当前位置:文档之家› 恒温恒湿控制系统设计.

恒温恒湿控制系统设计.

恒温恒湿控制系统设计.
恒温恒湿控制系统设计.

生化处理的恒温恒湿控制系统设计

2007年第11期(总第108期)

宋奇光,伍宗富,梅彬运(湖南文理学院,湖南常德415000 )

【摘要】以PLC为控制器,结合温度传感变送器、LED显示器等,组成

一个生化处理的恒温恒湿控制系统。使用温度传感变送器获得温度的感应电压,

经处理后送给PLC。PLC将给定的温度与测量温度的相比较,得出偏差量,然后

根据模糊控制算法得出控制量。执行器由开关频率较高的固态继电器开关担任,

采用PWM控制方法,改变同一个周期中电子开关的闭合时间。从而调节高温电

磁阀开关的导通时间,达到蒸汽控制目的。

【关键词】生化处理;PLC;恒温恒湿

引言

生化处理系统是食品工艺的关键设备。在此以米粉生产工艺中的生化处理系统的蒸汽温湿度控制进行实用设计,其温度控制在0~100℃,误差为±0.5℃,可用键盘输入设置温度及LED实时显示系统温度,采用模糊算法进行恒温控制,将数字处理控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重的滞后现象,可以很大程度的提高控制效果和控制精度[1]。

1米粉生化处理的恒温恒湿系统现状与分析

1.1 现状

由于国内米粉生产设备厂家尚未掌握米粉的关键技术,使其制造的设备无法满足米粉生产的工艺要求。我们经过现场堪察,发现原有的连续式米粉生化处理恒温恒湿控制系统具有如下现状。

一是连续式米粉生化处理恒温恒湿箱的控制基本上是手动调节;

二是箱内各部位温度分布不均匀,实际温度波动太大(40-70℃),远远达不到生产要求(62.5℃±2.5℃),影响米粉的抗老化效果;

三是实际湿度也达不到生产要求,容易出现湿度偏高(米粉发泡)或者偏低(米粉起壳)的现象,严重影响米粉生产质量;

四是上层辅助加热管道分布不合理,容易使散落米粉焦化,影响产品质量。

1.2 分析

针对上述现状,对当前连续式米粉生化处理恒温恒湿控制系统具体分析如下,其改进前生化处理恒温恒湿控制系统如图1所示。

图1 改造前生化处理恒温恒湿控制系统

(1)蒸汽加热加湿装置虽然装有传感器与控制器,但是形同虚设,在生产过程中没有一点作用;

(2)蒸汽辅助加热装置完全靠工人凭经验手工调节,难以满足生产要求;

(3)蒸汽加热加湿喷汽管的设置位置与方式有问题,容易造成箱体中部温度偏高、两头温度偏低;

(4)中层蒸汽辅助加热装置的设置有问题,容易使散落米粉产生焦化,影响产品质量;第五问题温度指示仪表的设置位置欠佳,工人观察、操作不方便。

2 基于PLC的恒温恒湿系统的设计

2.1方案设计

基于PLC的米粉生化处理恒温恒湿控制系统如图2,其包括四个部分。

图2 改造后生化处理恒温恒湿控制系统

第一连续式米粉生化处理恒温恒湿控制系统的箱体,生产传动装置基本按照图1不变,在米粉出口位置留出安置自动控制屏的地方;

第二连续式米粉生化处理恒温恒湿控制系统的加热方式采用PLC可控蒸汽管道加热,竖直设置加热管道,避免焦化生产过程中的溅落米粉,合理分布加热管道,减少中心与周边位置的温差,通过低速强制对流减小温差,提高箱内温度的分布均匀度;

第三连续式米粉生化处理恒温恒湿控制系统的加湿方式采用PLC可控顶部侧喷与两侧分层PLC可控平喷水汽(65℃),增加控制路径,使加湿均匀,提高保湿精度,满足保湿要求;

第四连续式米粉生化处理恒温恒湿控制系统自动控制屏与整个温湿度控制

系统成为一个整体,温度与湿度采用LED数字显示、PLC控制,抗干扰强、稳定性好,能够确保控制精度,便于控制、管理、调试与观测。

2.2 硬件实现

图2所示连续式米粉生化处理恒温恒湿控制系统加热管道分布合理,能够减少中心与周边位置的温差;竖直设置加热管道,可以避免焦化生产过程中的溅落米粉;加热管道分布在箱体正面与反面,分别受温度传感器、高温电磁阀组成的PLC闭环系统控制,正面加热管道受温度传感器7、9与高温电磁阀D控制,反面加热管道受温度传感器8、10与高温电磁阀E控制;正、反两面加热管道均可在箱体底部增加1—2根加热管,提高箱体温度;借助加湿系统的喷水汽力量,可以形成低速强制对流,减小箱体内各部位的温差,提高箱内温度的分布均匀度。

连续式生化处理恒温恒湿控制系统的加湿方式采用PLC可控顶部侧喷与正、反两面分层PLC平喷水汽(65℃),增加控制路径,使加湿均匀,提高保湿精度,满足保湿要求;正、反两面分层PLC可控直喷管各三根,各喷管分别受湿度传感

器、高温电磁阀组成的PLC闭环系统控制;左边喷管受湿度传感器1、2与高温电磁阀A控制,右边喷管受湿度传感器3、4与高温电磁阀B控制,中间喷管与顶部喷管同受湿度传感器5、6与高温电磁阀C控制;直喷管的喷口方向不仅要满足分层平喷水汽的要求,而且要求形成低速强制对流,提高箱内温度与湿度的分布均匀度;

加湿方式使用的65℃水汽,由专用装置产生,装置图如图3所示。

图3 65℃水汽产生装置图

图3中的高温电磁阀和辅助加热器,主要受湿度传感器7与温度传感器8组成的PLC闭环系统控制,考虑传输损耗,传感器的设置可以稍高一点,离心式风机及其循环管道,不仅可以保证喷汽的要求,而且能够对蒸汽重复利用、节省能源。

连续式生化处理恒温恒湿控制系统的自动控制屏与整个温湿度控制系统成为一个整体,温度与湿度采用LED数字显示、PLC控制,抗干扰强、稳定性好,能够确保控制精度,便于控制、管理、调试与观测。

生化处理的恒温恒湿控制系统设计

2007年第11期(总第108期)

宋奇光,伍宗富,梅彬运(湖南文理学院,湖南常德415000 )

【摘要】以PLC为控制器,结合温度传感变送器、LED显示器等,

组成一个生化处理的恒温恒湿控制系统。使用温度传感变送器获得温度的感应

电压,经处理后送给PLC。PLC将给定的温度与测量温度的相比较,得出偏差

量,然后根据模糊控制算法得出控制量。执行器由开关频率较高的固态继电器

开关担任,采用PWM控制方法,改变同一个周期中电子开关的闭合时间。从

而调节高温电磁阀开关的导通时间,达到蒸汽控制目的。

【关键词】生化处理;PLC;恒温恒湿

引言

生化处理系统是食品工艺的关键设备。在此以米粉生产工艺中的生化处理系统的蒸汽温湿度控制进行实用设计,其温度控制在0~100℃,误差为±0.5℃,可用键盘输入设置温度及LED实时显示系统温度,采用模糊算法进行恒温控制,将数字处理控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重的滞后现象,可以很大程度的提高控制效果和控制精度[1]。

1米粉生化处理的恒温恒湿系统现状与分析

1.1 现状

由于国内米粉生产设备厂家尚未掌握米粉的关键技术,使其制造的设备无法满足米粉生产的工艺要求。我们经过现场堪察,发现原有的连续式米粉生化处理恒温恒湿控制系统具有如下现状。

一是连续式米粉生化处理恒温恒湿箱的控制基本上是手动调节;

二是箱内各部位温度分布不均匀,实际温度波动太大(40-70℃),远远达不到生产要求(62.5℃±2.5℃),影响米粉的抗老化效果;

三是实际湿度也达不到生产要求,容易出现湿度偏高(米粉发泡)或者偏低(米粉起壳)的现象,严重影响米粉生产质量;

四是上层辅助加热管道分布不合理,容易使散落米粉焦化,影响产品质量。

1.2 分析

针对上述现状,对当前连续式米粉生化处理恒温恒湿控制系统具体分析如下,其改进

前生化处理恒温恒湿控制系统如图1所示。

图1 改造前生化处理恒温恒湿控制系统

(1)蒸汽加热加湿装置虽然装有传感器与控制器,但是形同虚设,在生产过程中没有一点作用;

(2)蒸汽辅助加热装置完全靠工人凭经验手工调节,难以满足生产要求;

(3)蒸汽加热加湿喷汽管的设置位置与方式有问题,容易造成箱体中部温度偏高、两头温度偏低;

(4)中层蒸汽辅助加热装置的设置有问题,容易使散落米粉产生焦化,影响产品质量;第五问题温度指示仪表的设置位置欠佳,工人观察、操作不方便。

2 基于PLC的恒温恒湿系统的设计

2.1方案设计

基于PLC的米粉生化处理恒温恒湿控制系统如图2,其包括四个部分。

图2 改造后生化处理恒温恒湿控制系统

第一连续式米粉生化处理恒温恒湿控制系统的箱体,生产传动装置基本按照图1不变,在米粉出口位置留出安置自动控制屏的地方;

第二连续式米粉生化处理恒温恒湿控制系统的加热方式采用PLC可控蒸汽管道加热,竖直设置加热管道,避免焦化生产过程中的溅落米粉,合理分布加热管道,减少中心与周边位置的温差,通过低速强制对流减小温差,提高箱内温度的分布均匀度;

第三连续式米粉生化处理恒温恒湿控制系统的加湿方式采用PLC可控顶部侧喷与两侧分层PLC可控平喷水汽(65℃),增加控制路径,使加湿均匀,提高保湿精度,满足保湿要求;

第四连续式米粉生化处理恒温恒湿控制系统自动控制屏与整个温湿度控制系统成为一个整体,温度与湿度采用LED数字显示、PLC控制,抗干扰强、稳定性好,能够确保控制精度,便于控制、管理、调试与观测。

2.2 硬件实现

图2所示连续式米粉生化处理恒温恒湿控制系统加热管道分布合理,能够减少中心与周边位置的温差;竖直设置加热管道,可以避免焦化生产过程中的溅落米粉;加热管道分布在箱体正面与反面,分别受温度传感器、高温电磁阀组成的PLC闭环系统控制,正面加热管道受温度传感器7、9与高温电磁阀D 控制,反面加热管道受温度传感器8、10与高温电磁阀E控制;正、反两面加热管道均可在箱体底部增加1—2根加热管,提高箱体温度;借助加湿系统的喷水汽力量,可以形成低速强制对流,减小箱体内各部位的温差,提高箱内温度的分布均匀度。

连续式生化处理恒温恒湿控制系统的加湿方式采用PLC可控顶部侧喷与正、反两面分层PLC平喷水汽(65℃),增加控制路径,使加湿均匀,提高保

湿精度,满足保湿要求;正、反两面分层PLC可控直喷管各三根,各喷管分别受湿度传感器、高温电磁阀组成的PLC闭环系统控制;左边喷管受湿度传感器1、2与高温电磁阀A控制,右边喷管受湿度传感器3、4与高温电磁阀B控制,中间喷管与顶部喷管同受湿度传感器5、6与高温电磁阀C控制;直喷管的喷口方向不仅要满足分层平喷水汽的要求,而且要求形成低速强制对流,提高箱内温度与湿度的分布均匀度;

加湿方式使用的65℃水汽,由专用装置产生,装置图如图3所示。

图3 65℃水汽产生装置图

图3中的高温电磁阀和辅助加热器,主要受湿度传感器7与温度传感器8组成的PLC闭环系统控制,考虑传输损耗,传感器的设置可以稍高一点,离心式风机及其循环管道,不仅可以保证喷汽的要求,而且能够对蒸汽重复利用、节省能源。

连续式生化处理恒温恒湿控制系统的自动控制屏与整个温湿度控制系统

成为一个整体,温度与湿度采用LED数字显示、PLC控制,抗干扰强、稳定性好,能够确保控制精度,便于控制、管理、调试与观测。

恒温恒湿机组的选型和设计方法

恒温恒湿机组的选型和设计方法 恒温恒湿机组特点: 1.制冷量一般在10HP-200HP之间; 2.配置了电加热和电极式加湿,加热量一般富裕量较大,空调机配置加湿量均偏小,需要重新计算,一般需要加大一个型号或多配置一台; 3.有额定的风量要求; 4. 有额定的冷却水量要求; 5.冷凝器的阻力一般在0.82-3.45mH2O; 6.空调机组尺寸较小; 7.温控范围:18~25,灵敏度:±1;湿控范围:50~70,灵敏度:±5; 8.机外静压一般在100~550之间; 9.设计条件:进风干球温度23℃,湿球温度17℃;冷却水进水温度30℃,出水温度35℃;一般适用在有温湿度控制或整个设计面积不大的情况下。如果该工程面积较大,系统划分较多,空调机房位置相对分散,管理和系统的控制就会带不便,也不利于能量统一分配,能源浪费较严重。在这种情况下,一般面积在大于2000m2,建议采用冷水机组+组合式空气处理机组的设计形式。 恒温恒湿机组的用途分为两块: 1.恒温恒湿车间,但无净化要求; 2.既有恒温恒湿要求,又需要净化等级控制; 房间的情况:1.房间内显热较大;2. 房间内显热较小; 针对以上两点进行分析: 1.从负荷方面考虑: 系统的送风量是与房间内的显热和送风温差决定的,而不是根据系统总制冷量(房间的显热和潜热)计算得出的。恒温恒湿机组制冷量一般显热占50%,潜热占50%,相当于新风占整个送风量的20%左右。当房间内显热较大,而新风量不大时,计算的送风量较大,就不能根据总制冷量选择恒温恒湿机组标定的制冷量来确定。 2.从机外余压考虑: 恒温恒湿,但无净化要求系统对空调机组的机外余压要求不高,主要克服送回风管道、阀门、散流器、初效过滤器等,常规的机组即可满足要求; 既有恒温恒湿要求,又需要净化等级控制的系统对空调机组的机外余压要求较高,一般系统总阻力在1100Pa~1400Pa之间,主要克服送回风管道、阀门、散流器、初效过滤器(初阻力50Pa,终阻力100Pa)、中效过滤器(初阻力150Pa,终阻力300Pa)、高效过滤器(初阻力250Pa,终阻力500Pa)等,常规的机组就无法满足要求。如系统需要设置二次回风,洁净式恒温恒湿机组就无法选用;一次回风的情况,恒温恒湿机组+加压箱的设计形式,由于在选择加压风机的型号时无法与恒温恒湿机组内的风机很难匹配,不同型号、不同功率的风机在串联或并联时总风量不是简单的相加,计算相对较复杂;建议在一般设计过程中尽量设计为单风机系统。

杭州微智兆恒温恒湿称量系统厂家_杭州微智兆恒温恒湿称量系统技术参数

杭州微智兆恒温恒湿称量系统厂家_杭州微智兆恒温恒湿称量系统技术参数 踏入新时代,新时代是大数据影响大时代~杭州微智兆恒温恒湿称量系统厂家研制出了杭州微智兆恒温恒湿称量系统大大帮助的我们对环境的大数据的大统计,今天我们来了解一下杭州微智兆恒温恒湿称量系统技术参数以及杭州微智兆恒温恒湿称量系统主要特点~下面我们一起来看一下杭州微智兆恒温恒湿称量系统大数据吧~ 【杭州微智兆恒温恒湿称 量系统产品概述】 杭州微智兆恒温恒湿称量 系统技术是为满足环保部 新国标HJ836-2017《固定 污染源低浓度度的测定重 量法》中关于采样后称量条 件的要求,在恒温恒湿环境 内放置高精度天平,将要称量的样品放入恒温恒湿箱体内平衡24小时后再进行称量。杭州微智兆恒温恒湿称量系统技术解决了实验室环境温度湿度的变化对样品称重结果的影响,杭州微智兆恒温恒湿称量系统技术极大的提高了称量样品结果的准确性,杭州微智兆恒温恒湿称量系统技术也用于其它对称量环境要求较高的样品称量。 【杭州微智兆恒温恒湿称量系统主要特点】

杭州微智兆恒温恒湿称量系统技术u温湿度控制精度高,满足国标HJ836杭州-2017和HJ656-2013要求,温度波动度±0.2℃,湿度波动度优于±2.0RH。采用瑞士rotronic(罗卓尼克)产温湿度变送器,仪器的温度偏差±0.4℃,湿度偏差± 1.5RH。 u系统稳定过程短,过滤过程30分钟以下。 稳定后随时可进行称重测试,无需像某些产 品那样等待压缩机停机后才可称重。 u人机界面采用4寸彩色触摸屏美观耐用, 如实显示温湿度数值(决不造假!)并可通 过温湿度曲线分别查看温湿度波动曲线,通 过表格记录查看温湿度历史数据。 u恒温恒湿箱体采用合理循环风方式,风力 柔和、风向合理,既保证箱体内温湿度均匀,又不因风力太强而干扰天平的称重。温度均匀性±0.4℃(即0.8℃),湿度均匀性±1.5RH(即3.0RH)。 u压缩机组和箱体采用整体运输/分体运行式结构,既便利运输和安装,又有效避免压缩机震动对称重天平的影响,克服防震静音的难题。本仪器比分体式节省1/3占地面积。 u压缩机采用间歇制冷方式,比连续制冷节电85。

恒温恒湿系统控制

——您身边的实验室工程专家 恒温恒湿系统控制 南京拓展科技有限公司是专业从事恒温恒湿、生物安全、理化检测等实验室整体规划设计、安装和运行保障为一体的高科技服务型企业,是实验室综合解决方案的提供者。 建设要求: 1、恒温恒湿室技术要求 a) 符合ISO、GB标准。 b) 根据甲方要求恒温恒湿实验室设置精度 c) 风速0.25m/s。 2、建筑要求 a) 建筑物周围无强磁场、震动、热源、异味、污染等。 b) 建筑物层高应在3.0m以上(梁下净空高度)。 3、恒温室建设要求 a) 送风方式为孔板式,上送风,下回风。 b) 室内净空高度为2.35-2.70m。 c) 无窗,减少门的数量。 d) 新建实验室的恒温室内不设上下水、供暖管线设施。改建实验室的恒温室内上下水、供暖管线设施应按规范作隔热防潮处理。 4、空调机房建设要求 a) 应建在有外墙的位置。 b) 独立供电系统和接地系统。 c) 设有上下水,下水作防异味处理。 5、保温墙面要求 λ=0.021~0.12Kcal/m·H·℃(λ=0.0244~0.1395w/m·k)范围内,吸水率不大于10%,热绝缘性能优,耐水性能好,难燃,绿色环保、尺寸稳定性能好的材料. 6、保温材料导热系数λ=0.0267~0.0289w/m·k,满足要求。

——您身边的实验室工程专家恒温恒湿空调系统的任务,是将室内的温湿度及洁净度控制在一定的波动范围内,以满足工业生产、科学研究等特殊场合对室内环境的要求。近年来,随着我国生产力的发展和科技水平的不断提高,恒温恒湿空调系统的应用场合越来越多,温湿度要求也不断提高。在电子、医药、计量、纺织、光学仪器和农业育种等领域,恒温恒湿空调系统的精度和可靠性直接关系着产品的品质以及实验结果的准确性。在系统的冷热源配置、空气热湿处理、气流组织和系统控制等方面均与舒适性空调系统存在较大差异。结合近年来典型工程实践,讨论恒温恒湿系统设计中需要注意的若干问题。 1. 室内环境参数的确定 恒温恒湿间室内环境参数的确定取决于产品、实验对像或实验设备的要求。不同的精度和可靠性等要求,往往使恒温恒湿系统的复杂性大不相同,也极大地关系到系统的初投资和运行费用。肓目地提高精度要求,往往会导致初投资和运行费用成倍增加;相反,如果精度要求过低,将可能直接导致生产、实验活动的失败。因此,在系统设计之前,需要暖通专业人员与使用方根据生产和实验对像的要求,准确地提出室内环境的要求。 主要包括: 1)控制区域。在某些生产、实验过程中,需要对整个房间的温湿度进行控制。但更多的情况是只须对特定的生产、实验区域进行严格控制。 2)基准温湿度。很多生产、实验要求基准温湿度为固定不变的值,例如很多计量实验要求的基准温度为22 ℃,一些纺织类的生产、实验要求基准相对湿度为65%。还有一些特殊的实验过程和气候室,要求室内的基准温湿度可以根据实验要求在较大范围内进行调整,此时需要确认其变化范围和变化时间。 3)温湿度精度。温湿度精度一般包括2方面的要求,即单一控制点的时间变化率和均匀度。在参数确认阶段,必须明确精度要求的涵义。均匀度要求一般针对温度精度,可以用垂直方向和水平方向的温度梯度要求的方式提出。 4)新风要求。新风要求一般根据室内工作人员数量提出。新风对室内环境扰动极大,因此新风量的确定应该尽可能合理、准确。由于一般恒温恒湿环境所需要的换气次数较多,因此不能采用最小新风比的方法确定。 5)可靠性要求。某些实验周期较长或重要的场合,对恒温恒湿环境的可靠性有明确要求,如要求系统可连续不间断运行若干时间。此时需要在设备的备用方面加以考虑。

新风恒温恒湿机系统设计选型方案

新风恒温恒湿机系统设计 选型方案 Prepared on 24 November 2020

风冷冷水主机匹配恒温恒湿处理机组功能的具体描述 1、制冷原理 采用通过风冷冷水机组制造低温冷冻水,低温冷冻水提供冷源给恒温恒恒湿机组,将室内热量移出室外,使室内温度得以降低. 2、加热原理 当被调节空气的温度底于所需温度时,恒温恒湿机电脑控制器就接通电加热器,将空气加热,通过风机送至被调房间达到加热的目的. 3、除湿原理 当被调节空气中的温度大于所需值时,空气经过蒸发器被冷却到露点温度以下,析出空气中的水分,而达到降温除湿的目的. 4、加湿原理 当被调节空气的相对湿度低于所需值时,恒温恒湿机电脑控制器使电极式加湿器工作,将水加热沸腾为蒸汽,通过风机送入空调房间,达到加湿目的. 5、控制原理 整机通过PLC整体控制,内置高精度温湿度探头(E+E);通过PID自稳定调节温度再热量与加湿量;以实现最大精度 设计条件 1、工程概况 该工程为上海市上海汽车集团喷塑实验室新风处理项目,根据场所新风工艺要求,要求新风量为7000 m3/h,干球温度为20-30℃,相对湿度为60%-80%。 2、设计采用的气象数据

此使用场所采用新风为大自然空气,根据使用方提供数据,采用夏季空调设计工况为:tw=35℃,tsw=℃。冬季设计工况:tw=0℃,相对湿度50%。 负荷及全空气系统中制冷设备提供的冷量 1、夏季负荷计算: 根据使用要求风量为7000/h,取大车间内3000/h,干球温度25℃,相对湿度60%,室外新风风量4000/h,干球温度35℃,湿球温度℃,混合之后状态为干球温度31℃,相对湿度62%。 所需制冷量为66KW。温度降到17℃,相对湿度95%时,采用12KW的电加热升温 2、冬季供热负荷 根据使用要求风量为7000/h,取大车间内3000/h,干球温度25℃,相对湿度60%,室外新风风量4000/h,干球温度1℃,相对湿度50%,混合之后状态为干球温度10℃,相对湿度77%。 从干球温度10℃,相对湿度77%,含湿量不变温度升到22℃,所需电加热为30KW。 然后用电极式加湿桶等温加湿到相对湿度65%,所需加湿量为40kg 最终方案确定 A 夏季:室外新风4000与室内新风3000混合后,进入除湿机组,使用 66KW的制冷量降温除湿后,采用电加热升温,降低相对湿度。 B 冬季:室外新风4000与室内新风3000混合后,进入除湿机组,使用 30KW的电加热等湿升温后,再用40kg的电极式加湿桶等温加湿到所需相对湿度范围。

恒温恒湿空调-要点

2.3.1恒温恒湿控制系统 一、恒温恒湿空调特点及结构 精密空调又称恒温恒湿空调机,具有制冷、除湿、加热、加湿等功能,可以提供一种人工气候,使室内温度、相对湿度恒定在一定范围内。一般的精密空调可使环境温度保持在20~25℃,最大偏差为±1℃;相对湿度为50%~60%,最大偏差为10%,是一种比较完善的空调设备,其温湿度的控制范围根据现场的使用要求确定。 制冷回路包括压缩机和一个用来使流向蒸发器的制冷剂保持一定过热度的外置平衡式热力膨胀阀,室外的冷凝器采用风冷。出厂时在每个制冷回路中充装了干氮气。业主要负责把机组和室外冷凝器连接起来并充装制冷剂。 气流选择:是指空调工作时进行空气循环的方式,一般有独立上送风、独立下送风、上下同时送风三种送风方式。上送风采用管道从机房的天花板从上至下送风,适合快速降低机房温度和加湿;下送风是从机房的地板处和墙角处从下至上送风,适合快速升高机房温度和除湿。 二、施工技术 2.1 准备工作 2.1.1 运行极限:机组被设计成在工作范围(每台机组都明确标明)内运行。超过这个极限会导致压缩机卡死,重设至正常状态只能通过手动。冷凝器安装在室内机组的下方。如果冷凝器安装在机组6米之上,每隔6米要安装一个捕油器。 2.1.2 定位 空调机分为室内机与室外机,室外机定位主要考虑间隙空间和维修距离。室内机安装主要考虑空气出入口位置及对气流组织的影响;先根据房间的大小形状和机房内设备机组的位置,然后确定精密空调机组和地板风口的位置。 2.1.3 安装 1、支架的制作和固定:首先检查确认地面平整,隔振钢支吊架结构形式和外形尺寸应符合设计或设备技术文件你的规定:焊接应牢固,焊缝应饱满、均匀。 2、风帽制作安装:根据机组支架及机组的出风口位置,确定风帽的尺寸、形式,制作要结构牢靠。 3、机组就位:支架固定及风帽制作安装保温后,进行机组就位。 4、制冷剂管道连接: 空调机组要用氦气充压至3bar。室内机组要用氦气吹洗(3bar),连接完系统抽空后马上对底座和连接部分去焊。然后安装铜管。 1)安装铜管要尽可能短来减少制冷剂充注量和压差,布置水平气管时在制冷剂流向要有1%的向下坡度。 2)减少弯头的数量,弯头的直径要大。

高低温交变湿热试验箱的常见问题解答以及技术参考

在高低温试验箱进行试验时,对流通散热在散热试验样品热交换中占有极重要的部分,热量从试验样品表面传递到周围空气中去的传热系数,受周围空气速度的影响,空气速度越高则热交换的效率也越高,这就是行业内常说的换热(现高低温试验箱的标准空气流速均为 3.7M/S),如果试验样品的热量过大则应相应增加风机功率,以达箱内精度平衡,同样,在温度相同时,空气速率越高,试验样品表面温度就越低。 气流除影响任一上试验样品的表面温度外,还影响试验样品表面上的高低温试验箱温度公布,对不同的气流速度和气流方向来说,在试验样品表面温度及温度分布之间不存在任何简单关系,同样明显的是如果要使试验符合实际条件,试验时就要对试验箱的某一特定的气流速度和气流方向,这将涉及到试验箱设计方面的许多问题,为了便于把试验结果果与实际的条件比较,有必要一

个清晰的、能重现的试验条件,这就导致“空气条件”的使用(注:“空气条件”使用无限空间内的空气条件,此时,在该空间内空气运动仅受散热试验样品本身的影响,由试验样品辐射的能量在该空间内吸收,因此,试图在试验箱中重现空气条件的试验是不切实际的,上海林频仪器股份有限公司提醒广大用户不要采用此类试验方法)。 采用空气条件,通常并不导致使用价格高昂或者不切实际的大型试验室,既然空气条件有某些技术上的优点,而且比的空气条件易于做到,所以用作散热试验样品进行低温和高温试验时的优选方法,在有些情况下,采用无空气循环方法进行试验可能产生一些困难,因而在允许采用低速空气进行空气循环的场合给出了两种供选用的方法:高低温交变湿热试验箱 1、适用于试验箱的尺寸大得足以满足试验要求,但试验箱的升温或降温需要采用空气循环的试验。 2、适用于试验箱较小不能满足试验要求,或由于别的原因不能使用第一种方法的

恒温恒湿控制系统设计

生化处理的恒温恒湿控制系统设计 2007年第11期(总第108期) 宋奇光,伍宗富,梅彬运(湖南文理学院,湖南常德415000 ) 【摘要】以PLC为控制器,结合温度传感变送器、LED显示器等,组成 一个生化处理的恒温恒湿控制系统。使用温度传感变送器获得温度的感应电压, 经处理后送给PLC。PLC将给定的温度与测量温度的相比较,得出偏差量,然后 根据模糊控制算法得出控制量。执行器由开关频率较高的固态继电器开关担任, 采用PWM控制方法,改变同一个周期中电子开关的闭合时间。从而调节高温电 磁阀开关的导通时间,达到蒸汽控制目的。 【关键词】生化处理;PLC;恒温恒湿 引言 生化处理系统是食品工艺的关键设备。在此以米粉生产工艺中的生化处理系统的蒸汽温湿度控制进行实用设计,其温度控制在0~100℃,误差为±0.5℃,可用键盘输入设置温度及LED实时显示系统温度,采用模糊算法进行恒温控制,将数字处理控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重的滞后现象,可以很大程度的提高控制效果和控制精度[1]。 1米粉生化处理的恒温恒湿系统现状与分析 1.1 现状 由于国内米粉生产设备厂家尚未掌握米粉的关键技术,使其制造的设备无法满足米粉生产的工艺要求。我们经过现场堪察,发现原有的连续式米粉生化处理恒温恒湿控制系统具有如下现状。 一是连续式米粉生化处理恒温恒湿箱的控制基本上是手动调节; 二是箱内各部位温度分布不均匀,实际温度波动太大(40-70℃),远远达不到生产要求(62.5℃±2.5℃),影响米粉的抗老化效果; 三是实际湿度也达不到生产要求,容易出现湿度偏高(米粉发泡)或者偏低(米粉起壳)的现象,严重影响米粉生产质量; 四是上层辅助加热管道分布不合理,容易使散落米粉焦化,影响产品质量。

恒温恒湿称重系统产品特性_恒温恒湿称重系统数据参数

恒温恒湿称重系统产品特性_恒温恒湿称重系统数据参数 近期小编收到很多网友的投稿说想了解恒温恒湿称重系统产品特性以及恒温恒湿称重系统数据参数,小编听完很懵逼。在小编的以往生活完全不了解恒温恒湿称重系统,小编咨询了恒温恒湿称重系统生产厂家润通科技,润通科技的工作人员告诉小编恒温恒湿称重系统是适用于第三方检测单位的一个设备系统,那么关于恒温恒湿称重系统产品特性润通科技的工作人员也是给小编进行了详细的讲解那么大家一起随小编看一下恒温恒湿称重系统以及恒温恒湿称重系统数据参数吧~ 【恒温恒湿称重系统产品特 性】 *国产化恒温恒湿称重系统适 用于手动称量低浓度采样头、 采样滤膜 *恒温恒湿称重系统每个处理 对象均有独立储存位,可充分 暴露于恒温恒湿环境中 *工作舱可完全密封,保证系统与外界微尘有效隔离 *工作舱顶部安装风机过滤系统(FFU),使洁净空气从顶部整流罩均匀送出 *具有稳定可调节的温湿度控制系统,无需额外建恒温恒湿实验室 *恒温恒湿称重系统可选配射频识别(RFID)读写功能,进行编码智能管理 *恒温恒湿称重系统可选配十万分之一电子天平,防震天平实验台加独特的系统去耦设计,确保电子天平不受微振动干扰平稳工作 【恒温恒湿称重系统生产厂家】 山东润通科技有限公司是一家致力于环境在线监测系统、数据采集传输系统、大数据云智慧平台的研发、生产、销售及技术服务为一体的高新技术企业、双软认证企业。 公司拥有多项自主知识产权与完善的体系认证,主要产品有RAIN-VI系列VOCs在线监测系统、水

质在线监测系统,R-I7000系列数据采集传输系统,润通云智慧平台。 润通人本着“更用心更专业”的服务理念,为客户提供满意的产品和服务,为员工创造良好的工作和生活环境,为社会做出贡献。为改善人类生存环境而努力奋斗! 【恒温恒湿称重系统产品描述】 国产化恒温恒湿称重系统适用于手动称量低浓度采样头、采样滤膜及3#滤筒恒温恒湿称重系统集合众多技术,恒温恒湿称重系统可对处理对象进行恒温恒湿平衡,并进行后续的手动称重,整个过程都在封闭洁净环境下完成,恒温恒湿称重系统能有效防止环境微尘的污染。同时可选配射频识别(RFID)读写功能,实现系统自动编写、识别和数据统计管理。 【恒温恒湿称重系统应用范围】 恒温恒湿称重系统适用于各省市,主要是地级 市、区和县级市、及工业园区环境检测站及第 三方检测单位 为了更好地规范环境监测工作,国家于2017 年12月29日正式发布HJ836-2017《固定 污染源废气低浓度颗粒物的测定重量法》, 并于2018年3月1日起实施。为宣贯超低排

组合式空调恒温恒湿的自动控制

组合式空调恒温恒湿的自动控制 【关健词】组合式空调恒温恒湿除湿 【摘要】如何符合特殊的生产线温湿度的使用要求,是空调系统及其控制系统设计的难题。组合式空调的自控系统较好地解决了这难题,它采用了除湿优先的控制方法,利用最小能量能使该系统达到恒温恒湿控制精度。 我国为了更加快速与国际形势市场接轨,在原加入WTO的基础上,历经金融风暴后,大多数医疗手术室、电子、烟草、化工、制药、食品、民用建筑、商场、工业厂房及印刷等洁净空间,都感觉到无形的压力。这样强迫他们不断地更新设备、更新工业、更新观念,不断提高产品档次,提高产品质量。特别是国内的喷涂生产线,他们从国外引入先进的机器人喷涂生产线替代即将淘汰残旧的设备。这种机器人喷涂生产线对环境要求很高,温湿度不稳均会影响产品的外观及喷涂率,甚至导致涂料成本增加、喷涂不匀等质量问题。面对这烦恼的问题,恰好遇到了组合式空调,它完全可以满足工艺要求。按国家相关标准要求,室内温度要求±1℃,相对湿度要求±5%。如何符合特殊的生产线温湿度的使用要求,成为了空调系统及其控制系统设计的难题。组合式空调的自控系统较好地解决了这难题,它典型结构如图1所示。 图1 组合式空调结构示意图 根据喷涂生产线对空气的质量精度要求不同、南北方气候差异,选配较合理功能段的组合式空调对空气进行混合、加热、冷却、加湿、除湿、过滤等处理也相当重要,满足车间温湿

度时积极提倡节能回收。除湿是恒温恒湿系统空气处理过程中必不可少的环节,在空调系统中常采用冷冻除湿技术。因为制冷系统既要控制温度又要控制湿度,而被控制室内的温湿度也是密切关联,所以较难符合被控制生产线所要求达到理想的温湿度精度。空气成分的温湿度是密切关联,如:温度精度≤±1℃与湿度精度≤±1%相比,湿度较难控制。因此±1%湿度所对应的温度精度≤±1℃。假设在12℃结露点上空气的含水率保持恒定,但空气温度在1.0℃之间变化,那么相对湿度就在47%和53%之间波动,0.2℃的空气温度变化将引起大于0.5%的相对湿度的变化。这一点可查空气H-D图(焓湿图)可以得到证明。组合式空调系统中表冷器有降温和除湿双重功能,致它接受两个控制量的控制,至于它在某一时刻接收那个信号控制,需要看哪个参数先满足要求而定。对于室内有散湿负荷,特别是湿负荷变化大的对象(生产线),无疑是十分合适的,因为它不是控制固定露点温度来确保室内相对湿度。虽然有人称它为无露点控制方式,但是这并不意味着经表冷器处理后的空气不必再处理到相应的露点温度。要除湿从原理上说,必须把空气处理到相应的露点.这样的控制方式把它称为不定露点温度控制。这样经此处理的冷气进入房间后,除非室内有大量显热负荷,在大多数情况下,都会导致室内过冷,相对湿度显得过高。实际运行过程中控制器选择的控制信号多半是来自湿度控制器的信号,于是避免冷热抵消,该系统将在消耗最低能量下运行。组合式空调是针对室外空气的经过过滤处理后用风机以一定的风量送往室内,来调节室内的空气。F6、F9袋式及G4板式的过滤器作用是除去空气中的细菌来提高空气洁净度;调节冰水比例阀控制表冷器冰水流量对空气进行制冷和除湿;调节加湿比例阀控制干蒸汽加湿器过热蒸汽流量对空气进行加湿处理;调节加热比例阀控制加热盘管过热蒸汽流量进行加热处理。自控系统采用西门子CPU226CN为控制核心的PLC,由温湿变送器采集0-10V的温湿度信号送到A/D模EM235,通过PLC的PID运算,输出D/A模块EM232由信号0-10V调节控制比例阀的运行控制温湿度;风量变送器采集0-10V的风量信号经过变换和计算,输出控制变频器的运行控制风量。所有控制状态和有关数据可以在触摸(HMI)监控显示。控制系统构成如图2所示,I/O接线示意图如图3所示,触摸屏(HMI)监控图如图4所示。

恒温恒湿实验室设计建设方案

恒温恒湿实验室设计建设方案 恒温恒湿实验室组成: 实验室空调是温湿度控制的心脏,要求精度高,故障率低。所以必须要求空调能调节制冷量,目前市面上有两种方式:变频调节和冷冻水调节方式。 1、变频调节:实际上就是通过改变供电性质而改变压缩机的功率,让压缩机实现低负荷工作或者过负荷工作,同时调节制冷系统的节流量,所以必须添加非常多的繁琐的环节,而且各环节必须完美匹配,否则出现故障。 2、冷冻水调节:采用7℃左右的冷水作为冷源,通过电动阀开大或者关小来控制水流量,从而轻易控制制冷量,而电动阀结构象家用水龙头一样简单,所以故障率几乎为零。但其控是效果不高,每次调整后在一定的时间段内只能达到±5%RH。 3、通风装置:通风方式经历过好几个历史阶,从最初的底出风,到上自然送风,到上散流器送风,到现在最先进的上风管加微孔天花送风,下地板回风方式,整个实验室送风柔和、均匀,温湿度控制非常稳定。 4、进风装置:进风系统的第一作用是为工作人员提供生理新鲜空气,其对实验室温湿度的稳妥定性也功不可没,也是必不可少的设备:为了让实验室不受外界的干扰,必须向实验室提供新风,以保持实验室气压为正,这样外界的空气进入不了实验室,确保实验室长年温湿度稳妥定。 恒温恒湿机选型和设计: 恒温恒湿机组特点: 1.制冷量一般在10HP-200HP之间; 2.配置了电加热和电极式加湿,加热量一般富裕量较大,空调机配置加湿量均偏小,需要重新计算,一般需要加大一个型号或多配置一台; 3.有额定的风量要求; 4. 有额定的冷却水量要求; 5.冷凝器的阻力一般在0.82-3.45mH2O; 6.空调机组尺寸较小; 7.温控范围:18~25,灵敏度:±1;湿控范围:50~70,灵敏度:±5; 8.机外静压一般在100~550之间;

第一包便携式总烃甲烷非甲烷总烃分析仪等

第一包:便携式总烃/甲烷/非甲烷总烃分析仪等 设备一、便携式总烃/甲烷/非甲烷总烃分析仪 1.配置要求: 1.1便携式总烃检测仪主机,包括:(金属氢化物常压储氢瓶,内置式零气气瓶,内置式标气气瓶,电源适配器,内置电池,专用充气套件,随机资料U 盘,专用设备箱)。 1.2甲烷高温催化基座,包括:(电源线,电源传输线,信号传输线,气路连接线,专用设备箱)。 1.3全加热采样系统,包括:(1000mm采样探针,内置过滤,3000mm加热采样管线,专用收集包)。 1.4 12瓶气源套装,可自定义气源种类。 1.5无线显示终端、便携式无线蓝牙打印机。 2.技术参数: 2.1检出限:0.1mg/Nm3;线性范围:±2% F.S.;重复性:±2% F.S.;零点漂移:±1% F.S./24h。 符合国家标准《HJ/38-2017固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱法》中要求的FID原理方法,检测原理和甲烷分离方式均采用符合中国环境监测总站制定的《HJ1012-2018环境空气和废气便携式总烃、甲烷和非甲烷总烃监测仪技术要求及检测方法》的FID原理和高温催化原理,符合北京市地方标准《DB11/T 1367-2016 固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢离子火焰离子化检测器法》的全部要求。 *2.2氢气以固态金属氢化物形式被存储,存储压力为常压,可由汽车和飞机运输。每次充满可使用不小于25小时,可重复灌充不少于2500次。 2.3 分析用的氢气、零气、标气集成于主机中。 2.4 主机内置电池,交直流两用,能满足现场连续监测需求。 2.5 定量环进样,流量精确控制。 2.6 完全加热型FID,检测器最高温度200℃。最高至200℃一体化加热管路,气路采用聚四氟乙烯材质。所有与样品接触部分,全程加热至200℃以上,防止样品冷凝而产生的损失。

恒温恒湿实验室设计方案

恒温恒湿实验室就是采用智能化的控制模式,实现对机组制冷、除湿、加热、加湿等功能,从而达到对室内环境温、湿度的精确控制。主要应用于纺织品检测系统、纸张检测、计量标定、涂料检测、包装检测、精密加工、三坐标检测、科研机构等。 一、恒温恒湿实验室构成 1、实验室装修:要求严格的保温隔湿性能,建议实验室四个立面采用彩钢复合板(为了满足防火要求,一般采用岩棉彩钢板。但是岩棉保温性能差,最好是在岩棉彩钢板外侧再加封一层酚醛铝箔保温板,增加外墙保温性能,能够有效的节能减耗),为了保证密闭性,顶面应采用彩钢板密封,在顶面再加封酚醛铝箔板保温,地面则采用酚醛保温板进行保温隔湿处理;对于透视窗,要求采用双层中空玻璃窗。 2、实验室空调:实验室空调是温湿度控制的心脏,要求精度高,故障率低。所以必须要求空调能调节制冷量,目前有两种方式:一种是变频调节,另一种是冷冻水调节方式。 变频调节:实际上就是通过改变供电性质而改变压缩机的功率,让压缩机实现低负荷工作或者过负荷工作,同时调节制冷系统的节流量,所以必须添加非常多的繁琐的环节,而且各环节必须完美匹配,否则出现故障。现实也的确如此,故障率非常高。 冷冻水型机组:采用7℃左右的冷水作为冷源,通过电动阀开大或者关小来控制水流量,从而轻易控制制冷量,而电动阀结构象家用水龙头一样简单,所以故障率几乎为零,控制效果最为稳定。通合理计算房间的热湿负荷和空气露点来匹配好风量、冷量、加热量、加湿量,在通过PLC控制各个部件的无级调控,在选择灵敏度高线性好的传感器,可以做到温度±0.5℃,湿度±2%。此种方式需要通过每个实验室的实际面积和负荷来进行计算匹配,所以没有标准成型机组,都为定制加工型。一般都用组合式空调箱组合配比来实现,所以缺点是占地面积较大,整个系统稳定性差,系统维护复杂,出现问题后修复困难。 3、通风方式 通风方式经历过好几个历史阶,从最初的底出风,到上自然送风,到上散流器送风,到现在最先进的上风管+微孔天花送风,下地板回风方式,整个实验室送风柔和、均匀,温湿度控制非常稳定。

恒温恒湿方案设计说明

恒温恒湿方案设计说明 树脂项目编制单位:编制日期:实验室恒温恒湿室建设工程设计方案说明2012-08-19 恒温恒湿间工程设计方案说明第2页,共19页目录一、工程概况:........................................................... . (3) 二、设计依据:........................................................... . (3) 三、空气参数:........................................................... . (3) 1、室外气象参数................................................................. ............................3 2、室内计算参数.................................................................

........................................................4 四、平面规划说明:........................................................... (4) 五、恒温恒湿室负荷计算及设备选型:........................................................... ................................4 1、基本气象参数................................................................. ........................................................4 2、负荷计算................................................................. (5) 3、恒温恒湿室1设置参数及计算结果............................................................... ..........................6 4、设备选型................................................................. (9) 六、空气处理过程............................................................... . (13) 七、自动化控制系统...............................................................

恒温恒湿空调计算

恒温恒湿空调负荷计算 空气工况处理过程如下: 一、已知条件 1、工程地点:上海宝山区 2、夏季室外工况:设计温度35℃,设计相对湿度75%。。 3、冬季室外工况:设计温度-0℃,相对湿度25% 4、工程概况:喷漆涂装车间 5、温湿度控制要求: 夏季供风:送风工况:27±2℃,相对湿度65%±5%。。 冬季供风:送风工况:23±2℃,相对湿度55%±5%。 6、机组形式要求:洁净式全新风恒温恒湿组合风柜。 二、全新风机组工况处理过程分析 1、夏季工况空气处理过程图见下(详细焓湿图附后——夏季工况图) 室外点P参数:t=35℃,¢=75%,h=kg,d=kg 送风点O参数:t=27℃,¢=65%,h=64kJ/kg,d=kg 冷水盘管后工况点Q参数:t=℃,d=kg,h=57kJ/kg 2、冬季工况空气处理过程图见下(详细焓湿图附后—冬季工况图) 室外点W参数:tw=-0℃,¢=25%,hw=kg,dw=kg 送风点N参数:tn=23℃,¢=55%,hn=kg,dn=kg 热盘管后工况点L参数:tl=℃,dl=kg 三、机组参数确定: 控温控湿供风机组: 此供风机组30000m3/h风量 1、机组制冷量确定: 机组冷量要求:Q=*30000*(Hp-Ho)/3600=*30000*(119-70)/3600=490KW; 2、冬季机组的加热量: 热盘管段加热量:Q热= L×ρ×Cp(Hn-Hw)/3600=30000***(0-22)/3600=231KW; 3. 冬季机组的加湿量: 加湿量D=** 30000*

控温控湿供风机组: 此供风机组45000m3/h风量 1、机组制冷量确定: 机组冷量要求:Q=*30000*(Hp-Ho)/3600=*45000*(119-70)/3600=735KW; 2、冬季机组的加热量: 热盘管段加热量:Q热= L×ρ×Cp(Hn-Hw)/3600=45000***(0-22)/3600=347KW; 3. 冬季机组的加湿量: 加湿量D=** 45000*恒温恒湿空调系统的节能优化设计 摘要:分析了目前采用恒温恒湿空调系统的设计方法,针对该类系统空气处理过程中通常采用的再热方式进行优化设计。计算结果表明,采用优化设计的空气处理方式能明显降低空调系统能耗。同时,对将高效节能的变制冷剂流量空调系统应用于恒温恒湿领域存在的问题进行了分析,并提出一种在不同分区采用不同系统的方式。 关键词:恒温恒湿空调;节能;设计; 引言 恒温恒湿空调机组在许多行业特别是工业领域中广泛应用,用来满足生产工艺所需的温湿度要求。这种空调机组常常是连续运行,能耗居高不下。随着能源形势日益紧张,“节能减排”已成为当前我国生产企业面对的首要问题,生产企业节能工作势在必行。在许多精密仪器生产厂家中,维持室内温湿度的空调机组是高耗能作业组成之一。因此降低恒温恒湿空调系统的能耗,是降低生产能耗的主要组成部分。对恒温恒湿空调系统进行节能考虑和设计,是目前广大工程技术人员需要面对的问题。 恒温恒湿中央空调系统不同于其它空调系统,就是它对室内的温度和湿度的稳定性要求特别高。有的温度波动范围要求控制在1℃以内,即上下浮动℃,同时对湿度也有较高要求。温湿度不只是受外界和室内条件的控制,温、湿度之间也会相互影响。如在20℃时,当温度波动1℃,会导致相对湿度大约波动4%。随着机械加工工艺技术的飞速进步,要求温、湿度的波动范围更小,这些都对恒温恒湿空调系统提出了更高的要求,也将大大增加空调系统的能耗。为了降耗节能,我们必须对恒温恒湿空调系统进行节能设计。 目前,恒温恒湿空调系统与其它空调系统有个特别的地方,就是为设计和营造一个达到高精度的恒温恒湿室,往往都是采用全空气系统。而对于所采用的全空气系统,在空气处理上存在冷热量抵消的现象,导致运行能耗大大增加。同时,由于恒温恒湿空调系统方式多采用传统机组,极少应用目前高效的变制冷剂流量集中空调系统。如果应用变制冷剂流量的多联体分体空调,那么恒温恒湿空调的冷热源成本亦可得到降低,实现节能。 本文对恒温恒湿空调存在冷热抵消现象的问题进行了分析,提出了一种取消冷热抵消的设计方法;对于采用

仪器主要技术指标及参数

仪器主要技术指标及参数 自动滤膜称重系统 设备用途:用于颗粒物采样滤膜的实验室恒温恒湿平衡及自动批量称重。 称量过程与结果均应满足《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》(HJ 656-2013)中的相关规定与技术要求。 特性及参数要求: 1 滤膜储存与输送 ★1.1 滤膜适用性:任意品牌、任意材质; 1.2 可称重滤膜尺寸:47mm、90mm ★1.3 47mm滤膜单批处理能力:>300张; ★1.4 90mm滤膜单批处理能力:>150张; 1.5 储存装置:每张滤膜需有独立储存位; 1.6 滤膜上下间隔:≥1.5cm,保证24小时湿度完全平衡; 1.7 输送装置:机械臂需运动灵活,能快速直接到达任意滤膜放置位; 1.8 直接调取能力:任意位置滤膜; ★1.9 最远调取时间:<30秒; 2 滤膜编码与识别 ★2.1 编码方式:具备对滤膜的自动编码功能; 2.2 滤膜识别:系统需能快速识别滤膜编码; 2.3 编码位置:滤膜边缘非采集颗粒物区域 2.4 滤膜后续可分析成份:任意成份,可溯源 3 滤膜静电消除 ★3.1 消除方式:需遵循简捷安全,不适用放射性物质; 3.2 去静电称重时间:≤90秒; 4 天平传感器 4.1 分辨率:0.001 mg ; 4.2 最大量程:>5g; 4.3 重复性:<±3ug ; 4.4 线性:<±2 ug;

4.5 校准砝码:有; ★4.6 天平传感器稳定时间:≤6秒; 4.7 四角误差:可以外部调节; 4.8 自动校正功能:具备; 5 天平防震设计 5.1 基础防震等级要求:三级; ★5.2 天平支撑要求:需独立于系统操作平台,免除外界震动干扰; 5.3 系统去耦功能:需具有; 6 工作舱环境控制 6.1 温度控制范围:20℃-30℃; 6.2 相对湿度控制范围:40 %-55 %; 6.3 温度控制误差:±0.1℃; 6.4 相对湿度控制误差:±2%; 6.5 空气洁净度等级:达到ISO 14644 Clean room CLASS 6 等级; 6.6 气流速度:≤0.05m/s 7 系统操作 ★7.1 系统反控:设备需具有自带和电脑反控双系统,以提高工作灵活性 7.2 操作模式:自动、手动、远程操作 7.3 系统兼容性:需无缝对接智能化网络采样器。 7.4 远程协助功能:需具备 7.5 数据采集处理:可智能化数据匹配(空白与加载滤膜称重数据),并结合采样器采样数据自动计算颗粒物质量浓度。 7.6 数据输出:采用网络端口,.CSV格式,可传输保存至网络系统。 7.7 数据查询:根据滤膜编码信息或采样日期可查询对应滤膜的全部采样参数信息以及空白、加载滤膜称重信息。 7.8 系统通知方式:电子邮件 7.9 可通知内容:称重开始时间、称重完成时间、环境参数异常报警、系统机械故障报警 7.10 稳定工作环境温度要求:20℃- 35℃ 8 主要配置要求:恒温恒湿平衡与称重一体式机柜、百万分之一以上精度的称量电子天

恒温恒湿控制软件..

富田恒温恒湿控制软件 目录 一、引言 1、编写目的........................................3 2、参考资料.......................................3 3、术语和缩写词...................................3 二、软件概述..........................................4 1、产品介绍.......................................4 2、使用对象.......................................4 3、产品特点.......................................4 三、运行环境..........................................4 1、硬件环境..........................................4 2、软件环境.........................................5 四、系统软件安装、缷载................................5 1、安装程序.......................................5 2、卸载程序........................................8 五、软件功能介绍.......................................9 六、软件控制系统简介...................................9 1、温度控制程序简述..............................11 2、风机控制程序简介...............................13 3、PID控制系统程序简介............................13

恒温恒湿实验室设计改造方案

有时我们的实验室会根据公司的搬迁,或者说为了升级企业形象,实验室需要改造重新装修设计,恒温恒湿实验室设计改造方案成为很多企业关心的,下面就详细介绍下: 恒温恒湿实验室设计改造: 恒温恒湿实验室广泛应用于计量、质检、纤检(棉花、纺织等)、食品、药品、高校、企业等。按照ISO和GB有关标准规定,纺织品、纺织原料、纸张、纸品和纸箱等商品的质物理项目的检验必需在标准大气条件下进行。纺织品和纺织原料检验的标准大气按ISO139和GB6529标准规定,温度20±2 ℃,相对湿度65%±2%;纸张、纸品和纸箱类商品检验的标准大气按照ISO187和GB10739标准规定,温度23±1℃,相对湿度50%±2%。除了常规温湿度的恒温恒湿实验室,还有其它特殊的5-18℃低温、30-80℃高温、相对湿度要求小于40%RH低湿、相对湿度高于80%RH的高湿等特殊要求的恒温恒湿实验室。 恒温恒湿实验室设计改造方案设计要点: 实验室的整体规划,要考虑到以下要求:涉及范围极广,需建筑、水电、空调、实验室使用者等各项专业人才共同参与规划。 ?设计目的:为实验室设备创造一个既能确保其稳定、可靠的运行,延长其使用寿命,又能满足用户使用要求及工作人员身心健康的工作场所。 ?总体设计:全面考虑各专业之间的关系,进行严格的协调,做到不错,不漏,不碰。?具体设计:采用国内外先进技术,选用既先进,性能价格比又合理的环保设备和材料,融入人性化的设计理念。 恒温恒湿室总体设计规划要点 1、温湿度控制范围 2、温湿度控制精度 3、洁净度要求 4、照度要求

5、设备的热湿量范围 6、空调送回风方式 7、空压之平衡措施8、引入新风之必要性 9、系统排气的必要性10、保温隔热的措施 11、设施与动力之配置12、静电、振动及噪音 13、设备空间与空调间14、进出通道及更衣缓冲区之安排 15、足够维护保养空间16、室内净高与楼板载重 17、公害、污染与防灾18、安装及运转成本之衡量 19、美观性要求20、安装成本/工期控制 21、运转成本22、维护性&弹性等因数 实验室设计分类: 常温实验室18 -28℃: 1、普通恒温恒湿实验室:温度控制精度±2℃,相对湿度控制精度±5-10%RH 2、精密恒温恒湿实验室:温度控制精度±1℃,相对湿度控制精度±3-5%RH 3、高精密恒温恒湿实验室:温度控制精度±1℃,相对湿度控制精度±2%RH 4、超高精密恒温恒湿实验室:温度控制精度±0.1-0.3℃,相对湿度控制精度±1.5-2% RH 高温实验室30-80℃: 1、低湿度要求,相对湿度﹤50%RH 2、高湿度要求,相对湿度﹥80%RH 低温实验室10-15℃: 1、没有相对湿度要求 2、有相对湿度要求,相对湿度控制范围30-50%

相关主题
文本预览
相关文档 最新文档