当前位置:文档之家› [精品]多重共线性习题及答案

[精品]多重共线性习题及答案

[精品]多重共线性习题及答案

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

多重共线性的解决之法

第七章 多重共线性 教学目的及要求: 1、重点理解多重共线性在经济现象中的表现及产生的原因和后果 2、掌握检验和处理多重共线性问题的方法 3、学会灵活运用Eviews 软件解决多重共线性的实际问题。 第一节 多重共线性的产生及后果 一、多重共线性的含义 1、含义 在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X 1,X 2,……,X k 中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 2、类型 多重共线性包含完全多重共线性和不完全多重共线性两种类型。 (1)完全多重共线性 完全多重共线性是指线性回归模型中至少有一个解释变量可以被其他解释变量线性表示,存在严格的线性关系。 如对于多元线性回归模型 i ki k i i i X X X Y μββββ+++++= 22110 (7-1) 存在不全为零的数k λλλ,,,21 ,使得下式成立: X X X 2211=+++ki k i i λλλ (7-2) 则可以说解释变量k X ,,X ,X 21 之间存在完全的线性相关关系,即存在完全多重共线性。 从矩阵形式来看,就是0' =X X , 即1)(-

(2)不完全多重共线性 不完全多重共线性是指线性回归模型中解释变量间存在不严格的线性关系,即近似线性关系。 如对于多元线性回归模型(7-1)存在不全为零的数k λλλ,,,21 ,使得下式成立: X X X 2211=++++i ki k i i u λλλ (7-3) 其中i u 为随机误差项,则可以说解释变量k X ,,X ,X 21 之间存在不完全多重共线性。随机误差项表明上述线性关系是一种近似的关系式,大体上反映了解释变量间的相关程度。 完全多重共线性与完全非线性都是极端情况,一般说来,统计数据中多个解释变量之间多少都存在一定程度的相关性,对多重共线性程度强弱的判断和解决方法是本章讨论的重点。 二、多重共线性产生的原因 多重共线性在经济现象中具有普遍性,其产生的原因很多,一般较常见的有以下几种情况。 (一)经济变量间具有相同方向的变化趋势 在同一经济发展阶段,一些因素的变化往往同时影响若干经济变量向相同方向变化,从而引起多重共线性。如在经济上升时期,投资、收入、消费、储蓄等经济指标都趋向增长,这些经济变量在引入同一线性回归模型并作为解释变量时,往往存在较严重的多重共线性。 (二)经济变量间存在较密切关系 由于组成经济系统的各要素之间是相互影响相互制约的,因而在数量关系上也会存在一定联系。如耕地面积与施肥量都会对粮食总产量有一定影响,同时,二者本身存在密切关系。 (三)采用滞后变量作为解释变量较易产生多重共线性 一般滞后变量与当期变量在经济意义上关联度比较密切,往往会产生多重共线性。如在研究消费规律时,解释变量因素不但要考虑当期收入,还要考虑以往各期收入,而当期收入与滞后收入间存在多重共线性的可能很大。 (四)数据收集范围过窄,有时会造成变量间存在多重共线性问题。 三、多重共线性产生的后果 由前述可知,多重共线性分完全多重共线性和不完全多重共线性两种情况,两种情况都会对模

EVIEWS案例:(消除多重共线性)影响国内旅游市场收入的主要因素分析

第四章 案例分析 一、研究的目的要求 近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长 22.6%,与此同时国内旅游也迅速增长。改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。 二、模型设定及其估计 经分析,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出以外,还可能与相关基础设施有关。为此,考虑的影响因素主要有国内旅游人数2X ,城镇居民人均旅游支出3X ,农村居民人均旅游支出4X ,并以公路里程5X 和铁路里程6X 作为相关基础设施的代表。为此设定了如下对数形式的计量经济模型: 23456123456t t t t t t t Y X X X X X u ββββββ=++++++ 其中 :t Y ——第t 年全国旅游收入 2X ——国内旅游人数 (万人) 3X ——城镇居民人均旅游支出 (元) 4X ——农村居民人均旅游支出 (元) 5X ——公路里程(万公里) 6X ——铁路里程(万公里) 为估计模型参数,收集旅游事业发展最快的 1994—2003年的统 计数据,如表4.2所示: 表4.2 1994年—2003年中国旅游收入及相关数据

数据来源:《中国统计年鉴2004》 利用Eviews 软件,输入Y 、X2、X3、X4、X5、X6等数据,采用这些数据对模型进行OLS 回归,结果如表4.3: 表4.3 由此可见,该模型9954.02=R ,9897.02 =R 可决系数很高,F 检验值173.3525,明 显显著。但是当05.0=α时776 .2)610()(025.02=-=-t k n t α,不仅2X 、6X 系数的t 检 验不显著,而且6X 系数的符号与预期的相反,这表明很可能存在严重的多重共线性。 计算各解释变量的相关系数,选择X2、X3、X4、X5、X6数据, Views/Open Selected/One Windows/Open Group 点”view/correlations ”得相关系数矩阵(如表4.4): 表4.4 由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。

线性规划经典例题及详细解析

一、 已知线性约束条件,探求线性目标关系最值问题 1. 设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、 已知线性约束条件,探求非线性目标关系最值问题 2. 已知1,10,220x x y x y ≥??-+≤??--≤? 则22x y +的最小值就是 。 3. 已知变量x,y 满足约束条件+201-70x y x x y -≤??≥??+≤? ,则 y x 的取值范围就是( )、 A 、 [95,6] B 、(-∞,95 ]∪[6,+∞) C 、(-∞,3]∪[6,+∞) D 、 [3,6] 三、 研究线性规划中的整点最优解问题 4. 某公司招收男职员x 名,女职员y 名,x 与y 须满足约束条件?? ???≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值 就是 。 四、 已知最优解成立条件,探求目标函数参数范围问题 5. 已知变量x ,y 满足约束条件1422x y x y ≤+≤??-≤-≤? 。若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。 6. 已知x 、y 满足以下约束条件5503x y x y x +≥??-+≤??≤? ,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的值为( ) A. -3 B 、 3 C 、 -1 D 、 1 五、 求可行域的面积 7. 不等式组260302x y x y y +-≥??+-≤??≤? 表示的平面区域的面积为 ( ) A. 4 B 、 1 C 、 5 D 、 无穷大

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

六种经典线性规划例题

线性规划常见题型及解法 求线性目标函数的取值范围 2 2 2 x y A D y 2 O x x=2 求可行域的面积 y y M 5 2 x y 2 y x y 2 x y 2 x y x (3,5] y =2 ( 13 例1 x+2y 时 6 的点 C 、 x , 个 y 6 y 3 2 x + y —3 = 0 C 、 5 A 、 4 B 、 1 D 、无穷大 () 0,将 有 最小值 故选A .B A --- 作出可行域如右图 点个数为13个,选D x + y =2 则z=x+2y 的取值范围是 () 旦y =2 0 0表示的平面区域的面积为 三、求可行域中整点个数 解:|x| + |y| <2等价于 解:如图,作出可行域,作直线I : I 向右上方平移,过点A ( 2,0 ) 2,过点B ( 2,2 )时,有最大值 [2,6] B 、[2 ,5] C 、[3,6] 解:如图,作出可行域,△ ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的 面积即可,选B 例 3、满足 |x| + |y| <2 A 、9 个 B 、10 个 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性 目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 (x 0,y 0) (x 0,y p 0) (xp 0,y 0) (xp 0,y p 0) 是正方形内部(包括边界),容易得到整 y)中整点(横纵坐标都是整数)有() D 、 14 个 2x 例2、不等式组x x 若x 、y 满足约束条件 y O C V —? x 2x + y —6= 0

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

多重共线性 多重共线性实验案例与独立实验问题

实验五 多重共线性模型的检验与处理(1) 一、研究的目的要求 近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。 二、模型设定及其估计 经分析,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出以外,还可能与相关基础设施有关。为此,考虑的影响因素主要有国内旅游人数2X ,城镇居民人均旅游支出3X ,农村居民人均旅游支出4X ,并以公路里程5X 和铁路里程6X 作为相关基础设 施的代表。为此设定了如下对数形式的计量经济模型: 23456123456t t t t t t t Y X X X X X u ββββββ=++++++ 其中 :t Y ——第t 年全国旅游收入 2X ——国内旅游人数 (万人) 3X ——城镇居民人均旅游支出 (元) 4X ——农村居民人均旅游支出 (元) 5X ——公路里程(万公里) 6X ——铁路里程(万公里) 为估计模型参数,收集旅游事业发展最快的1994—2003年的统计数据,如表4.2所示: 利用Eviews 软件,输入Y 、X2、X3、X4、X5、X6等数据,采用这些数据对模型进行OLS 回归,结果如表4.3: 表4.3

由此可见,该模型9954.02=R ,9897.02 =R 可决系数很高,F 检验值173.3525,明 显显著。但是当05.0=α时776 .2)610()(025.02=-=-t k n t α,不仅2X 、6X 系数的t 检 验不显著,而且6X 系数的符号与预期的相反,这表明很可能存在严重的多重共线性。 计算各解释变量的相关系数,选择X2、X3、X4、X5、X6数据,点”view/correlations ”得相关系数矩阵(如表4.4): 表4.4 由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。 三、消除多重共线性 采用逐步回归的办法,去检验和解决多重共线性问题。分别作Y 对X2、X3、X4、X5、X6的一元回归,结果如表4.5所示: 表4.5

八种 经典线性规划例题(超实用)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 220 240 330 x y x y x y +-≥ ? ? -+≥ ? ?--≤ ? ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13,4 5 D 、 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方, 即为4 5 ,选 C 六、求约束条件中参数的取值范围 例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是() A、(-3,6) B、(0,6) C、(0,3) D、(-3,3) 解:|2x-y+m|<3等价于 230 230 x y m x y m -++>? ? -+- ? ? -< ? ,故0<m<3,选 C

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

第七章 多共线性及其处理

第七章 多重共线性及其处理 第一部分 学习辅导 一、本章学习目的与要求 1.理解多重共线性的概念; 2.掌握多重共线性存在的主要原因; 3.理解多重共线性可能造成的后果; 4.掌握多重共线性的检验与修正的方法。 二、本章内容提要 本章主要介绍计量经济模型的计量经济检验。即多重共线性问题。 多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。模型的多个解释变量间出现完全共线性时,模型的参数无法估计。更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t 统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。多重共线性的检验包括检验多重共线性是否存在以及估计多重共线性的范围两层递进的检验。而解决多重共线性的办法通常有逐步回归法、差分法以及使用额外信息、增大样本容量等方法。 (一)多重共线性及其产生的原因 当我们利用统计数据进行分析时,解释变量之间经常会出现高度多重共线性的情况。 1.多重共线性的基本概念 多重共线性(Multicollinearity )一词由弗里希(Frish )于1934年在其撰写的《借助于完全回归系统的统计合流分析》中首次提出。它的原义是指一个回归模型中的一些或全部解释变量之间存在有一种“完全”或准确的线性关系。 如果在经典回归模型Y X βε=+中,经典假定(5)遭到破坏,则有()1R X k <+,此时称解释变量k X X X ,,,21ΛΛ间存在完全多重共线性。解释变量的完全多重共线性,也就是解释变量之间存在严格的线性关系,即数据矩阵X 的列向量线性相关。因此,必有一个列向量可由其余列向量线性表示。 同时还有另外一种情况,即解释变量之间虽然不存在严格的线性关系,但是却有近似的线性关系,即解释变量之间高度相关。 2.多重共线性产生的原因 多元线性回归模型产生多重共线性的原因很多,主要有: (1)经济变量的内在联系 这是产生多重共线性的根本原因。 (2)解释变量中含有滞后变量 (3)经济变量变化趋势的“共向性” 必须指出,多重共线性基本上是一种样本现象。因为人们在设定模型时,总是尽量避免将理论上具有严格线性关系的变量作为解释变量收集在一起,因此,实际问题中的多重共线性并不是解释变量之间存在理论上或实际上的线性关系造成的,而是由所收集的数据(解释变量观察值)之间存在近似的线性关系所致。 (二)多重共线性的影响 多重共线性会产生以下问题: (1)增大了OLS 估计量的方差 (2)难以区分每个解释变量的单独影响 (3)回归模型缺乏稳定性 (4)t 检验的可靠性降低 (三)多重共线性的判别 在应用多元回归模型中,人们总结了许多检验多重共线性的方法。 1.系数判定法

线性规划经典例题及详细解析

1 / 6 一、 已知线性约束条件,探求线性目标关系最值问题 1. 设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、 已知线性约束条件,探求非线性目标关系最值问题 2. 已知1,10,220x x y x y ≥??-+≤??--≤? 则22 x y +的最小值是 。 3. 已知变量x ,y 满足约束条件+201-70x y x x y -≤?? ≥??+≤? ,则 错误! 的取值范围是( )。 A 。 [错误!,6] B.(-∞,错误!]∪[6,+∞) C.(-∞,3]∪[6,+∞) D 。 [3,6] 三、 研究线性规划中的整点最优解问题 4. 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件?? ? ??≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大 值是 。 四、 已知最优解成立条件,探求目标函数参数范围问题 5. 已知变量x ,y 满足约束条件14 22x y x y ≤+≤?? -≤-≤? 。若目标函数z ax y =+(其中0a >)仅在点(3,1)处 取得最大值,则a 的取值范围为 。 6. 已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的 值为( ) A. -3 B. 3 C 。 -1 D. 1 五、 求可行域的面积 7. 不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A. 4 B. 1 C. 5 D 。 无穷大

最新多重共线性的解决之法

多重共线性的解决之 法

第七章多重共线性 教学目的及要求: 1、重点理解多重共线性在经济现象中的表现及产生的原因和后果 2、掌握检验和处理多重共线性问题的方法 3、学会灵活运用Eviews软件解决多重共线性的实际问题。 第一节多重共线性的产生及后果 一、多重共线性的含义 1、含义 在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,X k中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 2、类型 多重共线性包含完全多重共线性和不完全多重共线性两种类型。 (1)完全多重共线性 完全多重共线性是指线性回归模型中至少有一个解释变量可以被其他解释变量线性表示,存在严格的线性关系。 如对于多元线性回归模型

i ki k i i i X X X Y μββββ+++++= 22110 (7- 1) 存在不全为零的数k λλλ,,,21 ,使得下式成立: 0X X X 2211=+++ki k i i λλλ (7-2) 则可以说解释变量k X ,,X ,X 21 之间存在完全的线性相关关系,即存在完全多重共 线性。 从矩阵形式来看,就是0'=X X , 即1)(-

多重共线性案例分析实验报告

《多重共线性案例分析》实验报告

表2 由此可见,该模型,可决系数很高,F 检验值 173.3525,明显显著。但是当时,不仅、 系数的t 检验不显著,而且系数的符号与预期的相反,这表明很可能存在严重的多重共线性。 9954.02=R 9897.02 =R 05.0=α776 .2)610()(025.02=-=-t k n t α2X 6X 6X

②.计算各解释变量的相关系数,选择X2、X3、X4、X5、X6数据,点”view/correlations ”得相关系数矩阵 表3 由关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性相。 4.消除多重共线性 ①采用逐步回归的办法,去检验和解决多重共线性问题。 分别作Y 对X2、X3、X4、X5、X6的一元回归 如下图所示 变量 X2 X3 X4 X5 X6 参数估计值 0.0842 9.0523 11.6673 34.3324 2014.146 t 统计量 8.6659 13.1598 5.1967 6.4675 8.7487 0.9037 0.9558 0.7715 0.8394 0.9054 表4 按的大小排序为:X3、X6、X2、X5、X4。 以X3为基础,顺次加入其他变量逐步回归。首先加入X6回归结果为: t=(2.9086) (0.46214) 2R 2 R 6 31784.285850632.7639.4109?X X Y t ++-=957152.02 =R

1995 1375.7 62900 464.0 61.5 115.70 5.97 1996 1638.4 63900 534.1 70.5 118.58 6.49 1997 2112.7 64400 599.8 145.7 122.64 6.60 1998 2391.2 69450 607.0 197.0 127.85 6.64 1999 2831.9 71900 614.8 249.5 135.17 6.74 2000 3175.5 74400 678.6 226.6 140.27 6.87 2001 3522.4 78400 708.3 212.7 169.80 7.01 2002 3878.4 87800 739.7 209.1 176.52 7.19 2003 3442.3 87000 684.9 200.0 180.98 7.30 表1:1994年—2003年中国游旅收入及相关数据

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

相关主题
文本预览
相关文档 最新文档