当前位置:文档之家› (二)流体机械能转换

(二)流体机械能转换

(二)流体机械能转换
(二)流体机械能转换

实验名称:流体机械能转换

学院:环境与化学工程学院

专业:化学工程与工艺

班级: 14化工02班

姓名:胡海明

学号: 21404070217

指导教师:赵亚梅

日期: 2016年11月16日 化工原理实验报告

流体机械能转换

一.实验目的

1.研究流体各种形式能之间的关系及转化,加深对能量转化概念的

理解。

2.深入了解伯努利方程的意义。

二.实验原理

利用伯努利方程进行测量和计算

三.实验装置及流程

实验前,先关闭试验管出口调节阀,并将水灌满流水槽,然后开启调节阀,水由进水管流入流水槽,流经水平安装的实验导管后,实验导管排出水和溢流出来的水直接排入下水管道。流体流量由试验导管出口阀控制。进水管调节阀控制溢流水槽内的溢流量,以保持槽内液面稳定,保证流动系统在整个实验过程中维持稳定流动。

实验装置图

四.实验步骤

(一)演示

1.静止流体机械能的分布及转换

将实验导管出口阀全部关闭,与便于观察(也可在测压管内滴入几滴红墨水),观察A、B、C、D点处测压管内液压柱高低。

2、一定流量下流体的机械能分布及转换

缓慢调节进水管内调节阀,调节流量使流水槽中有足够的水溢出,在缓慢开启试验管出口调节阀,使导管内水流动,当观察到实验管中部的两支测压水柱略有差别,将流量固定不变,当各测压管的水柱高度稳定不变时,说明导管内流动状态稳定。可开始观察实验现象。3.不同流量下稳定流体机械能分布及装机转换

连续缓慢的开启试验管的出口阀,调节出口阀使流量不断加大,观察A、B、C、D处测压管内液柱变化

(二)实验

改变流体流量进行两次实验,记录数据

五.实验记录及数据处理

1.实验基本参数D=

2.5㎝d=1.5㎝

2.实验数据记录及整理

由伯努利方程计算可得各组机械能如下表

伯努利方程Z1g+ += Z2g+ +

由实验结果可得:

Z1g+ +> Z3g+ +

Z5g+ +> Z7g+ +

Z2g+ +> Z4g+ +

Z6g+ +> Z8g+ +

由于实际流体在流动时存在阻力损失,因此

Z1g+ += Z3g+ ++

理想流体在管内稳态流动,若无外加能量和损失,则可得Z1g+ += Z3g+ +

六.实验结果与讨论

1.管内的空气泡会干扰实验现象,请问如何排除?

答:减小流量,使测压管内的水溢出以排除气泡。

2.试解释所观察到的现象。

答:当流量改变时,测压管内水柱高度也随之改变,当流量增大时,水柱高度减小。

3.实验结果是否与理论结果相符合,解释其原因。

答:不符合,理论结果是在流体为理想流体的基础上得到的,而实际流体在流动中有阻力损失。

4.比较并列两根管(h1与h2、h3与h4、h5与h6、h7与h8)液柱

高低,解释其原因。

答:h1

机械能转化实验实验报告

机械能转化实验实验报告 篇一:机械能转化演示实验 篇二:机械能转化实验 机械能转化实验 一、实验目的 1.观测动、静、位压头随管径、位置、流量的变化情况,验证连续性方程和柏努利方程。 2.定量考察流体流经收缩、扩大管段时,流体流速与管径关系。 3.定量考察流体流经直管段时,流体阻力与流量关系。 4.定性观察流体流经节流元件、弯头的压损情况。 二、基本原理 化工生产中,流体的输送多在密闭的管道中进行,因此研究流体在管内的流动是化学工程中一个重要课题。任何运动的流体,仍然遵守质量守恒定律和能量守恒定律,这是研究流体力学性质的基本出发点。 1.连续性方程 对于流体在管内稳定流动时的质量守恒形式表现为如下的连续性方程: ?1??vdA??2??vdA (1-1) 12 根据平均流速的定义,有?1u1A1??2u2A2 (1-2)即

m1?m2(1-3)而对均质、不可压缩流体,?1??2?常数,则式(1-2)变为 u1A1?u2A2 (1-4) 可见,对均质、不可压缩流体,平均流速与流通截面积成反比,即面积越大,流速越小;反之,面积越小,流速越大。 对圆管,A??d/4,d为直径,于是式(1-4)可转化为 2 u1d1?u2d2(1-5) 22 2.机械能衡算方程 运动的流体除了遵循质量守恒定律以外,还应满足能量守恒定律,依此,在工程上可进一步得到十分重要的机械能衡算方程。 对于均质、不可压缩流体,在管路内稳定流动时,其机械能衡算方程(以单位质量流体为基准)为: upup z1?1?1?he?z2?2?2?hf (1-6) 2g?g2g?g 显然,上式中各项均具有高度的量纲,z称为位头,u/2g 称为动压头(速度头),p/?g称为静压头(压力头),he称为外加压头,hf称为压头损失。 关于上述机械能衡算方程的讨论: 理想流体的柏努利方程 无黏性的即没有黏性摩擦损失的流体称为理想流体,就是说,理想流体的hf?0,若此时又无外加功加入,则机械能

《机械能及其转化》说课稿.doc.doc

《机械能及其转化》说课稿 一、说教材 我今天说课的课题是《机械能及其转化》,《机械能及其转化》是新人教版八年级物理下册第十一章第四节的内容。它是前面所学《动能和势能》的延伸。教材由演示得出动能、势能的转化;由想想做做得出机械能守恒定律;图文并茂,符合学生认知规律。能够体现从生活走向物理,注重科学探究的新课程理念。科学世界“人造卫星”拓宽学生知识面,引导学生关注社会生活、关注科技发展。 二、说教学目标和重难点 通过本节课的学习我计划达到这样的目标让学生理解动能、势能的转化;能解释动能、势能转化的简单现象;知道机械能的概念。了解机械能守恒定律。通过观察和实验,认识动能、势能之间转化的过程。、并在探究与合作学习中,培养学生热爱科学、勇于创新的精神及交流合作的团队意识。本节的重点是:动能、势能的相互转化.难点是、机械能守恒定律的理解。 三、学情分析 学生已具有初步的探究能力、分析问题和解决问题的能力,为这节的学习打下了基础,因此我准备大胆放手,开展自主的、合作的、探究性的学习.,充分发挥学生的主动性和创造性,自主完成学习任务,实现自我发展,我做学生学习的组织者、引导者、参与者、分享者,但学生抽象思维还不成熟,我应用多媒体动画、图片等为学生创设情景、增强直观性和形象性,实现由感性到理性的飞跃。从而达到多种教学方法的优化组合。 四、说教学过程 下面为大家展示具体的教学过程:滚摆实验演示效果好于动手做,乒乓球、篮球学生非常常见并且喜欢,过山车有过多少人的惊叫和刺激!你知道他们的速度为什么有这么多的变化吗?其中又有怎样的能量转化呢?就我们带着这个问题开始今天的学习!从而引入了新课,创设了情景、让学生产生疑问和猜想,以触发学生思维的兴奋点,引发探究的欲望和动机、打开探究之门。 展示本节学习目标,这些都由学生自主完成,不教。在学生完成的过程中,我会根据学生需要在适当的时候给予适当的指导,点燃思维的火花,让学生感受众里寻他千百度,蓦然回首的顿悟。让求知的欲望在我的课堂滋生成长,让智慧的浪花在这里澎湃激荡。 动能和势能的转化:是本节的重点,我分三部分来组织教学, 1、动能和重力势能的

流体机械能转换实验

流体机械能转换实验 一、实验目的 熟悉流动流体中各种能量和压头的概念及其互相转换关系,在此基础上掌握柏努利方程。 二、实验原理 1. 流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。当管路条件改变时(如位置高低,管径大小),它们会自行转换。如果是粘度为零的理想流体,由于不存在机械能损失,因此在同一管路的任何二个截面上,尽管三种机械能彼此不一定相等,但这三种机械能的总和是相等的。 2. 对实际流体来说,则因为存在内摩擦,流动过程中总有一部分机械能因摩擦和碰撞而消失,即转化成了热能。而转化为热能的机械能,在管路中是不能恢复的。对实际流体来说,这部分机械能相当于是被损失掉了,亦即两个截面上的机械能的总和是不相等的,两者的差额就是流体在这两个截面之间因摩擦和碰撞转换成为热的机械能。因此在进行机械能衡算时,就必须将这部分消失的机械能加到下游截面上,其和才等于流体在上游截面上的机械能总和。 3. 上述几种机械能都可以用测压管中的一段液体柱的高度来表示。在流体力学中,把表示各种机械能的流体柱高度称之为“压头”。表示位能的,称为位压头;表示动能的,称为动压头(或速度头);表示压力的,称为静压头;已消失的机械能,称为损失压头(或摩擦压头)。这里所谓的“压头”系指单位重量的流体所具有的能量。 4. 当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起)即为静压头,它反映测压点处液体的压强大小。测压孔处液体的位压头则由测压孔的几何高度决定。 5. 当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。这时测压管内液位总高度则为静压头与动压头之和,我们称之为“总压头”。

最新机械能及其转化 教案教程文件

机械能及其转化 教学目标: 1.理解机械能的概念。 2.知道动能和势能之间可以相互转化和守恒定律。 3.能解释一些能之间转化的物理现象。 重点难点: 1、分析能量之间的转化。 教学过程: 一、自学检测 1.动能的大小跟物体的质量和速度有关。 2.重力势能的大小跟物体的质量和所处的高度有关。 3.动能和势能统称为机械能。 4.空中飞行的子弹由于速度很快具有很大的动能,又因为它处于空中,相对于地面子弹又具有重力势能。 二、合作探究教师巡视督促指导 (一)、演示滚摆实验 1.在摆轮下降的过程中,其重力势能逐渐转化为动能。滚摆在下落过程中,转动的速度和高度分别是怎样变化的?滚摆的动能和势能又是怎样变化的? 释放摆轮时,摆轮在最高点处于静止状态,此时摆轮只具有重力势能,没有动能。摆轮下降时其高度降低,重力势能减少;摆轮旋转着下降;而且越转越快,其动能越来越大。

2.滚摆在哪个位置具有的动能最大,你是如何判断出动能最大的?在哪个位置具有的重力势能最大?如何判断的? 摆轮到最低点时,转动最快,动能最大;其高度最低,重力势能最小。 3.仿照摆轮下降的过程分析,得出摆轮上升过程中的动能和势能的变化情况。 (二)、单摆实验 1.将摆绳一端挂在黑板上边,使单摆在黑板前,平行于黑板摆动(不接触黑板),在黑板上记录摆球运动路线中左A、右最高点C和最低点B的位置。 2.分析单摆实验: 小球从A摆到B的过程中是重力势能转化为动能,从B点摆到C 点的过程中是动能转化为重力势能,小球在B点动能最大,在A(或C)点动能最小,小球在A(或C)点重力势能最大,在B点重力势能最小。 3.(接步骤1)在黑板上记录小球由A到C再摆回到左边的最高点A′点(只让单摆运动一个来回),比较A、A′的位置关系,发现:A、A′几乎在同一高度(或小球几乎能摆回到原来高度,好像“记得”它原来的位置),分析:小球处在A点和A′点时具有的机械能大小有什么关系? (因小球在A、A′时速度为零,没有动能,质量和所处的高度相等,重力势能相等,所以在动能和势能转化的过程中机械能的多少几

化工原理实验讲义全

化工原理实验 讲义 专业:环境工程 应用化学教研室 2015.3

实验一 流体机械能转化实验 一、实验目的 1、了解流体在管流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。 2、了解流体在管流动时,流体阻力的表现形式。 二、实验原理 流动的流体具有位能、动能、静压能、它们可以相互转换。对于实际流体, 因为存在摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。所以对于实际流体任意两截面,根据能量守恒有: 2211221222f p v p v z z H g g g g ρρ++=+++ 上式称为伯努利方程。 三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm ) 实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示: 图1-1 能量转换流程示意图

图1-2实验导管结构图 四、操作步骤 1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试 导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。 2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流 管有液体溢流。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复上述步骤5次。 5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。 五、数据记录和处理 表一、转能实验数据表 流量(l/h) 压强mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 测试点标 号 1 2 3 4 5 6 7 8

机械能及其转化

第二节机械能及其转化 教学目标 1.知识与能力 ●知道机械能包括动能和势能. ●能用实例说明动能和势能之间可以相互转化,能解释有关动能、重力势 能、弹性势能之间相互转化的简单现象. ●初步了解机械能守恒的含义. 2.过程与方法 ●通过观察和实验,认识动能和势能之间的相互转化的过程. ●动手设计实验,勇于探索自然现象和身边的物理道理. 3.情感态度与价值观 ●关心机械能与人们生活的联系,有将机械能应用于生活的意识. ●乐于参加观察、实验、制作等科学实践. 教学重点与难点 能量守恒的理解和动能和势能的转化. 教学课时:1时 教学过程: 引入新课 手持粉笔头高高举起。以此事例提问:被举高的粉笔具不具有能量为 什么 学生回答提问后,再引导学生分析粉笔头下落的过程。首先提出,当粉笔头下落路过某一点时,粉笔头具有什么能量(此时既有重力势能,又有动能)继而让学生比较在该位置和起始位置,粉笔头的重力势能和动能各有什么变化(重力势能减少,动能增加) 在粉笔头下落的过程,重力势能和动能都有变化,自然界中动能和势 能变化的事例很多,下面我们共同观察滚摆的运动,并思考动能和势能的 变化。 实验1:滚摆实验。 出示滚摆,并简单介绍滚摆的构造及实验的做法。事先应在摆轮的侧 面某处涂上鲜明的颜色标志,告诉学生观察颜色标志,可以判断摆轮转动 的快慢。 引导学生复述并分析实验中观察到的现象。开始释放摆轮时,摆轮在

最高点静止,此时摆轮只有重力势能,没有动能。摆轮下降时其高度降低,重力势能减少;摆轮旋转着下降;而且越转越快,其动能越来越大。摆轮到最低点时,转动最快,动能最大;其高度最低,重力势能最小。在摆轮下降的过程中,其重力势能逐渐转化为动能。 仿照摆轮下降过程的分析,得出摆轮上升过程中,摆轮的动能逐渐转化为重力势能。 实验2:单摆实验。 此实验摆绳宜长些,摆球宜重些。最好能挂在天花板上,使单摆在黑板前,平行于黑板振动,以便在黑板上记录摆球运动路线中左、右最高点和最低点的位置。分析单摆实验时,摆球高度的变化比较直观,而判断摆球速度大小的变化比较困难,可以从摆球在最高点前后运动方向不同,分析摆球运动到最高点时的速度为零,作为这一难点的突破口。顺便指出像单摆这种往复的运动,在物理学中叫做振动。 综述实验1、2,说明动能和重力势能是可以相互转化的。 实验3:弹性势能和动能的相互转化。 演示课本图1—7动能和弹性势能的转化实验。实验可分两步做。首先手持着木球将弹簧片推弯,而后突然释放木球,木球在弹簧片的作用下在水平槽内运动。让学生分析在此过程中,弹性势能转化为动能。第二步实验,让木球从斜槽上端滚下,让学生观察木球碰击弹簧片的过程。然后,依据课本图1—7,甲→乙图和乙→丙图分析动能转化为弹性势能和弹性势能转化为动能的过程。得出:动能和弹性势能也是可以相互转化的。 自然界中动能和势能相互转化的事例很多。其中有一些比较直观,例如:物体从高处落下、瀑布流水等这些事例也可以让学生列举,说明动能和势能的相互转化。有些事例比较复杂,例如:踢出去的足球在空中沿一条曲线(抛物线)运动过程中,动能和势能是如何相互转化的呢(板画足球轨迹,依图分析)首先我们来分析足球离地面的高度的变化,这是判断足球重力势能变化的依据。很明显,在上升过程中足球的重力势能增加;

机械能及其转化练习习题带答案

精心整理 第4节机械能及其转化 1.动能和势能统称为机械能.物体只具有动能,或只具有势能,或同时具有动能和势能,我们都说物体具有机械能.2.分析动能和势能相互转化的方法: 先运用动能和势能的影响因素分析得出物体所具有的动能和 守恒的;沿光滑水平面或光滑斜面自由运动的物体,其机械能也是守恒的. 01 课前预习 知识点1机械能及其转化 1.______能、________能和________能统称为机械能,机械能的单位是________,用字母______表示.

2.动能和势能之间______(填“可以”或“不可以”)相互转化. 知识点2机械能守恒 3.如果只有动能和势能的相互转化,机械能的总和______.4.如图是人造地球卫星的轨道示意图,人造地球卫星在大气 ) 球飞行过程中( ) A.重力势能先变大后变小B.动能先变大后变小 C.机械能先变大后变小D.最高点处动能为零 3.(钦州中考)如图所示的情景中,重力势能转化为动能的过程是( )

4.(泰安中考)当歼20飞机加速向上运动时,飞行员的机械能________(填“增大”“不变”或“减小”). 5.(河北中考)如图是一运动员做蹦床运动的一幅图片.针对蹦床运动,从动能与势能相互转化的角度提出一个问题并回答.(不计空气阻力) E1; 是( ) A.滚摆下降时,重力势能减小,动能减小 B.滚摆到最低点后又上升,重力势能转化为动能 C.滚摆整个运动过程中,机械能守恒 D.滚摆每次上升的高度逐渐减小,说明滚摆的机械能减小

8.(淄博中考)跳远运动的几个阶段如图所示,则运动员( ) A.在助跑阶段,动能保持不变 B.在起跳时,机械能最小 C.在最高点时,动能最大 P ( C.动能逐渐增大,势能逐渐减小,机械能不变 D.动能逐渐增大,势能逐渐减小,机械能减小 11.(雅安中考)如图所示,足球以初速度v沿着凹凸不平的草地从a运动到d,足球( ) A.在b、d两点动能相等

化工原理实验数据处理

化工原理实验数据处理

————————————————————————————————作者:————————————————————————————————日期:

流体机械能转换的实验数据记录 21h h 、段截面连续性方程验证 31h h 、段压头损失与流速的关系 `流量L/h h1/cm h2/cm h3/cm h4/cm h5/cm h6/cm 0 102.3 102.2 102.4 44.6 44.5 44.7 160 102 101.4 101.7 36.6 35.6 36.4 350 101.3 98.5 100.5 34.9 34.4 34.8 500 100.8 90.9 99.4 33.7 32.7 33.6 700 99.7 87.3 97.2 30.5 29.4 30.4 850 98.1 79.1 94.7 27.8 25.7 27.1 900 98.3 77.1 94.2 26.3 24.9 26.2 1100 96.6 68.1 91.5 23.5 21.2 23.4 序号 流量L/h 流速1(m/s) 流速2(m/s) )/(3211s m d u )/(3222s m d u 1 0 0.0000 0.1400 0.0000 0.2473 2 160 0.0629 0.3487 0.4444 0.6158 3 350 0.1376 0.7535 0.9722 1.3308 4 500 0.1966 1.4068 1.3890 2.4847 5 700 0.2752 1.5831 1.9444 2.7961 6 850 0.3342 1.9585 2.3611 3.4592 7 900 0.3539 2.0689 2.5000 3.6545 8 1100 0.4325 2.4027 3.0556 4.2444 序号 流量L/h 流速1(m/s) h1/cm h3/cm 压头损失/cm 1 0 0.0000 102.3 102.4 -0.1 2 160 0.0629 102 101.7 0.3 3 350 0.1376 101.3 100.5 0.8 4 500 0.1966 100.8 99.4 1.4 5 700 0.2752 99.7 97.2 2.5 6 850 0.3342 98.1 94.7 3.4 7 900 0.3539 98.3 94.2 4.1 8 1100 0.4325 96.6 91.5 5.1

电磁感应中的能量转换问题-经典

在电磁感应中的动力学问题中有两类常见的模型. 类型“电—动—电”型“动—电—动”型 示 意 图 棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计 分析S闭合,棒ab受安培力F= BLE R,此 时a= BLE mR,棒ab速度v↑→感应电动 势BLv↑→电流I↓→安培力F=BIL↓→ 加速度a↓,当安培力F=0时,a=0, v最大,最后匀速 棒ab释放后下滑,此时a=gsin α,棒 ab速度v↑→感应电动势E=BLv↑→电 流I= E R↑→安培力F=BIL↑→加速度 a↓,当安培力F=mgsin α时,a=0,v 最大,最后匀速 运动 形式 变加速运动变加速运动 最终状态匀速运动vm= E BL匀速运动 vm= mgRsin α B2L2

1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图. (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小. (3)求在下滑过程中,ab杆可以达到的速度最大值.

1、解析 (1)如右图所示,ab 杆受重力mg ,竖直向下;支持力FN ,垂直斜面向上;安培力F ,平行斜面 向上. (2)当ab 杆速度为v 时,感应电动势 E =BLv ,此时电路中电流 I =E R =BLv R ab 杆受到安培力F =BIL =B2L2v R 根据牛顿运动定律,有ma =mgsin θ-F =mgsin θ-B2L2v R a =gsin θ-B2L2v mR . (3)当B2L2v R =mgsin θ时,ab 杆达到最大速度vm =mgRsin θB2L2

流体流动过程机械能的转换 预习报告

流体流动过程机械能的转换 一、实验目的 1、了解流体在管道中流动情况下,静压能、动能和位能之间相互转换的关系,加深对伯努利方程的理解。 2、了解流体在管道中流动时,流体阻力的表现形式。 二、实验内容 观察流体流动过程中,随着测试管路结构、水平位置及流量的变化,流体的势能和动能之间的转换变化情况,并找出其规律,以验证伯努利方程。 三、实验原理 工业生产中,流体的输送多在密闭的管道中进行,因此研究流体在管内的流动是化学工程中一个重要课题。任何运动的流体,仍然遵守质量守恒定律和能量守恒定律,这是研究流体力学性质的基本出发点。 1.连续性方程 对于流体在管内稳定流动时的质量守恒形式表现为如下的连续性方程: ????=2 2 11vdA dA v ρρ (2-1) 根据平流速的定义,有 222111A u A u ρρ= (2-2) 即 21m m = (2-3) 而对均质、不可压缩流体,常数==21ρρ,则式(1-2)变为 2211A u A u = (2-4) 可见,对均质、不可压缩流体,平均流速与流通截面积成反比,即面积越大,流速越小;反之,面积越小,流速越大。 对圆管,4/2d A π=,d 为直径,于是式(1-4)可转化为 2 22211d u d u = (2-5) 2.机械能衡算方程 运动的流体除了遵循质量守恒定律以外,还应满足能量守恒定律,依此,在工程上可进一步得到十分重要的机械能衡算方程。

对于均质、不可压缩流体,在管路内稳定流动时,其机械能衡算方程(以单位质量流体为基准)可表示为: f e h g g u z h g g u z +++=+++ρρ22221211p 2p 2 (2-6) 显然,上式中各项均具有高度的量纲,z 称为位头,g u 2/2称为动压头(速度头),g ρ/p 称为静压头(压力头),e h 称为外加压头,f h 称为压头损失。 关于上述机械能衡算方程的讨论: (1)理想流体的柏努利方程 无黏性的即没有黏性摩擦损失的流体称为理想流体,就是说,理想流体的0=f h ,若此时又无外加功加入,则机械能衡算方程变为: g g u z g g u z ρρ22221211p 2p 2++=++ (2-7) 式(1-7)为理想流体的柏努利方程。该式表明,理想流体在流动过程中,总机械能保持不变。 (2)若流体静止,则0=u ,0=e h ,0=f h ,于是机械能衡算方程变 g z g z ρρ2211p p +=+ (2-8) 式(1-8)即为流体静力学方程,可见流体静止状态是流体流动的一种特殊形式。 四、实验装置及流程 该装置为有机玻璃材料制作的管路系统,通过泵使流体循环流动。管路内径为30mm ,节流件变截面处管内径为15mm 。单管压力计h 1和h 2可用于验证变截面连续性方程,单管压力计h 1和h 3可用于比较流体经节流件后的能头损失,单管压力计h 3和h 4可用于比较流体经弯头和流量计后的能头损失及位能变化情况,单管压力计h 4和h 5可用于验证直管段雷诺数与流体阻力系数关系 ,单管压力计h 6与h 5配合使用,用于测定单管压力计h 5处的中心点速度。 五、实验操作

新人教版物理[总复习:机械能及其转化 知识点整理及重点题型梳理]

新人教版物理中考总复习 重难点突破 知识点梳理及重点题型巩固练习 总复习:机械能及其转化 【考纲要求】 1、知道动能、势能、重力势能及弹性势能; 2、理解动能及大小的决定因素,重力势能及大小的决定因素,弹性势能及有关的决定因素;机械能守恒; 3、掌握探究动能及大小的决定因素,重力势能及大小的决定因素,弹性势能及有关决定的因素;动能和势能可以相互转化。 【知识网络】 【考点梳理】 考点一、动能、势能、机械能(《力学6:功和能》机械能概述) 1.动能 物体由于运动而具有的能,叫做动能;动能的大小与质量和速度有关。物体的速度越大,质量越大,则它的动能越大。 要点诠释: (1)一切运动的物体都有动能。 (2)动能是“由于运动”这个原因而产生的,一定不要把它理解成“运动的物体具有的能量叫动能”。例如在空中飞行的飞机,不但有动能而且还具有其它形式的能量。 2.重力势能 物体由于高度所决定的能,叫做重力势能;重力势能的大小与质量和高度有关。物体的质量越大,被举得越高,则它的重力势能越大。 要点诠释: (1)一切被举高的物体都有重力势能。 (2)重力势能是“被举高”这个原因而产生的,一定不要把它理解成“被举高的物体具有的能量

叫重力势能”。例如在空中飞行的飞机,不但有重力势能而且还具有其它形式的能量。 3.弹性势能 物体由于发生弹性形变而具有的能量,叫做弹性势能;弹性势能的大小与弹性形变的程度有关。 要点诠释: (1)一切发生弹性形变的物体都有弹性势能。 (2)弹性势能是“由于发生弹性形变”这个原因而产生的,一定不要把它理解成“发生弹性形变的物体具有的能量叫弹性势能”。 4.机械能 动能、重力势能和弹性势能统称为机械能。 考点二、动能和势能之间的相互转化(《力学6:功和能》动能和势能的转化) 1、在一定的条件下,动能和重力势能之间可以相互转化。如将一块小石块,从低处抛向高处,再从 高处下落的过程中,先是动能转化为重力势能后,后来又是重力势转化为动能。 2、在一定的条件下,动能和弹性势能之间可以相互转化。如跳板跳水运动员,在起跳的过程中,压 跳板是动能转化为弹性势能,跳板将运动员反弹起来是弹性势能转化为动能。 3、机械能守恒。如果一个过程中,只有动能和势能相互转化,机械能的总和就保持不变。这个规律 叫做机械能守恒。 【典型例题】 类型一、基础知识 1、(2016?济宁)弹跳杆运动是一项广受欢迎的运动。其结构如图甲所示.图乙是小希玩弹跳杆时由最低位置上升到最高位置的过程,针对此过裎。下列分析正确的是() A.在a状态时弹簧的弹性势能最大,小希的机械能为零 B.a→b的过程中,弹簧的弹力越来越大,在b状态时弹力最大 C.b→c的过程中,弹簧的弹性势能转化为小希的重力势能 D.a→c的过程中,小希先加速后减速,在b状态时速度最大 【思路点拨】(1)动能大小的影响因素:质量和速度,质量越大,速度越大,动能越大。(2)重力势能大小的影响因素:质量和高度,质量越大,高度越高,重力势能越大。(3)弹簧由于发生弹性形变而具有的能称为弹性势能,弹性势能的大小与物体发生弹性形变的程度有关。(4)机械能=动能+势能。 【答案】D 【解析】A、据图可知,a状态时弹簧的弹性势能最大,由于机械能等于动能加势能,所以机械能不是零,故A错误;B、a→b的过程中,弹簧的形变程度变小,所以具有的弹性势能变小,即到达b点时,弹簧恢复原状,所以弹性势能变为最小,故B错误;C、a→b的过程中,弹簧的形变程度变小,即弹性势能转化为动能,即到达b点动能最大,b→c的过程中,动能转化为小希的重力势能,故C错误;D、据上面的分析可知,a→b的过程中,弹簧的形变程度变小,即弹性势能转化为动能,即到达b点动能最大,b→c的过程中,动能转化为小希的重力势能,所以该过程中,小希先加速后减速,在b状态时速度最大,故D

[中学]雷诺实验及流体流动过程机械能的转换实验预习报告

[中学]雷诺实验及流体流动过程机械能的转换实验预习报 告 雷诺实验 一、实验目的 1、了解管内流体质点的运动方式,认识不同流动形态的特点,掌握判别流型的准则。 2、观察圆筒直管内流体作层流、过渡流、湍流的流动形态。 二、实验原理 流体流动有两种不同形态,即层流(滞流)和湍流(紊流),流体作层流流动时,其质点作平行于管轴的直线运动,湍流时流体质点在沿管轴流动时同时还作着杂乱无章的随机运动。雷诺准数是判断流动型态的准数。若流体在圆管内流动,则雷诺准数可用下式表示: 雷诺数:Re,d uρ/μ 式中:d,管子内径,m u,流体在管内的平均流速,m/s 3 ρ,流体密度,kg/m μ,流体粘度,kg/(m?s) 实验证明,流体在直管内流动时,当Re?2000时属层流;Re?4000时属湍流;当Re在两者之间时,可能为层流,也可能为湍流。 流体于某一温度下在某一管径的圆管内流动时,Re值只与流速有关。本实验中,水在一定管径的水平或垂直管内流动,若改变流速,即可观察到流体的流动型态及其变化情况,并可确定层流与湍流的临界雷诺数值。 三、实验流程

实验前,先将水充满低位储水槽,关闭流量计后的调节阀,然后启动循环水泵。待水充满稳压溢流水槽后,开启流量计的调节阀。水由稳压溢流水槽流经缓冲池、实验导管和流量计,最后流回低位贮水槽。水流量的大小,可由流量计和调节阀调节。 示踪剂采用红色墨水,它由红墨水贮槽经连接管和细孔喷嘴,注入实验导管。细孔玻璃注射管位于实验导管入口的轴线部位。四、演示操作 1、层流流动形态 实验时,先少许开启调节阀,将流速调至所需要的值。再调解红墨水贮瓶的下口旋塞,并做精细调节,使红墨水的注入流速与实验导管中主体流体的流速相适应,一般略低于主体流体的流速为宜。待流速稳定后,记录主体流体的流量。此时,在实验导管的轴线上,就可观察到一条平直的红色细流,好像一根拉直的红线一样。 2、湍流流动型态 缓慢的加大调节阀的开度,使水流量平稳地增大,玻璃导管内的流速也随之平稳的增大。此时可观察到,玻璃导管轴线上呈直线流动的红色细流开始发生波动。随着流速的增大,红色细流的波动程度也随之增大,最后断裂成一段段的红色细流。当流速继续增大时,红墨水进入实验导管后立即呈烟雾状分散在整个导管内,进而迅速与主体主流混为一体,使整个管内流体染为红色,以致无法辨别红墨水的流线。 五、注意事项 作层流流动时,为了使层流状况能较快地形成,而且能够保持稳定。第一,水槽的溢流应尽可能的小。因为溢流较大时,上水的流量也大,上水和溢流两者造层的震动都比较大,影响实验结果。第二,应尽量不要人为地使实验装置产生任何震动。

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质 设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。正电荷是导体晶格骨架正离子,它是导体的主要部分,整个导体所受的安培力正是横向电场作用在导体内所有正电荷的力的宏观表现,即F=(nLS)f H=(nLS)f L。 由此可见,安培力的微观本质应是正电荷所受的横向电场力,而正电荷所受的横向电场力正是通过外磁场对自由电子有洛伦兹力出现霍尔效应而实现的。

流体动力学

1.2 流体动力学 本节重点:连续性方程与柏努利方程。 难点:柏努利方程应用:正确选取截面及基准面,解决流体流动问题。 1.2.1 流体的流量与流速 1.流量 体积流量 单位时间内流经管道任意截面的流体体积,称为体积流量,以V S 表示,单位为m 3/s 或m 3/h 。 质量流量 单位时间内流经管道任意截面的流体质量,称为质量流量,以m S 表示,单位为kg/s 或kg/h 。 体积流量与质量流量的关系为 ρs s V m = (1-15) 2.流速 平均流速 流速是指单位时间内流体质点在流动方向上所流经的距离。实验发现,流体质点在管道截面上各点的流速并不一致,而是形成某种分布。在工程计算中,为简便起见,常常希望用平均流速表征流体在该截面的流速。定义平均流速为流体的体积流量与管道截面积之比,即 A V u s = (1-16) 单位为m/ s 。习惯上,平均流速简称为流速。 质量流速 单位时间内流经管道单位截面积的流体质量,称为质量流速,以G 表示,单位为kg/(m 2·s )。 质量流速与流速的关系为 ρρ u A V A m G s s === (1-17) 流量与流速的关系为 GA uA V m s s ===ρρ (1-18) 3.管径的估算

一般化工管道为圆形,若以d 表示管道的内径,则式(1-16)可写成 2 4 d V u s π = 则 u V d s π4= (1-19) 式中,流量一般由生产任务决定,选定流速u 后可用上式估算出管径,再圆整到标准规格。 适宜流速的选择应根据经济核算确定,通常可选用经验数据。通常水及低粘度液体的流速为1~3m/s ,一般常压气体流速为10饱和蒸汽流速为20~40 m/s 等。一般,密度大或粘度大的流体,流速取小一些;对于含有固体杂质的流体,流速宜取得大一些,以避免固体杂质沉积在管道中。 例 某厂要求安装一根输水量为30m 3/h 的管道,试选择一合适的管子。 解:取水在管内的流速为1.8m/s ,由式(1-19)得 mm 77m 077.08 .114.33600 /3044==??== u V d s π 查附录低压流体输送用焊接钢管规格,选用公称直径Dg80(英制3″)的管子,或表示为φ88.5×4mm ,该管子外径为88.5mm ,壁厚为4mm ,则内径为 mm 5.80425.88=?-=d 水在管中的实际流速为 m/s 63.10805.0785.03600 /304 2 2 =?= = d V u S 在适宜流速范围内,所以该管子合适。 1.2.2 定态流动与非定态流动 流体流动系统中,若各截面上的温度、压力、流速等物理量仅随位置变化,而不随时间变化,这种流动称之为定态流动;若流体在各截面上的有关物理量既随位置变化,也随时间变化,则称为非定态流动。 如图1-11所示,(a )装置液位恒定,因而流速不随时间变化,为定态流动;(b )装置流动过程中液位不断下降,流速随时间而递减,为非定态流动。

考点4 电场、磁场和能量转化

考点4 电场、磁场和能量转化 命题趋势 电场、磁场和能量的转化是中学物理重点内容之一,分析近十年来高考物理试卷可知,这部分知识在高考试题中的比例约占13%,几乎年年都考,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;由于高考的命题指导思想已把对能力的考查放在首位,因而在试题的选材、条件设置等方面都会有新的变化,将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。 知识概要 能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表: 如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E 初=E 末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE 减=ΔE 增;③各种形式的能量的增量(ΔE =E 末-E 初)的代数和为零,即ΔE 1+ΔE 2+…ΔE n =0。 电磁感应现象中,其他能向电能转化是通过安培力的功来量度的,感应电流在磁场电、磁场中的功和能 电场中的 功和能 电势能 由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电势能的零点。重要的不是电势能的值,是其变化量 电场力的功 与路径无关,仅与电荷移动的始末位置有关:W =qU 电场力的功和电势能的变化 电场力做正功 电势能 → 其他能 电场力做负功 其他能 → 电势能 转化 转化 磁场中的 功和能 洛伦兹力不做功 安培力的功 做正功:电能 → 机械能,如电动机 做负功:机械能 → 电能,如发电机 转化 转化

第二章 汽轮机级内能量转换过程

第二章 汽轮机级内能量转换过程 第一节 汽轮机级的基本概念 一 汽 轮 机 的 级 、级内能量转换过程 1,汽轮机的级:是由一组安装在喷嘴汽室或隔板上的静叶栅和一组安装在叶轮上的动叶栅所组成,它是汽轮机作功的最小单元。 2,级内能量转换过程:具有一定压力、温度的蒸汽通过汽轮机的级时,首先在静叶栅通道中得到膨胀加速,将蒸汽的热能转化为高速汽流的动能,然后进入动叶通道,在其中改变方向或者既改变方向同时又膨胀加速,推动叶轮旋转,将高速汽流的动能转变为旋转机械能。 华中科技大学 能源与动力工程学院 3,冲动级:当汽流通过动叶通道时,由于受到动叶通道形状的限制而弯曲被迫改变方向,因而产生离 汽轮机低压转子(含动叶栅) 0* 0' 1 s h 2 p2 p1 p0* p0 Δht* Δhn* Δh’b Δhb

4,反动级:当汽流通过动叶通道时,一方面要改变方向,同时还要膨胀加速,前者会对叶片产生一个冲动力,后 者会对叶片产生一个反作用力,即反动力。蒸汽通过这种级,两种力同时作功。 蒸汽对动叶栅的作用力 二 反 动 度(在第6页补上字母) 为了描述蒸汽通过汽轮机某一级时在动叶通道中的膨胀程度大小,通常用反动度 来描述。反动度 等于蒸汽在动叶通道中膨胀时的焓降 和在整个级的理想焓降 之比,即 (1 - 1) 称为级的平均反动度,即平均直径上 的反动度。蒸汽通过级的热力过程曲线用 图1-3表示。其中, 、 、 分别为喷嘴 前、动叶前、后的蒸汽压力, 为喷嘴前 的滞止压力。 、 和 分别为级的滞 止焓降、喷嘴的滞止焓降、动叶的焓降。 三 冲 动 级 和 反 动 级在第7页补上字母 (一) 冲 动 级 的 三 种 不 同 形 式 1,纯冲动级 说, = 、 = 0 、 = ,蒸汽流出动叶的速度C 具有一定的动能,由于未被利用而损失,称为余速损失,用 表示。 2 ,带反动度的冲动级 = 0.05 0.20 ) ,称为带反动度 的冲动级,它具有作功能力大、效率高的特点。 b n b t b m h h h h h ?+??≈??=Ω* ***)1(t m n h h ?Ω-=?*t m b h h ?Ω=? 0* 0' 1 s h 2 p2 p1 p0* p0 Δht* Δhn* Δh’b Δhb

机械能转化实验讲义

机械能转化演示实验 一、实验目的 1.观测动、静、位压头随管径、位置、流量的变化情况,验证连续性方程和柏努利方程。 2.定量考察流体流经收缩、扩大管段时,流体流速与管径关系。 3.定量考察流体流经直管段时,流体阻力与流量关系。 4.定性观察流体流经节流件、弯头的压损情况。 二、基本原理 化工生产中,流体的输送多在密闭的管道中进行,因此研究流体在管内的流动是化学工程中一个 重要课题。任何运动的流体,仍然遵守质量守恒定律和能量守恒定律,这是研究流体力学性质的基本 出发点。 1.连续性方程 对于流体在管内稳定流动时的质量守恒形式表现为如下的连续性方程: ????=2211vdA dA v ρρ (1-1) 根据平均流速的定义,有 222111A u A u ρρ= (1-2) 即 21m m = (1-3) 而对均质、不可压缩流体,常数==21ρρ,则式(1-2)变为 2211A u A u = (1-4) 可见,对均质、不可压缩流体,平均流速与流通截面积成反比,即面积越大,流速越小;反之, 面积越小,流速越大。 对圆管,4/2 d A π=,d 为直径,于是式(1-4)可转化为 2 22211d u d u = (1-5) 2.机械能衡算方程 运动的流体除了遵循质量守恒定律以外,还应满足能量守恒定律,依此,在工程上可进一步得到

十分重要的机械能衡算方程。 对于均质、不可压缩流体,在管路内稳定流动时,其机械能衡算方程(以单位质量流体为基准) 为: f e h g g u z h g g u z +++=+++ρρ22 221211p 2p 2 (1-6) 显然,上式中各项均具有高度的量纲,z 称为位头,g u 2/2称为动压头(速度头),g ρ/p 称为 静压头(压力头),e h 称为外加压头,f h 称为压头损失。 关于上述机械能衡算方程的讨论: (1)理想流体的柏努利方程 无黏性的即没有黏性摩擦损失的流体称为理想流体,就是说,理想流体的0=f h ,若此时又无外 加功加入,则机械能衡算方程变为: g g u z g g u z ρρ22 221211p 2p 2++=++ (1-7) 式(1-7)为理想流体的柏努利方程。该式表明,理想流体在流动过程中,总机械能保持不变。 (2)若流体静止,则0=u ,0=e h ,0=f h ,于是机械能衡算方程变为 g z g z ρρ2211p p +=+ (1-8) 式(1-8)即为流体静力学方程,可见流体静止状态是流体流动的一种特殊形式。 3.管内流动分析 按照流体流动时的流速以及其它与流动有关的物理量(例如压力、密度)是否随时间而变化,可 将流体的流动分成两类:稳定流动和不稳定流动。连续生产过程中的流体流动,多可视为稳定流动, 在开工或停工阶段,则属于不稳定流动。 流体流动有两种不同型态,即层流和湍流,这一现象最早是由雷诺(Reynolds )于1883年首先发 现的。流体作层流流动时,其流体质点作平行于管轴的直线运动,且在径向无脉动;流体作湍流流动 时,其流体质点除沿管轴方向作向前运动外,还在径向作脉动,从而在宏观上显示出紊乱地向各个方 向作不规则的运动。 流体流动型态可用雷诺准数(Re )来判断,这是一个无因次数群,故其值不会因采用不同的单位 制而不同。但应当注意,数群中各物理量必须采用同一单位制。若流体在圆管内流动,则雷诺准数可

相关主题
文本预览
相关文档 最新文档