占70% 经理当然希望1θ发生,但根据两部门过去意见被采纳的情况,经理认 为40%第一个部门是可信度的,60%第二个部门是可信度,即随机变量投资结果过θ 的先验分布列为:()%401=θπ;()%602=θπ 这是经理的主管意见,经理不想仅用过去的经验来决策此事,想慎重一些,通过小规模实验,观察其结果后再定。为此做了一项实验,实验结果(记为A )如下: A :试制五个产品,全是高质量产品。 经理很高兴,希望通过这次结果来修正他原来对1θ和2θ的看法。下面 我们分别来求一下1θ和2θ的后验概率。 如今已有了()1θπ和()2θπ.还需要条件概率()1θA P 和()2θA P ,这可根据二项分布算的, ()590.09.051==θA P ;()168.07.052==θA P 由全概率公式可算的()()()()()337.02211=+=θπθθπθA P A P A P 最后由后验分布公式可求得: ()()()()7.0337.0/236.0/111===A P A P A θπθθπ ()()()()3.0337.0/01.1.0/222===A P A P A θπθθπ 这表明,纪理根据实验A 的信息调整了自己对投资结果的看法,把

对1θ和2θ的信任度由0.4,和0.6分别调整到了0.7和0.3。后者综合了 经理的主观概率和实验结果而获得,要比主观概率更具有吸引力,更贴近当前实际。当然经过实验A 后经理对投资改进质量的兴趣更大了,但如果为了进一步保险起见可以把这次得到的后验分布列再一次作为先验分布在做实验验证,结果将更贴近实际。 从上面这个例子中我们初步体验到了后验的求法,同时也能够看到贝叶斯统计的实用性。贝叶斯统计应用最做的是在决策方面,决策就是对一件事做出决定,它与统计推断的区别在于是否涉及到后果。统计推断依统计理论而进行,很少考虑到推断结果被使用时所带来的利润或造成的损失,这在决策中恰恰是不能忽略的。度量利损得失的尺度就是收益函数与损失函数,把收益函数和损失函数加入到贝叶斯推断就形成了贝叶斯决策论。 在这里首先明确几个概念 状态集{}θ=Θ,其中θ表示自然界(或社会)可能出现的一种状态,所有可能的状态的集合组成状态集。 行动集{}a =A ,其中每一个元素表示人对自然界可能采取的一个行动。 损失函数 ,在一个决策问题中假设状态集为{}θ=Θ,行动集为{}a =A ,定义在A ?Θ上的二元函数()a L ,θ称为损失函数,假如它能表示在自然界(或社会)处于状态θ,而人们采取行动a 对人们引起的(经济的)损失。 决策函数:在给定的贝叶斯决策问题中,从样本空间

(贝叶斯决策例题)

Equation Chapter 1 Section 1例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。根据过去的经验,在计划实施工期天气好的可能性为30%。为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。问如何进行决策。 解:采用贝叶斯决策方法。 先验分析 根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8 (2)预验分析 完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)=1.36(万元) 完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。 (3)后验分析 ①补充信息:气象中心将提供预报此时期内两种天气状态x1(好天气)、x2(坏天气)将会出现哪一种状态。 从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x1/θ1)=0.8 天气好而预报天气不好的概率 P (x2/θ1)=0.2 天气坏而预报天气好的概率 P (x1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x2/θ2)=0.9 ②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。 预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31 预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:

介绍利用贝叶斯统计的一个实践案例

介绍利用贝叶斯统计的一个实践案例 为了大家可以对贝叶斯算法有更多的了解,人工智能头条为大家整理过一篇关于贝叶斯算法的文章。今天将为大家介绍利用贝叶斯统计的一个实践案例。通项目实践达到学以致用的目的,相信大家对贝叶斯统计的理解和掌握都可以更深入,提炼出更精炼的内容。 ▌前言 我来自越南,在新加坡上高中,目前在美国上大学。我经常听到身边的人取笑我看起来很“娇小”,我应该怎样做运动,去健身房增重,然后才能有“更好的体格”... ...然而我对这些评论却是怀疑的,对于身高1.69米(5’6)和体重58kg(127lb)的人来说,我有接近完美的BMI 指数(20.3)。 后来我明白他们没有在谈论BMI,他们强调的是体型。 想想看,他们的出发点是好的:资料显示越南男性的平均身高与体重是1米62和58kg,鉴于我身高高出了平均值,但体重与越南男性平均体重却相同,我可能会“看起来”更瘦一些。“看起来”圈起来划重点。如果体重相同,但是身高更高,那看起来更苗条更修长,这是一件逻辑很简单的事。而我在考虑这是一个值得进一步探究的科学问题。 那么问题来了,在身高1米69的越南男性中,我的体型有多瘦小? 我们需要一种方法论的方法来研究这个主题,一个好方法是尽可能多地找到越南男子身高和体重的数据,看看我的数据处于哪个位置。 ▌越南人口概况 在网上搜索后,我找到了一份包含超过10,000名越南人的人口统计信息调查研究数据。我将样本量范围缩小到18-29岁年龄段的男性。这使我有383名年龄在18-29岁左右的越南男性的样本,对于接下来的分析来说已经是足够的了。 首先画出人口重量直方图,看看我在越南男性中哪个位置。

第一章习题和答案

第三章 习题 1. 考虑如下贝叶斯博弈:(1)自然决定支付矩阵(a )或(b),概率分别为u 和1u -;(2)参与人1知道自然的选择,即知道自然选择支付矩阵(a )或(b),但是参与人不知道自然的选择;(3)参与人1和参与2同时行动(参与人1选择T 或B 时不知参与人的选择,参与人2选择L 或R 不知参与人1的选择)。给出这个博弈的扩展式表述并求纯战略贝叶斯均衡。 2. 考虑如下扰动的性别战博弈,其中i t 服从[]0,1的均匀分布, 01ε<<,1t 和2t 是独立的, i t 是参与人i 的私人信息。 a.求出以上博弈所有纯战略贝叶斯均衡。 b.证明当0ε→时,以上贝叶斯均衡和完全信息的混合战略纳什均衡相同。

3. 考虑如下标准式博弈的均衡,存在的唯一纳什均衡就是每个参与人i 都以1/2的概率选择H 。利用海萨应纯化定理,构造一个扰动的不完全信息博弈,其纯战略贝叶斯纳什均衡收敛于以下完全信息的混合战略均衡(Gibbons 书中习题3.5)。 4. 在一个5人参加的私人价值的一级价格拍卖中0.82i i b v =+是贝叶斯纳什均衡, i b 是参与i 的叫价,i v 是参与人i 的价值信息,独立的服从于[]6,7的均衡分布。利用显示原理构造一个直接机制,均衡结果与以上贝叶斯纳什均衡完全相同。 5. 一个垄断企业的成本函数为().c q q k θ=+,其中q 是产量,θ为边际成本,k 是固定成本。假定θ是私人信息,固定成本k 和市场需求()q q p =是共同信息。考虑如下直接机制{(),(),},p T θθθ其中p 为政府规定的价格,T 是政府对企业的补偿,θ是企业自己报告的成本。 a.证明如果(),(),p T k θθθ==则企业会谎报边际成本。 b.在()p θθ=时,如何规定()T θ才能诱使企业说实话。 6. 两个企业同时决定是否进入一个市场。企业i 的进入成本[0,)i θ∈∞是私人信息, i θ是服从分布函数()i F θ的随机变量以及分布密度()i f θ严格大于零, 并且1θ和2θ两者独立。如果只有一个企业进入,进入企业i 的利润函数m i πθ-;如果两 个企业都进入,则企业i 的利润函数为d i πθ-;如果没有企业进入,利润为零。假定m π和d π是共同知识,且0m d ππ>>,计算贝叶斯均衡并证明对称均衡是唯一的。

相关主题
文本预览
相关文档 最新文档