当前位置:文档之家› 上海市金山中学2017-2018学年高二下学期段考数学试题

上海市金山中学2017-2018学年高二下学期段考数学试题

上海市金山中学2017-2018学年高二下学期段考数学试题
上海市金山中学2017-2018学年高二下学期段考数学试题

金山中学2017-2018学年高二年级数学学科学习水平检查

一.填空题(1--6每小题4分,7--12每小题5分,共54分)

1. 正方体中,异面直线与所成的角的大小为_________.

【答案】

【解析】异面直线与所成的角为异面直线与所成的角,即为

2. 过两两相交的三条直线中的每两条直线作一个平面,这样可作平面的个数是________.【答案】1或3

【解析】若三条直线交于一点,则可作3个平面;若三条直线交于三点,则可作1个平面;

3. 在复数集中分解因式:___________________.

【答案】

【解析】

4. 直线,,则直线与的夹角为______________.

【答案】

【解析】中,而平行y轴,所以直线与

的夹角为

5. 双曲线的顶点到其渐近线的距离等于______________.

【答案】

【解析】双曲线的顶点到其渐近线的距离为

6. 若直线经过椭圆的右焦点,则实数__.

【答案】

【解析】椭圆的右焦点为,所以

7. 已知复数,,则的取值范围为___________.

【答案】

【解析】

8. 已知是空间四点,命题甲:四点不共面,命题乙:直线和不

相交,则甲是乙成立的_________________条件.

【答案】充分不必要

【解析】若四点不共面,则直线和异面,所以直线和不相交,若直线和不相交,则直线和可平行,即四点可共面,

因此甲是乙成立的充分不必要条件.

点睛:充分、必要条件的三种判断方法.

1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“?”

为真,则是的充分条件.

2.等价法:利用?与非?非,?与非?非,?与非?非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.

3.集合法:若?,则是的充分条件或是的必要条件;若=,则是的充要条件.

9. 四边形为正方形,且平面,,则点到直线的距离为____________.

【答案】

【解析】因为平面,即点到直线的距离为

10. 圆关于直线对称的圆的方程为

___________.

【答案】

点睛:确定圆的方程方法

(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.

(2)待定系数法

...............

②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、

E、F的方程组,进而求出D、E、F的值.

11. 如图,二面角的大小是60°,线段AB, ,,与所成的角为30°.则与平面所成的角的大小是_____.

【答案】

【解析】

试题分析:点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D,连结AD,有三垂线定理可知AD⊥l,故∠ADC为二面角的平面角为60°,

又由已知∠ABD=30°,连结CB,则∠ABC为与平面所成的角

设AD=2,则AC=,CD=1w_w w. .c o*m

,AB==4,∴sin∠ABC=,故填w_w w. .c o*m

考点:本题考查了线面角的求法

点评:

12. 如图,已知半圆的直径,为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线的距离、满足条件,则|AM|+|AN|的值为_________.

【答案】20

【解析】以AT中点为坐标原点,AT所在直线为x轴建立直角坐标系,则M,N在以A 为焦点的抛物线上,方程为,半圆方程为,联立方程组得解得,因此

点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若

为抛物线上一点,由定义易得;若过焦点的弦AB的端点坐标为,则弦长为可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.

二.选择题(每小题5分,共20分)

13. 下面是关于复数的四个命题:

①;②;③的共轭复数为;④的虚部为.

其中正确的命题()

A. ②③

B. ①②

C. ②④

D. ③④

【答案】C

【解析】,

的虚部为.所以选②④,选C.

14. 设点,直线、平面,则下列命题中正确的是 ( )

A. 若,在外,则

B. 若,,则

C. 若,,则

D. 若,,则

【答案】D

【解析】若,在外,则或;若,,则可以在平面内若,,则或在外;若,,则,选D.

15. 点是正方体的两棱与的中点,是正方形的

中心,则与平面的位置关系是()

A. 平行

B. 相交

C. 平面

D. 以上都可以

【答案】A

【解析】平面=平面,因为平面,所以平面,选A.

16. 在长方体中,,若棱上存在一点,使得

⊥,则棱的长的取值范围是()

A. B. C. D.

【答案】D

【解析】连接AP,则因为平面, ⊥,所以,选D.

点睛:存在性问题通常用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.

三.解答题(12分+14分+16分+16分+18分,共76分)

17. 已知复数满足,

(1)求复数;(2)若复数是实系数一元二次方程的一个根,求的值.

【答案】(1)(2)

【解析】试题分析:(1)根据复数模的定义以及复数相等条件得方程组,解方程组可得复数(2)根据实系数一元二次方程虚数根特点可得为方程两根,利用韦达定理可求b,c,即得的值

2017年全国高考理科数学试题及答案-全国卷1

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将 试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A . 14 B . π8 C .12 D . π4 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为 A .13,p p B .14,p p C .23,p p D .24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范

2015年上海市高考数学试卷文科(高考真题)

2015年上海市高考数学试卷(文科) 一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分) 1.(4分)函数f(x)=1﹣3sin2x的最小正周期为. 2.(4分)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B=.3.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=. 4.(4分)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)=. 5.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=. 6.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.7.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=. 8.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为. 9.(4分)若x,y满足,则目标函数z=x+2y的最大值为. 10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).11.(4分)在(2x+)6的二项式中,常数项等于(结果用数值表示).12.(4分)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.13.(4分)已知平面向量、、满足⊥,且||,||,||}={1,2,3},则|++|的最大值是. 14.(4分)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m ≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m ≥2,m∈N*),则m的最小值为.

2017年上海市中考数学试卷含答案解析(Word版)

2017年上海市中考数学试卷 参考答案与试题解析 一、选择题(本大题共6小题,每小题4分,共24分) 1.下列实数中,无理数是() A.0 B.C.﹣2 D. 【分析】根据无理数、有理数的定义即可判定选择项. 【解答】解:0,﹣2,是有理数, 数无理数, 故选:B. 【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循 环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式. 2.下列方程中,没有实数根的是() A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0 【分析】分别计算各方程的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误; B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误; C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误; D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确. 故选D. 【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 3.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b 应满足的条件是() A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0

2017年上海市高考数学模拟试卷-Word版含解析

2017年上海市高考数学模拟试卷 、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分) 1 ?计算: 2 ?设函数f (x)二五的反函数是fT (X),则fT ( 4) 3. 已知复数二.K:乜(i为虚数单位),则| z| = ______ . 4. 函数f (x)=sinx+Vs p cosx,若存在锐角B满足f ( 0) =2,贝U 0= _____ . 5. 已知球的半径为R,若球面上两点A, B的球面距离为」,则这两点A, B 间的距离为 6. ________________________________________________________________ 若(2+x) n的二项展开式中,所有二项式的系数和为256,贝U正整数n= _______ . 7. 设k为常数,且-、-三:——-、「?!*,则用k表示sin2 a勺式子为sin2 a三_ . 2 * —.—. 8. 设椭圆丄「, ?二:的两个焦点为Fi, F2, M是椭圆上任一动点,贝U 11 .-1! -的 取值范围为—. 9. 在厶ABC中,内角A, B, C的对边分别是a, b, c,若-J- :;i.. , sinC=2 sinB,则A角大小为—. 10. ____________________________________________________________ 设f (x) =lgx,若f (1 - a)- f (a)> 0,则实数a的取值范围为___________________ . 11. __________________________________________________________ 已知数列{a n}满足:a1=1, a n+1+a n= (=) n, n€ N*,贝则二[匸严= __________ . 12. 已知△ ABC的面积为360,点P是三角形所在平面内一点,且则厶PAB的面积为 二、选择题(本大题满分20分) 13. 已知集合A={x| x>- 1},贝U下列选项正确的是( ) 15.图中曲线的方程可以是( )

2019年上海高考数学(文科)试卷

2019年全国普通高等学校招生统一考试 上海 数学试卷(文史类) 一、填空题(本大题共有14题,满分56分) 1、计算: 31i i -=+ (i 为虚数单位) 2、若集合{} 210A x x =->,{} 1B x x =<,则A B ?= 3、函数sin 2()1 cos x f x x = -的最小正周期是 4、若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示) 5、一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 6、方程1 42 30x x +--=的解是 7、有一列正方体,棱长组成以1为首项、1 2 为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞ +++= 8、在6 1x x ? ?- ?? ?的二项式展开式中,常数项等于 9、已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= 10、满足约束条件22x y +≤的目标函数z y x =-的最小值是 11、三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两人选择的项目相同的概率是 (结果用最简分数表示) 12、在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足 BM CN BC CD = ,则AM AN ?的取值范围是 13、已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1 (,1)2 B 、(1,0) C ,函数 ()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为 14、已知1 ()1f x x = +,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=,若20102012a a =,则2011a a +的值是

2017年上海市嘉定区高考数学二模试卷 --有答案

2017年上海市嘉定区高考数学二模试卷 一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.函数y=2sin2(2x)﹣1的最小正周期是. 2.设i为虚数单位,复数,则|z|=. 3.设f﹣1(x)为的反函数,则f﹣1(1)=. 4.=. 5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是. 6.设等差数列{a n}的前n项和为S n,若=,则=. 7.直线(t为参数)与曲线(θ为参数)的公共点的个数是. 8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为. 9.若,则满足f(x)>0的x的取值范围是. 10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为. 11.设等差数列{a n}的各项都是正数,前n项和为S n,公差为d.若数列也是公差为d 的等差数列,则{a n}的通项公式为a n=. 12.设x∈R,用[x]表示不超过x的最大整数(如[2.32]=2,[﹣4.76]=﹣5),对于给定的n∈ N*,定义C=,其中x∈[1,+∞),则当时,函数f(x)=C 的值域是. 二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.命题“若x=1,则x2﹣3x+2=0”的逆否命题是() A.若x≠1,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=1

【中考解析】上海市2017年中考数学真题试题(含解析)

上海市2017年中考数学真题试题 一、选择题(本大题共6小题,每小题4分,共24分) 1.下列实数中,无理数是( ) A .0 B C .﹣2 D . 27 【答案】B 【解析】 试题分析:0,﹣2,2 7 是无理数, 故选B . 考点:无理数的定. 2.下列方程中,没有实数根的是( ) A .x 2 ﹣2x=0 B .x 2 ﹣2x ﹣1=0 C .x 2 ﹣2x+1=0 D .x 2 ﹣2x +2=0 【答案】D 【解析】 考点:根的判别式 3.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( ) A .k >0,且b >0 B .k <0,且b >0 C .k >0,且b <0 D .k <0,且b <0 【答案】B 【解析】 试题分析:∵一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限, ∴k <0,b >0, 故选B . 考点:一次函数的性质和图象

4.数据2、5、6、0、6、1、8的中位数和众数分别是() A.0和6 B.0和8 C.5和6 D.5和8 【答案】C 【解析】 试题分析:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8, 位于中间位置的数为5,故中位数为5, 数据6出现了2次,最多,故这组数据的众数是6,中位数是5, 故选C. 考点:1.众数;2.中位数. 5.下列图形中,既是轴对称又是中心对称图形的是() A.菱形 B.等边三角形C.平行四边形D.等腰梯形 【答案】A 【解析】 考点:中心对称图形与轴对称图形. 6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是() A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【答案】C 【解析】 试题分析:A、∠BAC=∠DCA,不能判断四边形ABC D是矩形; B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形; C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形; D、∠BA C=∠ADB,不能判断四边形ABCD是矩形; 故选C.

2017年高考数学上海卷【附解析】

数学试卷 第1页(共14页) 数学试卷 第2页(共14页) 绝密★启用前 上海市2017年普通高等学校招生全国统一考试 数 学 本试卷共150分.考试时长120分钟. 一、填空题:本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分. 1.已知集合{1,2,3,4}A =,{3,4,5}B =,那么A B =I . 2.若排列数6654m P =??,则m = . 3.不等式1 1x x ->的解集为 . 4.已知球的体积为36π,则该球主视图的面积等于 . 5.已知复数z 满足3 0z z +=的定义域为 . 6.设双曲线2221(0)9x y b b -=>的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF = . 7.如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为 坐标轴,建立空间直角坐标系,若1DB uuuu r 的坐标为(4,3,2),则1AC uuuu r 的坐标是 . 8.定义在(0,)+∞上的函数()y f x =反函数为1 ()y f x -=,若31,0 ()(),0 x x g x f x x ?-=??≤>为奇函 数,则1()2f x -=的解为 . 9.已知四个函数:①y x =-,②1 y x =-,③3y x =,④1 2y x =,从中任选2个,则事件 “所选2个函数的图象有且仅有一个公共点”的概率为 . 10.已知数列 {}n a 和{}n b ,其中2 n a n =,n ∈* N ,{}n b 的项是互不相等的正整数,若对 于任意n ∈*N ,{}n b 的第n a 项等于{}n a 的第n b 项,则 14916 1234lg() lg() b b b b b b b b == . 11.设1a 、2a ∈R ,且1211 22sin 2sin(2) a a +=++,则12|10π|a a --的最小值等 于 . 12.如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“▲”的点在正方形的顶点处,设集合1234{P ,P ,P ,P }Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1D (P l )和2D (P l )分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足1D (P l )2D =(P l ) ,则Ω中所有这样的P 为 . 二、选择题:本大题共4小题,每题5分,共20分. 13.关于x 、y 的二元一次方程组50 234x y x y +=??+=? 的系数行列式D 为 ( ) A .0543 B .1024 C .1523 D . 60 54 14.在数列{}n a 中,12n n a ?? =- ??? ,n ∈*N ,则lim n n a →∞ ( ) A .等于12- B .等于0 C .等于1 2 D .不存在 15.已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,n ∈*N ,则“存在k ∈*N , 使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是 ( ) A .0a ≥ B .0b ≤ C .0c = D .20a b c -+= 16.在平面直角坐标系xOy 中,已知椭圆221:1364 x y C +=和22 2:19y C x + =.P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ u u u r u u u r g 的最大值.记{(,)}P Q Ω=,P 在1C 上,Q 在2C 上,且OP OQ w =u u u r u u u r g ,则Ω中元素个数为 ( ) A .2个 B .4个 C .8个 D .无穷个 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________ -------------在 --------------------此-------------------- 卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无--------------------效--- -------------

上海高考文科数学试题及参考答案

2014年普通高等学校招生统一考试上海市 数学试题(文科)及参考答案 满分150分;考试时间120分钟. 一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数2 12cos (2)y x =-的最小正周期是 . 2.若复数12z i =+,其中i 是虚数单位,则1z z z ?? + ?= ??? . 3.设常数a R ∈,函数2()1f x x x a =-+-.若(2)1f =,则(1)f = . 4.若抛物线2 2y px =的焦点与椭圆22 195 x y +=的右焦点重合,则该抛物线的准线方程为 . 5.某校高一、高二、高三分别有学生1600名、1200名、800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样.若高三抽取20名学生,则高一、高二共需抽取的学生数为 . 6.若实数,x y 满足1xy =,则2 2 2x y +的最小值为 . 7.若圆锥的侧面积是底面积的3倍,则其母线与轴所成的角的大小为 (结果用反三角函数值表示). 8.在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小长方体的体积之和等于 . 9.设,0, ()1 ,0.x a x f x x x x -+≤?? =?+>?? 若(0)f 是()f x 的最小值,则a 的取值范围为 . 10.设无穷等比数列 {} n a 的公比为q ,若)(43 1lim n n a a a a +++= ∞ → ,则 q = . 11.若213 2 ()f x x x -=-,则满足()0f x <的x 的取值范围是 . 12.方程sin 3cos 1x x +=在区间[0,2]π上的所有的解的和等于 .

2017年高考数学上海试题及解析

2017年上海市高考数学试卷 一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.已知集合A={1,2,3,4},集合B={3,4,5},则A∩B= . {3,4} 【解析】∵集合A={1,2,3,4},集合B={3,4,5},∴A∩B={3,4}. 2.(2017年上海)若排列数A m 6=6×5×4,则m= . 2.3 【解析】∵排列数A m 6=6×5×…×(6-m+1),∴6-m+1=4,即m=3. 3.(2017年上海)不等式x-1x >1的解集为 . 3.(-∞,0) 【解析】由x-1x >1,得1-1x >1,则1 x <0,解得x<0,即原不等式的解集为(-∞,0). 4.(2017年上海)已知球的体积为36π,则该球主视图的面积等于 . 4.9π 【解析】设球的半径为R ,则由球的体积为36π,可得4 3πR 3=36π,解得R=3.该球的主 视图是半径为3的圆,其面积为πR 2=9π. 5.(2017年上海)已知复数z 满足z+3 z =0,则|z|= . 5. 3 【解析】由z+3 z =0,可得z 2+3=0,即z 2=-3,则z=±3i ,|z|= 3. 6.(2017年上海)设双曲线x 29-y 2 b 2=1(b >0)的焦点为F 1,F 2,P 为该双曲线上的一点,若|PF 1|=5, 则|PF 2|= . 6.11 【解析】双曲线x 29-y 2 b 2=1中,a=9=3,由双曲线的定义,可得||PF 1|-|PF 2||=6,又|PF 1|=5, 解得|PF 2|=11或﹣1(舍去),故|PF 2|=11. 7.(2017年上海)如图,以长方体ABCD-A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若向量→DB 1的坐标为(4,3,2),则向量→AC 1的坐标是 . 7.(-4,3,2) 【解析】由→DB 1 的坐标为(4,3,2),可得A (4,0,0),C(0,3,2),D 1(0,0,2),

2017年高考上海卷数学试题(Word版含答案)

2017年上海市高考数学试卷 一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B = 2. 若排列数6654m P =??,则m = 3. 不等式 1 1x x ->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足3 0z z + =,则||z = 6. 设双曲线 22 2 19x y b -=(0)b >的焦点为1F 、2F ,P 为该 双曲线上的一点,若1||5PF =,则2||PF = 7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为 8. 定义在(0,)+∞上的函数()y f x =的反函数为1 ()y f x -=,若31,0 ()(),0 x x g x f x x ?-≤?=?>??为 奇函数,则1()2f x -=的解为 9. 已知四个函数:① y x =-;② 1y x =-;③ 3 y x =;④ 1 2y x =. 从中任选2个,则 事 件“所选2个函数的图像有且仅有一个公共点”的概率为 10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于 任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg() lg() b b b b b b b b = 11. 设1a 、2a ∈R ,且1211 22sin 2sin(2) αα+=++,则12|10|παα--的最小值等于 12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点 P ∈Ω,过P 作直线P l ,使得不在P l 上的“”的点 分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为

2017年上海中考数学试卷

2017年上海中考数学试卷 一. 选择题 1. 下列实数中,无理数是( ) A. 0 B. C. 2- D. 27 2. 下列方程中,没有实数根的是( ) A. 220x x -= B. 2210x x --= C. 2210x x -+= D. 2220x x -+= 3. 如果一次函数y kx b =+(k 、b 是常数,0k ≠)的图像经过第一、二、四象限,那么k 、 b 应满足的条件是( ) A. 0k >且0b > B. 0k <且0b > C. 0k >且0b < D. 0k <且0b < 4. 数据2、5、6、0、6、1、8的中位数和众数分别是( ) A. 0和6 B. 0和8 C. 5和6 D. 5和8 5. 下列图形中,既是轴对称又是中心对称图形的是( ) A. 菱形 B. 等边三角形 C. 平行四边形 D. 等腰梯形 6. 已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( ) A. BAC DCA ∠=∠ B. BAC DAC ∠=∠ C. BAC ABD ∠=∠ D. BAC ADB ∠=∠ 二. 填空题 7. 计算:22a a ?= 8. 不等式组2620 x x >??->?的解集是 9. 1=的解是 10. 如果反比例函数k y x = (k 是常数,0k ≠)的图像经过点(2,3),那么在这个函数图象 所在的每个象限内,y 的值随x 的值增大而 .(填“增大”或“减小”) 11. 某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5 的年均浓度比去年也下降了10%,那么今年PM2.5的年均浓度将是 微克/立方米 12. 不透明的布袋里有2个黄球、3个红球、5个白球,他们除颜色外其他都相同,那么从 布袋中任意摸出一个球恰好为红球的概率是

2017年上海市黄浦区高考数学一模试卷(解析版)

2017年上海市黄浦区高考数学一模试卷 一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[ 1.若集合A={x||x﹣1|<2,x∈R},则A∩Z=. 2.抛物线y2=2x的准线方程是. 3.若复数z满足(i为虚数单位),则z=. 4.已知sin(α+)=,α∈(﹣,0),则tanα=. 5.以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是. 6.若二项式的展开式共有6项,则此展开式中含x4的项的系数是. 7.已知向量(x,y∈R),,若x2+y2=1,则的最大值为. 8.已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g (x)是y=f(x)的反函数,则g(﹣3)=. 9.在数列{a n}中,若对一切n∈N*都有a n=﹣3a n ,且 +1 =,则a1的值为. 10.甲、乙两人从6门课程中各选修3门.则甲、乙所选的课程中至多有1门相同的选法共有. 11.已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P, 若,则实数λ的值为. 12.已知为常数),,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是. 二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考

生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13.若x ∈R ,则“x >1”是“ ”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件 14.关于直线l ,m 及平面α,β,下列命题中正确的是( ) A .若l ∥α,α∩β=m ,则l ∥m B .若l ∥α,m ∥α,则l ∥m C .若l ⊥α,m ∥α,则l ⊥m D .若l ∥α,m ⊥l ,则m ⊥α 15.在直角坐标平面内,点A ,B 的坐标分别为(﹣1,0),(1,0),则满足tan ∠PAB?tan ∠PBA=m (m 为非零常数)的点P 的轨迹方程是( ) A . B . C . D . 16.若函数y=f (x )在区间I 上是增函数,且函数在区间I 上是减函数, 则称函数f (x )是区间I 上的“H 函数”.对于命题:①函数是(0, 1)上的“H 函数”;②函数是(0,1)上的“H 函数”.下列判断正确 的是( ) A .①和②均为真命题 B .①为真命题,②为假命题 C .①为假命题,②为真命题 D .①和②均为假命题 三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 17.在三棱锥P ﹣ABC 中,底面ABC 是边长为6的正三角形,PA ⊥底面ABC ,且 PB 与底面ABC 所成的角为 . (1)求三棱锥P ﹣ABC 的体积; (2)若M 是BC 的中点,求异面直线PM 与AB 所成角的大小(结果用反三角函

2015年全国高考文科数学试题及答案-上海卷

2015年普通高等学校招生全国统一考试(上海卷) 文科数学试题 一.填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分) 1.函数x x f 2sin 31)(-=的最小正周期为___________. 2.设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U I ___________. 3.若复数z 满足i z z +=+13,其中i 是虚数单位,则=z ___________. 4.设)(1x f -为1 2)(+=x x x f 的反函数,则=-)2(1f ___________. 5.若线性方程组的增广矩阵为 ??0213????21c c 解为? ??==53y x ,则=-21c c ___________. 6.若正三棱柱的所有棱长均为a ,且其体积为316,则=a ___________. 7.抛物线)0(22>=p px y 上的懂点Q 到焦点的距离的最小值为1,则=p ___________. 8.方程2)23(log )59(log 1212+-=---x x 的解为___________. 9.若y x ,满足?? ???≥≤+≥-022y y x y x ,则目标函数y x z 2+=的最大值为___________. 10.在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的 选取方式的种数为___________.(结果用数值表示) 11.在62 )12(x x +的二项式中,常数项等于___________(结果用数值表示). 12.已知双曲线1C 、2C 的顶点重合,1C 的方程为14 22 =-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为___________. 13.已知平面向量a 、b 、c 满足b a ⊥,且}3,2,1{|}||,||,{|=c b a ,则||c b a ++的最大值是 ___________.

2017年上海市宝山区中考数学一模试卷(解析版)

2017年上海市宝山区中考数学一模试卷 一、选择题:(本大题共6题,每题4分,满分24分) 1.已知∠A=30°,下列判断正确的是() A.sinA=B.cosA=C.tanA=D.cotA= 2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为() A.B.C.D. 3.二次函数y=x2+2x+3的定义域为() A.x>0 B.x为一切实数C.y>2 D.y为一切实数 4.已知非零向量、之间满足=﹣3,下列判断正确的是() A.的模为3 B.与的模之比为﹣3:1 C.与平行且方向相同D.与平行且方向相反 5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的() A.南偏西30°方向B.南偏西60°方向 C.南偏东30°方向D.南偏东60°方向 6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限 C.第二、三、四象限D.第一、三、四象限 二、填空题:(本大题共12小题,每题4分,满分48分) 7.已知2a=3b,则=. 8.如果两个相似三角形的相似比为1:4,那么它们的面积比为. 9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项. 10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=. 12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.

13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是. 14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线. 15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号) 16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=. 17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如 y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为. 18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED 沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═. 三、解答题:(本大题共7小题,满分78分) 19.计算:﹣cos30°+0. 20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长; (2)设=,=,求向量(用向量、表示). 21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P 处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高. 22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m 与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.

2016年上海市高考数学试卷(文科)

2016年上海市高考数学试卷(文科) 一、填空题(本大题共14题,每小题4分,共56分). 1.(4分)设x∈R,则不等式|x﹣3|<1的解集为. 2.(4分)设z=,其中i为虚数单位,则z的虚部等于. 3.(4分)已知平行直线l 1:2x+y﹣1=0,l 2 :2x+y+1=0,则l 1 ,l 2 的距离. 4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是(米). 5.(4分)若函数f(x)=4sinx+acosx的最大值为5,则常数a= .6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f ﹣1(x)= . 7.(4分)若x,y满足,则x﹣2y的最大值为. 8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为. 9.(4分)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于. 10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于. 11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为. 12.(4分)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y= 上一个动点,则?的取值范围是.

13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是. 14.(4分)无穷数列{a n }由k个不同的数组成,S n 为{a n }的前n项和,若对任意 n∈N*,S n ∈{2,3},则k的最大值为. 二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分). 15.(5分)设a∈R,则“a>1”是“a2>1”的() A.充分非必要条件B.必要非充分条件 C.充要条件D.既非充分也非必要条件 16.(5分)如图,在正方体ABCD﹣A 1B 1 C 1 D 1 中,E、F分别为BC、BB 1 的中点,则 下列直线中与直线EF相交的是() A.直线AA 1B.直线A 1 B 1 C.直线A 1 D 1 D.直线B 1 C 1 17.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为() A.1 B.2 C.3 D.4 18.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是() A.①和②均为真命题B.①和②均为假命题 C.①为真命题,②为假命题D.①为假命题,②为真命题

2017上海中考数学试卷

2017年上海市初中毕业统一学业考试 数学试卷 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列实数中,无理数是 A.0 B.2 C.-2 D. 7 2 2.下列方程中,没有实数根的是 A.0x 2-x 2= B.01-x 2-x 2= C.01x 2-x 2=+ D.02x 2-x 2=+ 3.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图像经过第一、二、四象限,那么k 、b 应满足的条件是 A.k >0,且b >0 B.k <0,且b >0 C.k >0,且b <0 D.k <0,且b <0 4.数据2、5、6、0、6、1、8的中位数和众数分别是 A.0和6 B.0和8 C.5和6 D.5和8 5.下列图形中,既是轴对称图形又是中心对称图形的是 A.菱形 B.等边三角形 C.平行四边形 D.等腰梯形 6.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是 A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:2a.a 2= . 8.不等式组???2 2-x 6x 2>,>的解集是 . 9.方程13-x 2=的根是 . 10.如果反比例函数x k y =(k 是常数,k ≠0)的图像经过点(2,3),那么在这个函数图像所在的每个象限内,y 的值随x 的值增大而 。(填“增大”或

“减小”) 11.某市前年PM2.5的年均浓度为50毫克/立方米,去年比前年下降了10%。如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是 毫克/立方米。 12.不透明的布袋里有2个黄球,3个红球,5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一个球恰好为红球的概率是 。 13.已知一个二次函数的图像开口向上,顶点坐标为(0,-1),那么一个二次函数的解析式可以是 。(只需写一个) 14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图1所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元。 15.如图2,已知AB ∥CD ,CD=2AB ,AD 、BC 相交于点E 。设=,=,那么向量用向量表示为 。 16.一副三角尺按图3的位置摆放(顶点C 与F 重合,边CA 与边FE 重合,顶点B 、 C 、 D 在一条直线上)。将三角尺DEF 绕着点F 按顺时针方向旋转n °后(0<n <180),如果EF ∥AB ,那么n 的值是 。 17.如图4,已知Rt △ABC ,∠C=90°,AC=3,BC=4,分别以点A 、B 为圆心画圆,如果点C 在☉A 内,点B 在☉A 外,且☉B 与☉A 内切,那么☉B 的半径长r 的取值范围是 。 18.我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6= 。 图1

上海高考数学(文科)试题及答案

2016年上海高考数学 (文科)试题及答案https://www.doczj.com/doc/e32775000.html,work Information Technology Company.2020YEAR

2016年高考上海数学试卷(文史类) 考生注意: 1.本试卷共4页,23道试题,满分150分.考试时间120分钟. 2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分. 3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名. 一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x ∈R ,则不等式31x -<的解集为_______. 2.设32i i z +=,其中i 为虚数单位,则z 的虚部等于______. 3.已知平行直线1210l x y +-=: ,2210l x y ++=:,则1l 与2l 的距离是_____. 4.某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是______(米). 5.若函数()4sin cos f x x a x =+的最大值为5,则常数a =______. 6.已知点(3,9)在函数()1x f x a =+的图像上,则()f x 的反函数1()f x -=______. 7.若,x y 满足0,0,1,x y y x ≥??≥??≥+? 则2x y -的最大值为_______. 8.方程3sin 1cos2x x =+在区间[]0,2π上的解为_____. 9 .在2)n x 的二项展开式中,所有项的二项式系数之和为256,则常数项等于____. 10.已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于____. 11.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.

相关主题
文本预览
相关文档 最新文档