当前位置:文档之家› Correlation effects in ionic crystals I. The cohesive energy of MgO

Correlation effects in ionic crystals I. The cohesive energy of MgO

Correlation effects in ionic crystals I. The cohesive energy of MgO
Correlation effects in ionic crystals I. The cohesive energy of MgO

a r

X

i

v

:c o

n

d

-

m

a t

/

9

5

6

00

9

v

1

2

J u

n

1

9

9

5

Correlation e?ects in ionic crystals:I.The cohesive energy of MgO Klaus Doll,Michael Dolg,Peter Fulde Max-Planck-Institut f¨u r Physik komplexer Systeme D-01187Dresden,Germany Hermann Stoll Institut f¨u r Theoretische Chemie Universit¨a t Stuttgart D-70550Stuttgart,Germany February 1,2008Abstract High-level quantum-chemical calculations,using the coupled-cluster approach and extended one-particle basis sets,have been performed for (Mg 2+)n (O 2?)m clusters embedded in a Madelung potential.The results of these calculations are used for setting up an incremental ex-pansion for the correlation energy of bulk MgO.This way,~96%of the experimental cohesive energy of the MgO crystal is recovered.It is shown that only ~60%of the correlation contribution to the cohesive

energy is of intra-ionic origin,the remaining part being caused by van der Waals-like inter-ionic excitations.

accepted by Phys.Rev.B

1Introduction

While the density-functional(DFT)method,with its long tradition in solid-state physics,is getting wide acceptance in the?eld of quantum chemistry nowadays,there are also attempts to the reverse,i.e.,making use of the tra-ditional quantum-chemical Hartree-Fock(HF)and con?guration-interaction (CI)methods not only for molecular but also for solid-state applications. The Torino group of Pisani and co-workers,e.g.,devised an ab-initio HF scheme for solids[1],which has successfully been applied to a broad range of(mostly)covalently bonded and ionic solids,within the past?ve years.

A main asset of the HF scheme is the availability of a well-de?ned wave-function,which may not only be used for extracting properties but also as a starting-point for systematically including electron-correlation e?ects.Such e?ects,which are only implicitly accounted for in density-functional meth-ods,often have a strong in?uence on physical observables,in molecules as well as in solids.Several suggestions have been made how to explicitly in-clude electron correlation in solids,among them the Quantum Monte-Carlo (QMC)approach[2],the Local Ansatz(LA)[3],and the method of local increments[4](which may be considered as a variant of the LA);in QMC the HF wavefunction is globally corrected for electron-correlation e?ects by multiplying it with a factor containing inter-electronic coordinates(Jastrow factor);the latter two methods rely on applying selected local excitation operators to the HF wavefunction and thus have a rather close connection to traditional quantum-chemical post-HF methods.

The number of test examples is still rather limited with all three solid-state correlation schemes,and is mainly restricted to semiconductors so far. For ionic insulators where quantum-chemical methods would seem to be most suitable and easily advocated,much work indeed has been devoted to correlation e?ects on band structures(cf.e.g.[5a,b]),but only few stud-ies refer to cohesive energies(cf.e.g.[5c]),and only a single application of the post-HF schemes mentioned in the last paragraph exists to our knowl-edge(NiO with QMC[5d]).This does not mean that such applications to ground-state correlation e?ects are without challenge.For MgO,the system to be dealt with in this paper,HF calculations[6]yield a lattice constant which is in agreement with experiment to~0.01?A,but the correlation con-tribution to the cohesive energy is signi?cant(~3eV,nearly half as large as the HF value).The local-density approximation(LDA)of DFT does not a good job here either:an overbinding results which is more than two times as large as the correlation contribution to the lattice energy[7],and

1

invocation of gradient-corrected functionals is indispensable for obtaining reasonable results[6b],cf.Sect.3.5below.The situation would not seem too complicated,nevertheless,if the e?ect could be explained just by adding correlation contributions of individual ions;in fact,such a suggestion has repeatedly been made in literature,cf.Refs.[6a,17c].However,the O2?ion, one of the building blocks of the MgO crystal,is not stable as a free entity, and an accurate determination of the correlation energy of this highly?uc-tuating and easily polarizable ion in its crystal surroundings is not expected to be an easy task;the more so,since already for the determination of the electron a?nity of the free O atom high-level quantum-chemical correlation methods are required[8].Moreover,as we shall show below,intra-ionic in-teractions contribute only with~60%to the total correlation e?ect on the bulk cohesive energy,and van der Waals-like inter-ionic excitations play an important role here.

This paper is the?rst in a series devoted to the application of the method of local increments to ionic solids;it shows,at the example of MgO,how to set up an incremental expansion of the bulk correlation energy using in-formation from quantum-chemical calculations on?nite clusters only.The organization of the paper is as follows:in Section2,computational de-tails are given for the applied quantum-chemical methods,and test calcula-tions are performed for the?rst two ionization potentials of the Mg atom, for the electron a?nity of the O atom,and for spectroscopic properties of the MgO molecule.The method of local increments is brie?y described in Section3;correlation-energy increments are evaluated from calculations on (Mg2+)n(O2?)m clusters,and the incremental expansion for the total cor-relation energy of bulk MgO is discussed.Conclusions follow in Section 4.

2Test calculations

Our?rst test concerns the electron a?nity,EA,of the oxygen atom.We performed separate calculations for the ground states of O and O?,respec-tively,using various single-and multi-reference quantum-chemical con?g-uration interaction methods for treating many-body correlation e?ects[9]. The one-particle basis sets employed have been taken from the series of correlation-consistent(augmented)polarized Gaussian basis sets of Dun-ning and co-workers[10,8a].The ab-initio program package MOLPRO[11] has been used in these and all of the following calculations of the present

2

paper.The results for EA(O)are collected in Table1.It is seen that the best single-and multi-reference methods(coupled-cluster with single and double excitations and perturbative inclusion of triples(CCSD(T))and2s-2p active space;multi-reference averaged coupled pair functional with single and double excitations(MR-ACPF)and2s-3p active space)yield quite similar results(1.40eV),which di?er from the experimental value by only 0.06eV.E?ects of the one-particle basis set are signi?cant,even at the stage of including g functions,and probably are responsible for the major part of the remaining deviation from experiment.In the(Mg2+)n(O2?)m cluster calculations to be described in Sect.3,we could only a?ord the valence triple-zeta[5s4p3d2f]basis set,at the single-reference level;the concomi-tant di?erential errors can be estimated to about0.1eV per O atom and (added)electron.

The next test deals with the ionization potentials,IP,of the magnesium atom(Mg→Mg+,Mg+→Mg2+).A di?culty is encountered here,since not only the correlation energy of the valence(3s2)electron pair has to be accounted for but also core-valence correlation e?ects are non-negligible: the latter contribute with0.3eV to the Mg+→Mg2+IP,e.g..For ac-curately describing these e?ects explicitly,a high computational e?ort is needed in quantum-chemical ab-initio calculations.In(all-electron)calcu-lations with a basis set of medium quality((12s9p1d)/[5s4p1d][12])errors of0.12and0.21eV remain for the two IPs,and even a very large uncon-tracted(20s15p6d3f)basis[13]still yields deviations from experiment of 0.03and0.04eV in CCSD(T)calculations.Without loss of accuracy,how-ever,the computational e?ort can be e?ectively reduced[14,15]by simulat-ing the Mg2+core by a pseudopotential(PP)which describes core-valence interaction at the HF level,in conjunction with a core-polarization poten-tial(CPP)which accounts for core-valence correlation e?https://www.doczj.com/doc/e53188786.html,ing these methods,very good agreement with experiment is obtained,at the corre-lated level,cf.the results of Table2.(Only ACPF data are given,in the Table,since for a two-electron system all the correlation methods of Table 1(CI,ACPF,CCSD)coincide.)For the cluster calculations of Sect.3,we adopt the PP+CPP description,together with the energy-optimized(4s4p) valence basis set;the concomitant di?erential errors can be estimated to about0.02eV per Mg atom and(removed)electron.

The last test of our quantum-chemical arsenal of methods was performed for the MgO molecule.The basis sets applied here are the same as those used in the next section for(Mg2+)n(O2?)m clusters.The results for bond length,dissociation energy and vibrational frequency are compiled in Table

3

3.It is seen that excellent agreement with experiment(to0.02?A,0.1eV, 10cm?1(1%))is obtained at the(single-reference)CCSD(T)level.At the multi-reference level(without triples),the agreement is slightly less good, but this could certainly be improved upon by enlarging the2-con?guration reference space which was chosen in our calculations.

3Local increments

3.1Methodological aspects

The main idea to be discussed here is the possibility to extract informa-tion from calculations on?nite clusters and to transfer it to the in?nite crystal.Such a transfer would certainly not be a good idea for global clus-ter properties(cohesive energy,ionization potential,etc.)–it only makes sense for local quantities.Now,localized orbitals are entities which can be de?ned within ionic crystals as well as within clusters of these materials. Moreover,electron correlation in or between such orbitals is a local e?ect. Therefore,if we prepare localized orbitals in the interior of a cluster(in a su?ciently solid-like environment)and if we calculate correlation energies involving these orbitals,we can hope to obtain transferable quantities.

Of course,there is no reason to expect that these quantities would be additive in the solid.If we separately calculate,e.g.,the pieces of correlation energy due to orbitals localized at ionic positions A,B,C,...

?(A),?(B),?(C), (1)

the correlation energy of the common orbital system of AB(or AC,BC, ...)will deviate in general from the sum of constituents,due to inter-ionic interactions,and we can de?ne non-additivity corrections such as

??(AB)=?(AB)??(A)??(B).(2)

Again,the next larger systems of three ions,ABC,...,will have correlation energies slightly di?erent from the sum of the constituents plus the two-body non-additivity corrections,and this gives rise to three-body increments

??(ABC)=?(ABC)?[?(A)+?(B)+?(C)]?

[??(AB)+??(AC)+??(BC)].(3)

Similar de?nitions apply,in principle,to higher-body increments.

4

If we now make use of all these quantities,i.e.,the intra-ionic correlation energies and the various inter-ionic correction terms,and multiply them with weight factors appropriate for the solid,we can hope to get a meaningful incremental expansion of the correlation energy per unit cell of the in?nite crystal:

?bulk= A?(A)+13! A,B,C??(ABC)+ (4)

In Ref.[4d]we have shown that this equation can be formally derived,under appropriate approximations,from an expression for the correlation energy of an in?nite system.

Let us discuss now the assumptions implicit in this approach more closely for the case of the MgO crystal.MgO is generally considered as a nearly perfect ionic crystal consisting of Mg2+and O2?ions[17];the question of a quantitative measure for the ionicity of MgO has been addressed only recently by Bagus and co-workers[17c,d],and in careful studies using various criteria the ionic charges have been shown to deviate from±2by<0.1only. Thus,the attribution of localized orbitals to ionic positions made above seems to be a valid assumption.But even if there were some degree of covalency and/or some tendency for delocalization in MgO,this would not invalidate our approach.In fact,the?rst applications of the method of local increments were made for covalently bonded crystals(diamond,silicon [4a,b]),and even for theπ-system of graphite which according to usual classi?cations is considered as completely delocalized the method has been shown to yield meaningful results[4c].

Secondly,the determination of increments for non-additive inter-ionic correlation contributions in Eqs.2and3makes sense only,if the number of non-negligible increments is small,i.e.,if the??(AB)rapidly decrease with increasing distance of the ions and if the three-body terms??(ABC) are signi?cantly smaller than the two-body ones making the use of four-body contributions obsolete.A necessary pre-requisite for satisfying these conditions is the use of a size-extensive correlation method for calculating the increments.This excludes,for instance,the(variational)con?guration-interaction method with single and double excitations(CISD),since it does not scale linearly with n for a system of non-interacting atoms A n.On the other hand,correlation methods of the coupled-cluster variety such as those discussed in the last section(ACPF,CCSD,CCSD(T))do have this property.(These are benchmark methods of increasing complexity widely

5

used in quantum chemistry;we display results derived from all of them in the following Tables,in order to monitor convergence with respect to the many-particle basis set used.)When applying such a method,??(AB) should indeed rapidly decrease with increasing AB distance,since for non-overlapping pairs of ions only van der Waals-like correlation e?ects(~1/r6) become e?ective.Furthermore,three-body terms can be expected to be signi?cantly smaller than two-body terms,since two-electron excitations, involving a pair of orbitals at most,are known to dominate correlation e?ects.

A?nal assumption underlying our approach is that of the transferability of localized orbitals from clusters to the bulk which was mentioned right at the beginning of this subsection.Its ful?llment depends,of course,on the preparation of the clusters.A free O2?ion,e.g.,would be unstable,and it is essential,therefore,to put this ion in a cage of Mg2+ions in order to stabilize it,and to simulate the Madelung potential of the surrounding ions in order to provide the correct?eld near the O nucleus.More details on cluster preparation and transferability tests will be given in the following subsections,where the determination of individual increments is discussed.

3.2Intra-ionic correlation

The?rst increment to be calculated is the correlation energy which can be locally attributed to an O2?ion in crystal surroundings of Mg2+and other O2?ions.As already mentioned,a realistic modelling of the crystal sur-roundings is essential,since otherwise the O2?ion would not be stable at all.Fortunately,stabilization can be achieved in a both very simple and e?-cient way,by simulating the Pauli repulsion of the6nearest-neighbour Mg2+ ions by means of pseudopotentials;we used the same energy-consistent pseu-dopotentials here as were used for the treatment of the Mg atom in the calcu-lations of Sect.2.For representing the crystal environment of the resulting 7-atom cluster,a Madelung approximation was made:336ions surrounding this cluster in a cube of7x7x7ions were simulated by point charges±2 (with charges at the surface planes/edges/corners reduced by factors2/4/8, respectively).Here and in the following,the experimental bulk lattice con-stant(r MgO=2.105?A)was adopted.Employing the[5s4p3d2f]basis set, which was already used for O and O?,for the description of the O2?orbitals, too,we obtain the di?erential correlation-energy contributions,??(O2?)=?(O2?)-?(O),to the a?nity of the extra electrons in crystal O2?which are listed in Table4.

6

A?rst point to make is that at all levels of approximation??(O2?)comes out considerably smaller than one would expect from a simple linear scaling of??(O?)values(2.77vs.1.86eV,at the CCSD(T)level,cf.Table1);such a linear scaling,which approximately works for the iso-electronic systems,??(Ne)and??(Ne?),[18]probably fails for O2?due to the increased spac-ing of excited-state levels,when compressing the O2?charge density in the (Mg2+)6cage.When comparing individual??(O2?)values in Table4,we observe that in our single-reference calculations(active space2s-2p),the e?ect of single and double excitations is quite similar for ACPF and CCSD, while the inclusion of triples in CCSD(T)yields an increase by another5%. Thus,the e?ect of triples is of less(relative)importance than in free O?but is still non-negligible.As in the case of O?,we checked that enlarging the ac-tive space(to2s-3p)in the ACPF calculations(MRACPF)leads to a result numerically nearly identical to CCSD(T).Moreover,we tested the in?uence of an increase of the basis set([5s4p3d2f]→[6s5p4d3f2g],cf.Table1);at the CCSD(T)level,the correlation-energy increment changes by-0.008a.u. (-0.2eV),in line with our estimate given in Sect.2.We also tried increasing the[5s4p3d2f]basis set by adding o?-center functions(the(4s4p)sets of Sect.2at the positions of the Mg2+ions);the correlation-energy change of-0.005a.u.is somewhat smaller here because not all components of the higher polarization functions(f,g)at the oxygen site cannot be simulated this way.A last test concerns the in?uence of the Madelung?eld.Leaving out all of the point-charges and performing the calculation with the bare (O2?)(Mg2+)6cluster leads to quite negligible correlation-energy changes of ≤4·10?5a.u.only,at all theoretical levels;this underlines the notion of electron correlation being a local e?ect.Summarizing,lack of completeness of the one-particle basis set seems to be the largest source of error in the O2?results listed in Table4,and the order of magnitude of the resulting error for the MgO cohesive energy per unit cell(with respect to separated neutral atoms)can be assessed to0.2...0.3eV.

Let us next consider the Mg→Mg2+correlation-energy increment.This increment can directly be evaluated using the atomic calculations described in Sect.2.This is so,since the Madelung e?ect identically vanishes here, when Mg2+is described by a bare pseudopotential.We checked this point by performing all-electron calculations for Mg2+with and without Madelung ?eld:the non-frozen-core e?ect obtained thereby is of the order of1·10?6 a.u.with our largest basis set.Thus,the pseudopotential approximation is certainly valid here.

Adding the Mg2+and O2?correlation-energy increments of Table4,we

7

get,at the highest theoretical level(CCSD(T)),a correlation contribution of0.0547a.u.to the bulk cohesive energy,E coh,per(primitive)unit cell of the MgO crystal.The experimental cohesive energy corrected for zero-point energy is known to be0.3841a.u.[19];the most recent(and probably best)HF value is0.2762a.u.[6c].This yields an’experimental’correlation contribution to E coh of0.108a.u.which is just about the double of the intra-ionic value calculated so far.Thus,it is clear that inter-ionic contributions to be dealt with in the next subsection play an important role.

3.3Two-Body Corrections

In this subsection,non-additivity corrections are determined,which arise when simultaneously correlating two ions in a cluster.

Let us?rst consider here the interaction of ions with charges of opposite sign,i.e.Mg2+and O2?,which are next neighbours in the https://www.doczj.com/doc/e53188786.html,ing the same cluster as in the previous subsection when determining the intra-ionic correlation energy of O2?(O2?plus6surrounding Mg2+plus336 point charges)and adding a core-polarization potential at one of the Mg2+ neighbours of the central O2?ion,we obtain an inter-ionic core-valence cor-relation contribution(cf.Table5)which is due to the dynamic polarization of the Mg2+core by the O2?valence electrons and which was clearly absent in the free Mg2+ion.Although the resulting value for the increment turns out to be considerably smaller than the intra-ionic correlation contributions of Table4,its e?ect on the cohesive energy of MgO is by no means negligible, due to the large weight factor.

In order to study the convergence of the correlation-energy increments with increasing distance of the ions,we replaced,in the cluster described above,one of the Madelung charges(at positions of Mg2+ions successively more distant from the central O2?ion)by a pseudopotential and evaluated the in?uence of core-polarization.A rapid decrease with r MgO is observed, with the fourth-nearest neighbour MgO increment already approaching the numerical noise in our calculations.

Turning now to the increments related to pairs of ions of the same kind, we can safely neglect Mg2+-Mg2+interactions.The correlation-energy con-tributions are exactly zero,at the pseudopotential plus core-polarization level.All-electron test calculations yield very small values around~2·10?5 a.u.for a nearest-neighbour pair of Mg2+ions in the crystal.

Far more important are interactions between O2?ions with their di?use,?uctuating charge distributions.For the increment between nearest neigh-

8

bouring O2?ions,we used a cluster with448ions,where two central O2?ions were treated explicitly,while the10next Mg2+neighbours of these ions were simulated by pseudopotentials and the remaining ions were represented by point charges.The non-additivity correction with respect to two single O2?ions(cf.Table5)turns out to be of the same order of magnitude as the MgO increment.The greater strength of interaction in the O-O case compared to the Mg-O one(larger polarizability of O2?compared to Mg2+) is e?ectively compensated by the enhanced ion distance.

Results for O2?-O2?increments between2nd through5th neighbours are also given in Table5.The decrease with increasing ion distance is not quite as rapid as that for the Mg-O increments.By multiplying the O-O increments with r?6,one can easily check that a van der Waals-like behaviour is approached for large r,and one can use the resulting van der Waals constant to obtain an estimate of the neglected increments beyond 5th neighbours;this estimate which is~3·10?4a.u.(including appropriate weight factors)should be considered as an error bar for the truncation of the incremental expansion of the MgO cohesive energy in our calculations.

Adding up all the two-body increments which have been determined in this work,we?nd(https://www.doczj.com/doc/e53188786.html,st row in Table5)that the inter-ionic two-body correlation contribution to the cohesive energy of MgO is of comparable magnitude as the intra-ionic one.Thus,the important conclusion may be drawn that even in a(nearly purely)ionic crystal a mean-?eld description of inter-ionic interactions(electrostatic attraction,closed-shell repulsion)is not su?cient.

3.4Three-Body Corrections

Let us complete now the information necessary for setting up the incremen-tal expansion of the correlation energy of bulk MgO,by evaluating the most important non-additivity corrections involving three ions.These corrections are obtained for triples with at least two pairs of ions being nearest neigh-bours of their respective species,using Eq.3(cf.Sect.3.1).The numerical results are listed in Table6.It is seen that the largest3-body corrections are smaller by nearly two orders of magnitude compared to the leading two-body ones,thus indicating a rapid convergency of the many-body expansion with respect to the number of atoms included;the total three-body contri-bution to the correlation piece of the bulk cohesive energy,E coh is~2%of the two-body part and of opposite sign.

9

3.5Incremental Expansion

In Table7,the sum of local correlation-energy increments to the cohesive-energy,E coh,of MgO(with respect to separated neutral atoms)is compared to the di?erence of experimental and HF values for E coh.Our calculated values amount to between~80and~85%,depending on the correlation method applied,of the experimental value.The inclusion of triple excita-tions in the correlation method seems to be signi?cant for describing the large?uctuating O2?ions.A major part of the remaining discrepancy to experiment is probably due to de?ciencies of the one-particle basis set:as discussed in Sect.3.2,extension of the O2?basis set to include g functions, for the evaluation of the intra-ionic contribution,already reduces the error by a factor of2.

A comparison to related theoretical results is possible at the density-functional level.A correlation-energy functional including gradient correc-tions(Perdew91)yields a?E coh value of0.087a.u.[6b],only slightly inferior to our CCSD(T)one.Further density-functional results for lattice energies have been reported in Ref.[7];these results have been determined for?xed HF densities,and the reference of the lattice energies is to Mg2++O?+ e?.As already mentioned in Sect.1,the LDA value is much too high(by 0.069a.u.);the results with the Perdew-91correlation-energy functional on top of the HF exchange is much better(error0.014a.u.),and the same may be said for a xc-DFT treatment with the Becke and Perdew-91gradient cor-rections for exchange and correlation,respectively(error0.011a.u.).Using the Mg2+and O?data of Tables1and2,our present calculations lead,at the CCSD(T)level,to a value of0.071a.u.for the correlation contribution to the lattice energy;adding this value to the HF result of Ref.[7],a de-viation from experiment of0.009a.u.is obtained,which is similar to that of the gradient-corrected DFT ones.Note,however,that this comparison must be taken with a grain of salt:the HF calculation of Ref.[7]is certainly not too accurate,since a relatively small basis set was used.Otherwise it would be di?cult to explain why our correlation contribution to the lattice energy should be too large,although all possible sources of errors(discussed in Sects.3.2and3.3)point to the opposite direction.

4Conclusion

The correlation energy of the MgO crystal can be cast into a rapidly con-vergent expansion in terms of local increments which may be derived from

10

?nite-cluster calculations.One-particle basis sets of triple-zeta quality with up to f functions at the positions of the O atoms and high-level quantum-chemical correlation methods(CCSD(T))are necessary for obtaining~85% of the correlation contribution to the bulk cohesive energy.About one half of this contribution can be attributed to intra-ionic interactions,the rest is due–to about equal parts–to dynamic polarization of the Mg2+cores by the O2?ions and to van der Waals-like O2?-O2?interactions.

Although numerical results from quantum-chemical calculations of this type are not necessarily superior to DFT ones,they provide additional physical insight into the sources of correlation contributions to solid-state properties. Acknowledgments

We are grateful to Prof.H.-J.Werner(Stuttgart)for providing the program package MOLPRO.

11

References

1.R.Dovesi,C.Pisani,and C.Roetti,Int.J.Quantum Chem.17,

517(1980); C.Pisani,R.Dovesi,and C.Roetti,Lecture Notes in Chemistry,vol.48(Springer,Berlin,1988)

2.S.Fahy,X.W.Wang,and S.G.Louie,Phys.Rev.B42,3503(1990);

X.P.Li,D.M.Ceperley,and R.M.Martin,Phys.Rev.B44,10929 (1991)

3.G.Stollho?and P.Fulde,J.Chem.Phys.73,4548(1980);P.Fulde in

Electron Correlations in Molecules and Solids,Springer Series in Solid State Sciences,vol.100(Springer,Berlin,1993)

4.H.Stoll,Chem.Phys.Lett.191,548(1992);H.Stoll,Phys.Rev.B

46,6700(1992);H.Stoll,J.Chem.Phys.97,8449(1992);B.Paulus, P.Fulde,and H.Stoll,Phys.Rev.B(accepted)

5.R.Pandey,J.E.Ja?e,and A.B.Kunz,Phys.Rev.B43,9228(1991);

B.H.Brandow,Adv.Phys.26,651(1977);J.M.Recio,R.Pandey,A.

Ayuela,and A.B.Kunz,J.Chem.Phys.98,4783(1993);S.Tanaka, J.Phys.Soc.Jpn.62,2112(1993)

6.M.Caus`a,R.Dovesi,C.Pisani,and C.Roetti,Phys.Rev.B33,1308

(1986);R.Dovesi,C.Roetti,C.Freyria-Fava,E.Apr`a,V.R.Saunders, and N.M.Harrison,Philos.Trans.R.Soc.London Ser.A341,203 (1992);M.Catti,G.Valerio,R.Dovesi,and M.Caus`a,Phys.Rev.B 49,14179(1994)

7.M.Caus`a and A.Zupan,Chem.Phys.Lett.220,145(1994)

8.R.A.Kendall,T.H.Dunning,Jr.,and R.J.Harrison,J.Chem.Phys.

96,6796(1992);D.L.Strout and G.E.Scuseria,J.Chem.Phys.96, 9025(1992)

9.For a survey of quantum-chemical ab-initio methods,cf.e.g.R.J.

Bartlett and J.F.Stanton in Reviews in Computational Chemistry, vol.5,edited by K.B.Lipkowitz and D.B.Boyd(VCH,New York, 1994)

10.T.H.Dunning,Jr.,J.Chem.Phys.90,1007(1989)

12

11.MOLPRO is a package of ab initio programs written by H.-J.Werner

and P.J.Knowles,with contributions from J.Alml¨o f,R.D.Amos, M.J.O.Deegan,S.T.Elbert,C.Hampel,W.Meyer,K.Peterson,R.

Pitzer,A.J.Stone,and P.R.Taylor;H.-J.Werner and P.J.Knowles, J.Chem.Phys.82,5053(1985);P.J.Knowles and H.-J.Werner, Chem.Phys.Lett.115,259(1985);H.-J.Werner and P.J.Knowles, J.Chem.Phys.89,5803(1988);P.J.Knowles and H.-J.Werner, Chem.Phys.Lett.145,514(1988);H.-J.Werner and P.J.Knowles, Theor.Chim.Acta78,175(1990);C.Hampel,K.Peterson,and H.-J.

Werner,Chem.Phys.Lett.190,1(1992);P.J.Knowles,C.Hampel, and H.-J.Werner,J.Chem.Phys.99,5219(1993)

12.A.D.McLean and G.S.Chandler,J.Chem.Phys.72,5639(1980)

13.(20s12p)basis set from H.Partridge,J.Chem.Phys.87,6643(1987),

supplemented by3di?use p functions and a6d3f polarization set;

~50%of the deviation from experiment,in our CCSD(T)calculations for the?rst two Mg IP with this basis,are of relativistic origin. 14.P.Fuentealba,L.v.Szentp′a ly,H.Preuss,and H.Stoll,J.Phys.B

18,1287(1985)

15.W.M¨u ller,J.Flesch,and W.Meyer,J.Chem.Phys.80,3297(1984);

P.Fuentealba,H.Preuss,H.Stoll,and L.v.Szentp′a ly,Chem.Phys.

Lett.89,418(1982);L.v.Szentp′a ly,P.Fuentealba,H.Preuss,and

H.Stoll,Chem.Phys.Lett.93,555(1983);H.Stoll,P.Fuentealba,

M.Dolg,J.Flad,L.v.Szentp′a ly,and H.Preuss,J.Chem.Phys.79, 5532(1983)

16.K.P.Huber and G.Herzberg,Molecular Spectra and Molecular Struc-

ture:IV.Constants of Diatomic Molecules(Van Nostrand,New York, 1979);L.Operti,D.C.Tews,T.J.MacMahon,and B.S.Freiser,J.Am.

Chem.Soc.111,9152(1989)

17.S.Sasaki,K.Fujino,and Y.Takeuchi,Proc.Japan.Acad.B55,

43(1979);Y.N.Xu and W.Y.Ching,Phys.Rev.B43,4461(1991);

F.Illas,A.Lorda,J.Rubio,J.B.Torrance,and P.S.Bagus,J.Chem.

Phys.99,389(1993);G.Pacchioni,C.Sousa,F.Illas,F.Parmigiani, and P.S.Bagus,Phys.Rev.B48,11573(1993);C.Sousa,F.Illas,C.

Bo,and J.M.Poblet,Chem.Phys.Lett.215,97(1993);R.Orlando,

13

R.Dovesi,C.Roetti,and V.R.Saunders,Chem.Phys.Lett.228, 225(1994)

18.E.R.Davidson,S.A.Hagstrom,S.J.Chakravorty,V.M.Umar,and

Ch.Froese Fischer,Phys.Rev.A44,7071(1991)

19.R.C.Weast,ed.,CRC Handbook of Chemistry and Physics(CRC

Press,Boca Raton,1987)

14

Table1:Electron a?nity(eV)for the O atom at various theoretical lev-els(RHF:restricted Hartree-Fock self-consistent-?eld,CASSCF:complete active space self-consistent-?eld,(MR)CI:(multi-reference)con?guration in-teraction,(MR)ACPF:(multi-reference)averaged coupled pair functional, CCSD(T)coupled-cluster with single and double substitutions(and per-turbative correction for triples);the reference con?gurations comprise all possible distributions of electrons within the space of active orbitals.

basis set

2s?2p2s?2p2s?3p

-0.53-0.54-0.54

CASSCF

1.02 1.07 1.36

(MR)ACPF

1.18 1.24

CCSD(T)

exptl. 1.46

(4s4p)(4s4p1d)

6.63/14.75 6.63/14.75

ACPF b

exptl.7.65/15.04

Table3:Bond length R e(?A),dissociation energy D e(eV)and vibrational frequencyωe(cm?1)of the MgO molecule,evaluated at various theoretical levels.A Mg2+pseudopotential was used,and,at the correlated levels,a core-polarization potential was added.In the multi-reference calculations,a 5-orbital(Mg3s,O2s,2p)active space was chosen.

RHF a

1.750

2.01751

MRACPF a

1.744 1.96746

CCSD(T)a

exp.b

a For explanation of the acronyms,cf.Table1.Basis sets:O[5s4p3d2f];Mg(4s4p).

b Ref.[16]

Table4:Intra-ionic correlation-energy increments and total contribution,?E coh(MgO),of these increments to the cohesive energy of bulk MgO(in atomic units,1a.u.=27.2114eV).

Mg→Mg2+b1

O→O2?c1

0.048580.049560.05472

a Weight factor in the incremental expansion of the bulk correlation energy(per primi-tive unit cell)of MgO.

b(4s4p)-valence basis set,cf.Table2.PP+CPP description of Mg2+.

c[5s4p3d2f]basis set,cf.Table1.Stabilization of O2?by means of6Mg2+pseudopo-tentials at the nearest-neighbour positions of the MgO crystal(r MgO=2.105?A).Madelung ?eld of outer ions in7x7x7cube represented by point charges±2.

d Correlation-energy chang

e per primitive unit cell,for separation into neutral ground-state atoms.

16

Table5:Inter-ionic two-body correlation-energy increments and total con-tribution,?E coh(MgO),of these increments to the cohesive energy of bulk MgO(in a.u.).The notation A-B→n means that the increment describes a n th nearest neighbour pair of A and B ions in the crystal.

ACPF a,b CCSD a,b CCSD(T)a,b

Mg-O→1d6

Mg-O→2e8

Mg-O→3f24

-0.002740-0.002538-0.002973

-0.000238-0.000225-0.000264

-0.000066-0.000061-0.000072

-0.000027-0.000024-0.000029

-0.000014-0.000012-0.000014

?E coh(MgO)-

Table6:Inter-ionic three-body correlation-energy increments and total con-tribution,?E coh(MgO),of these increments to the cohesive energy of bulk MgO(in a.u.).The notation A-B-C→n means that AB and BC are nearest neighbours of their species,while AC are n th neighbours.

ACPF a,b CCSD a,b CCSD(T)a,b

O-O-O→1d8

O-O-O→2e12

0.0000130.0000140.000016

-0.000023-0.000022-0.000026

?E coh(MgO)-

Table7:Total correlation contribution,?E coh(MgO),to the bulk cohesive energy per primitive unit cell of MgO with respect to separated neutral atoms,from an expansion using the local increments of Tables4through6, compared to the’experimental’value.All data in a.u..

?E coh(MgO)

0.0852(79%)

CCSD

0.0930(86%)

0.1079

c-DFT b

a Di?erence of the experimental[19]and the HF value[6c]of the MgO cohesive energy; the experimental value has been corrected for zero-point energy.

b Gradient-corrected correlation-energy density functional,Ref.[6b].

19

《影视特效制作AfterEffects》课程标准

《影视特效制作(A f t e r E f f e c t s)》课程标准 一、课程概述 (一)制定依据 本标准依据《艺术设计专业(新媒体策划与设计方向)人才培养方案》中的人才培养规格要求和对《影视特效制作(AfterEffects)》课程教学目标要求而制定。用于指导其课程教学与课程建设。 (二)课程的性质与地位 本课程是高等职业技术学院艺术设计专业的专业技术课程。本课程的任务是使学生通过通过本课程的学习使学生掌握使用AdobeAfterEffects,实现后期制作,毕业后可从事影视后期制作、广告后期制作、栏目包装、企事业单位的宣传部门从事策划师、特效师等多个工作岗位等工作。 (三)课程设计思路

影视特效制作(AfterEffects)是一门理论与实践相结合的专业核心课程,兼顾技术与艺术的课程。能熟练地运用AfterEffects(简称AE)制作出各类视频特效,为此而设置这门课程。其总体设计思路是,打破以知识传授为主要特征的传统学科课程模式,转变为以工作任务为中心组织课随着计算机多媒体技术的发展,AE已经广泛应用于各类影视广告视频中,在后期制作中AE是较为重要和使用广泛的技术标准。大量的影视动画和电视片头的学习和制作就是通过AE来完成的,AE也是学生就业后从事影视后期制作工作中较为常用的工具软件,为此我们采用以实例为主的项目教学方法,通过大量的典型影视视频特效实例,让学生程内容,并让学生在完成具体项目的过程中学会完成相应工作任务,并构建相关理论知识,发展职业能力。课程内容突出对学生职业能力的训练,理论知识的选取紧紧围绕工作任务完成的需要来进行,同时又充分考虑了高等职业教育对理论知识学习的需要,并融合了相关职业资格证书对知识、技能和态度的要求。项目设计以由影视特技特效为线索来进行。教学过程中,要通过校企合作,校内实训基地建设等多种途径,采取工学结合,充分开发学习资源,给学生提供丰富的实践机会。在教学过程教学中,学生始终保持较高的学习热情并能不断改善作品效果,大胆提出自己想法,逐渐将创意表达至作品中。评价采取过程评价与结果评价相结合的方式,通过理论与实践相结合,重点评价学生的职业能力。 (四)课程内容选取的依据 一是以就业为导向,瞄准影视后期后期制作人才市场需;二是为“栏目包装实训”和“新媒体策划与创意”职业能力课程奠定技术基础;三是按照项目选取课程内容和组织教学,不求学科体系的完整,强调课程内容的应用性和需求性。将课程划分为六个学习情境。把电视台精彩的节目片头、广告公司的视频广告作为课堂教学项目引入课程,加强岗位综合技能和技巧的训练,使学生能够操作熟练、举一反三。 1.学习情境中的知识点与现实密切相关

影视后期特效aftereffects》课程标准

《影视后期特效——A f t e r E f f e c t s》课程标准 一、课程概述 1、课程性质: 后期制作是制作一部影视作品的重要环节之一。随着计算机和数字化技术的发展,在后期制作中已经基本摆脱了传统的线性编辑模式,而转用以非线性编辑软件为主的非线性编辑方式。 After Effects是Adobe公司推出的一款图形视频处理软件,适用于从事设计和视频特技的机构,包括电视台、动画制作公司、个人后期制作工作室以及多媒体工作室。而在新兴的用户群,如网页设计师和图形设计师中,也开始有越来越多的人在使用After Effects。属于层类型后期软件。 本课程适计算机应用专业。 2、课程任务: (1)本课程的主要任务是理解影视特技及后期合成。掌握不同素材的导入、编辑与管理。培养学生动画制作、影视后期合成的能力;使学生能适应影视与动漫制作专业的工作要求。 (2)培养学生利用数字合成及其他相关技术进行影视后期特技效果制作的实践技能。

3、设计思路 本课程是影视制作专业的一门选修课程,随着计算机多媒体技术的发展,After Effects(简称AE)已经广泛应用于各类影视广告视频中,在后期制作中AE是较为重要和使用广泛的技术标准。大量的影视动画和电视片头的学习和制作就是通过AE来完成的,AE也是学生就业后从事影视后期制作工作中较为常用的工具软件,为此我们采用以实例为主的项目教学方法,通过大量的典型影视视频特效实例,让学生能熟练地运用AE制作出各类视频特效,为此而设置这门课程。 4、工作岗位能力分析 专业能力与职业能力目标 5、课程难点与重点 课程重点 (1)了解影视视频特效制作的原理,能够运用AE进行影视特效编辑。 (2)能够将AE与其他计算机绘图及动画片制作软件结合应用。 (3)理解动画片的后期合成流程,能够独立完成一部完成的动画片创作。 课程难点 培养学生的创造性,让学生能够发挥创意,独立创作完成的、带有独立思维的动画片作品。

aftereffects试题答案

After Effects试题 AfterEffectCS6是Adobe公司的一款影视后期制作软件 一、单项选择题、共10题、每题5分 1.在AE中进行影片渲染时,以下说法正确的是(B ) A仍然可以用After effects进行其他工作 B不能使用After effects进行其他工作 C整个windows系统都不能进行其他工作 D只可以使用adobe的其他程序 2. after effects中,缩放动画是(C ) A 围绕层的定位点进行的 B 围绕原点进行的 C 围绕中心点进行的 D 没有围绕任何点,是随机的 3. 在after effects中,引入序列静态图片时,应(B ) A 直接双击序列图像的第一个文件即可引入 B 选择序列文件的第一个文件后,需要勾选“序列”选项,然后单击“打开”按钮 C需要选择全部序列图像的名称 D使用“导入”→“合成” 4. 在after effects中,复制层的快捷键是(D ) A Ctrl+V B Ctrl+B C Ctrl+C D Ctrl+D 5. 如果使用其他应用程序修改了项目中使用的素材文件,则下次打开项目文件时(B) A 仍然出现原素材 B 出现修改后的素材 C 原素材被修改,项目文件无法打开 D 提示原素材被修改是否替换素材 6. 将素材添加到合成的正确方法是(A ) A 直接拉动素材到时间轴窗口 B 直接双击素材 C 按快捷键“Ctrl+/” D 按快捷键“Ctrl+\” 7. 在after effects中,点击层小三角显示出来的转换属性哪个没有(D ) A 位置 B 透明度 C 尺寸 D 亮度 8.在Photoshop中绘制PSD文件导入After Effects 后,怎样保持各个图层信息并可以对单个图层设置效果( C ) A 直接导入对象 B 直接导入为脚本 C 直接导入为合成 D 导入为Photoshop序列 9.为特效的效果点设置动画后。下列哪个窗口能够对运动路径进行编辑(C ) A 项目窗口 B 播放控制窗口C时间线窗口 D 特效控制窗口

《影视后期特效——AfterEffects》课程实用标准

《影视后期特效——After Effects》课程 标准 一、课程概述 1、课程性质: 后期制作是制作一部影视作品的重要环节之一。随着计算机和数字化技术的发展,在后期制作中已经基本摆脱了传统的线性编辑模式,而转用以非线性编辑软件为主的非线性编辑方式。 After Effects是Adobe公司推出的一款图形视频处理软件,适用于从事设计和视频特技的机构,包括电视台、动画制作公司、个人后期制作工作室以及多媒体工作室。而在新兴的用户群,如网页设计师和图形设计师中,也开始有越来越多的人在使用After Effects。属于层类型后期软件。 本课程适计算机应用专业。 2、课程任务: (1)本课程的主要任务是理解影视特技及后期合成。掌握不同素材的导入、 编辑与管理。培养学生动画制作、影视后期合成的能力;使学生能适应影视与动漫制作专业的工作要求。 (2)培养学生利用数字合成及其他相关技术进行影视后期特技效果制作的实践技能。 3、设计思路 本课程是影视制作专业的一门选修课程,随着计算机多媒体技术

的发展,After Effects(简称AE)已经广泛应用于各类影视广告视频中,在后期制作中AE是较为重要和使用广泛的技术标准。大量的影视动画和电视片头的学习和制作就是通过AE来完成的,AE也是学生就业后从事影视后期制作工作中较为常用的工具软件,为此我们采用以实例为主的项目教学方法,通过大量的典型影视视频特效实例,让学生能熟练地运用AE制作出各类视频特效,为此而设置这门课程。 4、工作岗位能力分析 专业能力与职业能力目标 5、课程难点与重点 课程重点 (1)了解影视视频特效制作的原理,能够运用AE进行影视特效编辑。 (2)能够将AE与其他计算机绘图及动画片制作软件结合应用。 (3)理解动画片的后期合成流程,能够独立完成一部完成的动画片创作。 课程难点 培养学生的创造性,让学生能够发挥创意,独立创作完成的、带有独立思维的动画片作品。 6、课程特色 结合实例讲解的理论知识只是组成这门课教学模式的基础,我们通过视频教学的录制、电子书的制作,项目制作等方式,将理论与实践真正结合于该门课中。使学生能够通过新颖的教学模式,将课程更

aftereffects课程标准

《after effects》课程标准 1.概述 《after effects》是动画专业学生的岗位技能课程。适用于从事设计和视频特技的机构,包括电视台、动画制作公司、个人后期制作工作室以及多媒体工作室。而在新兴的用户群,如网页设计师和图形设计师中,也开始有越来越多的人在使用After Effects制作各种效果,是一个功能性非常强大的后期合成软件。after effects课程的开设,可以极大的提高学生的就业竞争力,为今后毕业做下坚实的铺垫。 课程的性质 通过本课程的学习,培养学生的软件操作能力,对软件功能的解析和示范,可以使学生深入学习软件和制作的技巧,扩展学生实际的应用能力,使其有能力应对今后的影视动画后期制作方面的工作。 课程设计理念 根据动漫制作技术职业岗位能力分析,学习使用after effects能真正的掌握计算机应用能力,熟练的操作影视后期合成软件,提高学生专业技能和专业实力,能在相关行业领域从事影视制作、栏目包装等工作的高素质、高技能人才。 本课程以职业能力培养为主要目标,坚持以能力为本位的设计原则,以岗位需求为依据,以工作过程为导向,以产学结合为基本途径、以培养一线技术应用人才为目的,制定了本课程的课程目标、课程内容、学习情境等课程要素。本课程是以二维、三维动画设计与制作岗位群为导向,以真实的商业项目为主要教学载体,在行业专家的指导下,对相关岗位进行任务与职业能力分析,以设计、制作岗位的“工作需求”和“岗位需求”为主线,按高职学生的认知特点,以工作过程和工作任务为依据来设计活动项目,以真实的项目案例分析组织教学,倡导学生在项目活动中学会影视制作的相关知识。本课程从实用的角度出发,由浅入深,对学生进行系统的动画后期制作能力的教育。课程开发思路 动画制作是流水线式工作,每个环节都有自己的作用。根据动画制作流程,after effects是动画片制作后期中担任了不可低估的地位。虽有前期的完美之作,但是没有良好的后期工作的话,那么前期的完美就没了展示的舞台。就如一幅绘画作品一样,俗话说,三分画,七分裱。所以after effects 课程的开设不仅能让学生真正的本专业就业,还能久立于行业之中。 2.课程目标 通过课程教学,实现学生职业技能与动漫制作技术岗位群的对接,促进本专业学生全面职业素质的养成。通过教学模式的创新、教学内容的选取,教学方法的改革培养学生after effects掌握技能,使学生拥有扎实的后期制作能力,掌握影视、动画后期特效的创作能力。

AfterEffects问题解决大全10页word文档

After Effects 问题解决大全 默认分类2010-05-14 18:05:26 阅读194 评论0字号:大中 小订阅 1 MPG格式都无法导入 视频基本上全是MPG格式的,总是还是转成AVI再导入。 另外,什么终极解码我也装了,QuickTime也装了,怎么还是出现不支持的格式。 新装的AECS4,难道这个版本有问题? 把MPG文件后缀名改为AVI即可, 2 关于AE启动时出现After Effects error:can't get Unicode file 问题解决办法! 出现情况状态 现在以Adobe After Effects 7.0为例,在网上发现有不少人安装完Adobe After Effects 7.0后,在启动Adobe After Effects 7.0时或者新建文字报出如下一系列错误: error1:After Effects error:can't get Unicode file (80::4) error2:After Effects warning:Unknown BIB Error.invalid encoding BRV,0 (80::4) error3: After Effects error:failed to parse,transmap file. 这是怎么回事,原因和解决方法如下: 原因:你的是绿色版本的不需要安装所以你坑定没有公共文件夹但是

以下方法应该可以解决你的问题导致这样的错误是因为Adobe公共文件 (位于C:\Program Files\Common 夹里缺少Fonts和TypeSpt这两个文件夹, Files\Adobe下),为什么这两个文件夹在安装Adobe After Effects 7.0时没有被安装?原因是在安装Adobe After Effects 7.0前,您的系统里肯定还安装了其它的Adobe产品(比如Adobe Photoshop CS2 V9.0),并且这些产品都比Adobe After Effects 7.0的版本高(比如Adobe Photoshop CS2 V9.0版本为9.0,而Adobe After Effects只是7.0),问题的关键在于这些Adobe产品在安装时都安装高版本的Adobe公共文件,如果Adobe After Effects 7.0的安装程序启动时检测到已经安装了高版本的Adobe 公共文件后,就不会再对Adobe公共文件夹下的内容做出任何更改,也就造成了Fonts和 TypeSpt这两个文件夹没有被安装到Adobe公共文件夹下。 解决方法1: 打开Adobe相关产品的安装光盘(比如您安装了Adobe Photoshop CS2 V9.0,可以把Adobe Photoshop CS2 V9.0的安装光盘打开),在光盘根目录下有个commonfilesinstaller文件夹,双击进入,看到里面有个名为Adobe Common File Installer.msi的文件,(注:这个文件能够卸载Adobe公共文件夹里的内容),双击它运行,选择界面里的“卸载”选项。卸载完后,再安装 Adobe After Effects 7.0,安装完后,看看 C:\Program Files\Common Files\Adobe下是否存在了Fonts和TypeSpt 这两个文件夹,如果存在,则启动Adobe After Effects 7.0时应该不会再提示错误信息了,这时,您也可以启动Adobe After Effects 7.0试试,

AfterEffects操作常见问题集(二)

操作常见问题集(二) 格式都无法导入 视频基本上全是格式地,总是还是转成再导入. 另外,什么终极解码我也装了,也装了,怎么还是出现不支持地格式. 新装地,难道这个版本有问题? 把文件后缀名改为即可, 关于启动时出现' 问题解决办法! 出现情况状态 现在以为例,在网上发现有不少人安装完后,在启动时或者新建文字报出如下一系列错误::' () :() : . 这是怎么回事,原因和解决方法如下: 原因:你地是绿色版本地不需要安装所以你坑定没有公共文件夹但是以下方法应该可以解决你地问题导致这样地错误是因为公共文件夹里缺少和这两个文件夹,(位于下),为什么这两个文件夹在安装时没有被安装?原因是在安装前,您地系统里肯定还安装了其它地产品(比如),并且这些产品都比地版本高(比如版本为,而只是),问题地关键在于这些产品在安装时都安装高版本地公共文件,如果地安装程序启动时检测到已经安装了高版本地公共文件后,就不会再对公共文件夹下地内容做出任何更改,也就造成了和这两个文件夹没有被安装到公共文件夹下. 解决方法: 打开相关产品地安装光盘(比如您安装了,可以把地安装光盘打开),在光盘根目录下有个文件夹,双击进入,看到里面有个名为地文件,(注:这个文件能够卸载公共文件夹里地内容),双击它运行,选择界面里地“卸载”选项.卸载完后,再安装,安装完后,看看下是否存在了和这两个文件夹,如果存在,则启动时应该不会再提示错误信息了,这时,您也可以启动试试,确定错误信息不会出现后,做最后一步工作,重新运行一次刚才用来卸载公共文件夹地那个,这次选择界面里地“安装”选项,把公共文件夹里地内容重新升级到高版本,以免使用低版本地公共文件. 解决方法: 下载地址 将解压后地文件夹拷贝到里面,再启动下如果没有这个文件夹就自己按照路径新建然后 在拷贝地不提错了很可能他地系统里面安装有其他地地软件有公共文件夹很多网友在打开模板时会出现“最初选择地输出模块不存在”地错误,这是怎么来地呢?又该怎么解决呢?今天我们一起探讨一下. 首先,我们打开英文版,新建一个合成,然后在合成上点右键,选择 然后,就会出现渲染队列地窗口,我们在这里设置一下输出路径,就选择这个文件夹吧,请确保这个文件夹存在,然后,开始渲染,成功! 下面,我们保存一下工程文件,文件名任意,路径任意!然后关闭工程 安装后启动报错解决办法 启动出错曾经一度困扰我二十多天,我换了好几个版本地都一样出错,无论还是还是都报错,我曾苦苦探索,也曾向各大论坛和群求租.终于发现解决地办法:现在以为例,在启动 时报出如下一系列错误::' () :() : . 而且只要打开就会出现,这是怎么回事,原因和解决方法如下: 原因:导致这样地错误是因为公共文件夹里缺少和这两个文件夹,(位于下),为什么这两个文件夹在安装时没有被安装?原因是在安装前,您地系统里肯定还安装了其它地

影视后期特效——aftereffects课程标准

《影视后期特效——After Effects》课程标准 一、课程概述 1、课程性质: 后期制作是制作一部影视作品的重要环节之一。随着计算机和数字化技术的发展,在后期制作中已经基本摆脱了传统的线性编辑模式,而转用以非线性编辑软件为主的非线性编辑方式。 After Effects是Adobe公司推出的一款图形视频处理软件,适用于从事设计和视频特技的机构,包括电视台、动画制作公司、个人后期制作工作室以及多媒体工作室。而在新兴的用户群,如网页设计师和图形设计师中,也开始有越来越多的人在使用After Effects。属于层类型后期软件。 本课程适计算机应用专业。 2、课程任务: (1)本课程的主要任务是理解影视特技及后期合成。掌握不同素材的导入、 编辑与管理。培养学生动画制作、影视后期合成的能力;使学生能适应影视与动漫制作专业的工作要求。 (2)培养学生利用数字合成及其他相关技术进行影视后期特技效果制作的实践技能。 3、设计思路 本课程是影视制作专业的一门选修课程,随着计算机多媒体技术的发展,After Effects(简称AE)已经广泛应用于各类影视广告视频

中,在后期制作中AE是较为重要和使用广泛的技术标准。大量的影视动画和电视片头的学习和制作就是通过AE来完成的,AE也是学生就业后从事影视后期制作工作中较为常用的工具软件,为此我们采用以实例为主的项目教学方法,通过大量的典型影视视频特效实例,让学生能熟练地运用AE制作出各类视频特效,为此而设置这门课程。 4、工作岗位能力分析 专业能力与职业能力目标 5、课程难点与重点 课程重点 (1)了解影视视频特效制作的原理,能够运用AE进行影视特效编辑。 (2)能够将AE与其他计算机绘图及动画片制作软件结合应用。 (3)理解动画片的后期合成流程,能够独立完成一部完成的动画片创作。 课程难点 培养学生的创造性,让学生能够发挥创意,独立创作完成的、带有独立思维的动画片作品。 6、课程特色 结合实例讲解的理论知识只是组成这门课教学模式的基础,我们通过视频教学的录制、电子书的制作,项目制作等方式,将理论与实践真正结合于该门课中。使学生能够通过新颖的教学模式,将课程更好的、更充分的理解吸收。

AEaftereffects教案

数 字 合 成 之 After Effects 5.5

第一章After effects 概述 概述:After effects 是用于影视后期数字合成的软件,它可以对多层的合成图像进行编辑, 制作出天衣无缝的数字合成效果;关键帧;路径概念的运用使after effects 可以方便的编辑 二维动画;它有着令人眼花缭乱的特级系统,使after effects 能够实现使用者的一切创意。一.After effects 的工作界面介绍 After effects 的工作界面如图1-1 所示 图1-1 (一)项目窗口 在工作界面的左侧是项目窗口,每次启动after effects 时,都自动建立一个名称为“untitled project.aep”de新项目,after effects就是以项目为单位进行影片制作和管理的,可以把影片需要的素材输入到项目窗口中,这些素材包括音频文件、视频文件,静态图片等类型。如图1-2 所示 图1-2

(二)时间线窗口 当建立合成的时候,同时产生了该合成的时间线窗口,在after effects 中,时间线窗口以时间为基准对层进行操作,在时间线窗口中可以调整素材层在合成中的时间位置、素材长度、叠加方式、渲染范围等许多方面的内容,几乎包括了 after effects 中的一切合成操作如图 1-3 所示; (三)合成窗口 图 1-3 Composition 窗口可以反映各种素材之间的关系,以及影片合成的效果,如图1-4 所示 图 1-4

(四)工具面板 使用工具面板中的工具可以在合成窗口或层窗口中对素材进行各种编辑,如移动、旋转、缩放,建立并编辑遮罩等,在工具面板中包括以下: ● :选取工具:用于在合成窗口中选取、移动对象。 ● :旋转工具; ● :路径工具:用于为素材加上不规则的遮罩 ● :矩形遮罩工具:可建立矩形遮罩 ● :旋转摄像机工具 ● :定位工具:用于改变定位点的位置 ● :摇移工具:用于摇移并查看素材 ● :坐标系工具:用于选择坐标系类型 二.After effects 的工作流程 1.创建项目 2.引入素材 3.创建合成 4.创建层 5.数字合成编辑 6.渲染输出影片 三.After effects 菜单介绍 1.File 菜单:包含新建项目、导入项目、输出影片等命令 2.Edit 菜单:包含各种编辑、剪切、粘贴、复制等常用操作命令 https://www.doczj.com/doc/e53188786.html,position (工程)菜单:包含创建新工程、输出影片等设置 https://www.doczj.com/doc/e53188786.html,yer(层)菜单:包含了层的类型,层的参数设置以及层的各种编辑命令 5.Effect(效果)菜单:包含了各种特效 6.Animation(动画)菜单:包含了各种关键帧动画设置的各种命令 7.View(查看)菜单:包含了关于comp 窗口设置的命令 8.Window(窗口):包含了各种快捷窗口; 9.Help 菜单

AfterEffects试题答案

After Effects 试题 After Effect CS6是Adobe公司的一款影视后期制作软件 一、单项选择题、共10题、每题 5 分 1. 在AE中进行影片渲染时,以下说法正确的是( B ) A 仍然可以用After effects 进行其他工作 B 不能使用After effects 进行其他工作 C整个windows系统都不能进行其他工作 D只可以使用adobe的其他程序?? 2. after effects 中,缩放动画是(C ) A 围绕层的定位点进行的 B 围绕原点进行的 C 围绕中心点进行的 D 没有围绕任何 点,是随机的 3. 在after effects 中,引入序列静态图片时,应??(B ) A 直接双击序列图像的第一个文件即可引入?? B 选择序列文件的第一个文件后,需要勾选“序列”选项,然后单击“打开”按钮 C需要选择全部序列图像的名称 D使用“导入”宀“合成” 4. 在after effects 中,复制层的快捷键是(D ) A Ctrl+V B Ctrl+B C Ctrl+C D Ctrl+D 5. 如果使用其他应用程序修改了项目中使用的素材文件,则下次打开项目文件时(B) A 仍然出现原素材 B 出现修改后的素材 C 原素材被修改,项目文件无法打开 D 提示原素材被修改是否替换素材 6. 将素材添加到合成的正确方法是(A ) A 直接拉动素材到时间轴窗口 B 直接双击素材 C 按快捷键“ Ctrl+/ ”

D 按快捷键“ Ctrl+ ” 7. 在after effects 中,点击层小三角显示出来的转换属性哪个没有(D )A 位置B 透明度 C 尺寸 D 亮度 8. 在Photoshop中绘制PSD文件导入After Effects 后,怎样保持各个图层信息 并可以对单个图层设置效果( C ) A 直接导入对象 B 直接导入为脚本 C 直接导入为合成 D 导入为 Photoshop 序列 9. 为特效的效果点设置动画后。下列哪个窗口能够对运动路径进行编辑(C )A 项目窗口 B 播放控制窗口 C 时间线窗口 D 特效控制窗口 10.AE软件是Adobe公司开发的,主要应用于(D) A 2 维动画制作 B 3 维动画制作 C 视频编辑D特效制作 二、首图视频动态制作、20分 以“主图视频制作”字样为主题,制作一个首图视频, 间为15 秒、尺寸自定。使用 AE软件完成, 时 其他说明:除以上必须的信息外、可加入其它信息,可以使用外来素材,上交时请把素材一并上交。 三、剪辑视频创意制作、20 分 剪辑合成一个25秒的视频,尺寸为1280*720,使用AE软件完成, 其他说明:可加入其它信息,可以使用外来素材,可以使用课程练习中素材。 (学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就 一定可以获得应有的回报)

adobeaftereffects介绍和功能

软件简介 新版本的After Effects带来了前所未有的卓越功能。在影像合成、动画、视觉效果、非线性编辑、设计动画样稿、多媒体和网页动画方面都有其发挥余地。其最新版本为Adobe After Effects CS5(即)。 [编辑本段] 主要功能 1. 高质量的视频 After Effects支持从4*4到30000*30000像素分辨率,包括高清晰度电视(HD TV)。 2. 多层剪辑 无限层电影和静态画面的成熟合成技术,使After Effects可以实现电影和静态画面无缝的合成。 3. 高效的关键帧编辑 After Effects中,关键帧支持具有所有层属性的动画,After Effects可以自动处理关键帧之间的变化。 4.无与伦比的准确性 After Ecffects可以精确到一个象素点的千分之六,可以准确地定位动画。 5.强大的路径功能 就像在纸上画草图一样,使用Motion Sketch可以轻松绘制动画路径,或者加入动画模糊。 6.强大的特技控制 After Effects使用多达85中的软插件修饰增强图象效果和动画控制。 7.同其他Adobe软件的无缝结合 After Effects在导入Photoshop和IIIustrator文件时,保留层信息。 8.高效的渲染效果 After Effects可以执行一个合成在不同尺寸大小上的多种渲染,或者执行一组任何数量的不同合成的渲染。

使用技巧 After Effects快捷键 项目窗口 新项目 Ctrl+Alt+N 打开项目 Ctrl+O 打开项目时只打开项目窗口按住Shift键 打开上次打开的项目 Ctrl+Alt+Shift+P 保存项目 Ctrl+S 选择上一子项上箭头 选择下一子项下箭头 打开选择的素材项或合成图像双击 在AE素材窗口中打开影片 Alt+双击 激活最近激活的合成图像 \ 增加选择的子项到最近激活的合成图像中 Ctrl+/ 显示所选的合成图像的设置 Ctrl+K 增加所选的合成图像的渲染队列窗口 Ctrl+Shift+/ 引入一个素材文件 Ctrl+i 引入多个素材文件 Ctrl+Alt+i 替换选择层的源素材或合成图像 Alt+从项目窗口拖动素材项到合成图像替换素材文件 Ctrl+H 设置解释素材选项 Ctrl+F 扫描发生变化的素材 Ctrl+Alt+Shift+L 重新调入素材 Ctrl+Alt+L 新建文件夹 Ctrl+Alt+Shift+N 记录素材解释方法 Ctrl+Alt+C 应用素材解释方法 Ctrl+Alt+V 设置代理文件 Ctrl+Alt+P 退出 Ctrl+Q 合成图像、层和素材窗口 在打开的窗口中循环 Ctrl+Tab 显示/隐藏标题安全区域和动作安全区域 ' 显示/隐藏网格 Ctrl+'

After Effects CS4下载 AECS4中文版

After E ffects CS4下载AE CS4中文版+汉化包+注册机+序列号+安装教程after ... after Eff ects CS4注册码等安装过后第一次启动AE CS4时候就可以输入注册码了前面输入错误的注册码这时候就能用了key: 1325-1819-4633-6359-5549-3839 1325-1347-4062-3946-3416-0598 ... After Effects CS4下载A ECS4官方破解激活版 ?运行环境:Win98/Win2000/WinXP ?软件语言:英文 ?软件类型:国产软件- 图形图像- 三维制作 ?授权方式:免费版 ?软件大小:1.00 GB AE CS4新增了查找功能但取消掉了时间线前面的时码显示,合成窗口下面的一样用。另外CC系列插件被完全内置了,软件的速度也快了许多...... 下载地址(鼠标右键点击,选择使用迅雷下载):官方多国语言完整版官方多国语言完整版汉化程序 安装激活说明: 1.安装客户端前在hosts文件中添加A DOBE激活方面的网址,以达到屏蔽在线激活验证的目的。 首先找到hosts文件,该文件详细位置是C:windowssystem32driversetchosts hosts 是个隐藏文件,请在文件夹选项中选定“显示隐藏的文件和文件夹” 用记事本打开hosts,在hosts中添加下列网址: 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 127.0.0.1 https://www.doczj.com/doc/e53188786.html, 2.开始安装的时候,选择试用选项,无需输入序列号。 3.在进行安装选择的时候,注意选择安装位置;默认状态下,安装全部软件和组建,可以根据自己的需要取消一些程序的安装。 4.界面语言建议选择默认的英语。 5.安装完成后,在开始中找到软件快捷方式,打开软件。 6.选择输入序列号,用“序列号生成器”生成序列号,然后将序列号(Windows Serial)填写好,完成破解。 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(完整word版)AdobeAfterEffectsCC2018中英文对照

AE CC 2018中英文对照一、File 文件 New > New Project 新项目文件(Ctrl+Alt+N) New Team Project 新团队项目文件 New Folder 新文件夹(Ctrl+Alt+Shift+N) Adobe Photoshop File 新Photoshop文件 Open Project 打开项目文件(Ctrl+O) Open Team Project 打开团队项目文件 Open Recent > 打开最近的文件 Browse in Bridge 在Bridge里浏览(Ctrl+Alt+Shift+O)Close 关闭(Ctrl+W) Close Project 关闭项目 Save 保存(Ctrl+S) Save As > Save As 另存为(Ctrl+Shift+S) Save a Copy 另存为副本 Save a Copy As XML 另存为XML(apex)文件 Save a Copy As CC(14) 另存为CC14文件 Save a Copy As CC(13) 另存为CC13文件 Increment and Save 增量保存 Revert 恢复 Import 导入> File 文件(Ctrl+I) Multiple Files 多个文件(Ctrl+Alt+I) From Libraries 从资料库 Adobe Premiere Pro Project Adobe Premiere Pro文件 Pro Import After Effects 增效工具 Vanishing Point(.vpe) 灭点文件 Placeholder 占位符 Solid 固态层

用AfterEffects做手绘风格视频特效

用AfterEffects做手绘风格视频特效 以前中央电视台有个片头用的就是手绘效果的京剧人物,做得很不错, 他用的方法我不知道,不过这里我想到了一些方法,大家不妨一起来讨论一下。 将视频转成手绘效果,还得从将图片转成手绘效果开始说起, 网上有些效果极佳的照片转手绘漫画的图片,但大多数都是需要手工重新描线然后再色彩处理, 虽然效果好,但这对于每秒25帧的视频来说就显得很奢侈了(但愿中央台的那个用的不是重新描线的方法)。 所以我们必须得用滤镜或者其它的方法来处理,不过这也告诉我们, 只要能给图象中的人物或者景物描出正确的轮廓边,那剩下的事情就非常好办了, 对于描轮廓边,我们自然想到的是AfterEffects自带的滤镜find edges。 好!我们就从它开始下手,首先请看原图和效果图。 一、AfterEffects对静止图片的处理

下面就是我全部的滤镜和排列顺序,我将一一讲解。 1,DE Grain Reducer是一个去视频噪声点的工具, 它的作用主要是为了使最后结果比较清晰,AE中也有内置的工具, 在Noise&Grain-->Remove Grain,不过操作就比较复杂,需要取样, 如果是初学者,其实也可以用高斯模糊或者快速模糊来代替,至于所需的数值, 可以在最后再来做相应的调整;。 2,第二个命令Find Edges唯一需要注意的就是要和原图以一定比例混合(我取了40%),如果不这样做也不是不可以,具体效果怎么样大家去尝试一下就知道了;。 3,Levels的数值可以与第一个特效配合起来调整,没有一定要求, 只要自己觉得过得去就可以了。 4,第四个滤镜是为了去色,很简单,变成黑白轮廓。 5,最后一个Brush Strokes滤镜在Stylize菜单里, 用来模拟笔刷效果,具体数值见图示。这些命令打造出了如右图的一个铅笔画人物。6,如红色框所示,将铅笔画图层与原图图层以一定比例混合起来, 就成了一幅彩色手绘画了。 本来教程到这里就算结束了,不过考虑到以上例子我用的素材是静止图片, 于是我从网上找来了一段网友视频做尝试…… 二、AfterEffects对视频图片的处理 本来教程到这里就算结束了,不过考虑到以上例子我用的素材是静止图片, 于是我从网上找来了一段网友视频做尝试,结果大失所望,下面是我的处理结果。

AfterEffects;CS5模拟考试题库有答案

Adobe 创意大学计划1. 如图所示:在 After Effects 中,为文字制作类似打字机的逐字出现效果,需要使用什么属性设 置关键帧? A.只需对Start属性设置关键帧 B.需要对End和Offset属性设置关键帧 C.只需对SourceText属性设置关键帧 D.需要在PathOptions设置关键帧 正确答案:C 2. 制作打字机式的文本逐个出现动画需要什么属性设置关键帧? A.Path Option B.Source Text C.Grouping Alignment D.Anchor Point 正确答案:B

3. A. B. C. D. 正确答案:ABCD 在 After Effects 中,对于已生成的遮罩,可以进行那些调节? 对遮罩边缘 进行羽化设置遮罩的不透明度扩展和收缩遮罩 对遮罩进行反转 4. 沿一段 Mask 产生描边动画,效果如图所示。应该使用下列哪种滤镜特效? Adobe 创意大学计划 A.Stroke B.Write-on C.Brush Stroke D.V egas 正确答案:A 5. 为带有 G-Buffer 通道信息的层设置雾化效果,如图所示,可以使用特效? A.Depth Matte B.Depth of Field

C.Fog 3D D.ID Matte 正确答案:C 6. 要达成如“右”图所示的效果(左为没有映射的效果),让环境映射到人物身体上,应该使用下列何种特效? Adobe 创意大学计划 A.Smear B.Displacement Map C.Channel Combiner

D.Color Link 正确答案:B 7 如图所示的万花筒效果,应该使用下列哪个特效完成? A.Texturize B.Radio Waves C.Fractal D.Fractal Noise 正确答案:C 8. 对一个带有 Z 通道信息的三维素材,用什么特效才能做出图中前实后虚的景深效果? Adobe 创意大学计划

Adobe After Effects CS6下载

Adobe After Effects CS6下载 下载文档,然后把下面的地址复制进迅雷一类的下载软件即可下载: http://tria l https://www.doczj.com/doc/e53188786.html,/AdobeProduct s/AEFT/11/win64/AfterEffects_11_LS7.7z After Effect s是Adobe公司推出的一款图形视频处理软件,适用于从事设计和视频特技的机构,包括电视台、动画制作公司、个人后期制作工作室以及多媒体工作室。而在新兴的用户群,如网页设计师和图形设计师中,也开始有越来越多的人在使用After Effects。属于层类型后期软件。 After Effects软件介绍 软件简介 After effects 并不是一个非线性编辑软件,它主要是用于影视后期制作。一些特效片后期制作的在后期合成中就采用After effects。After Effects 4.1是Adobe公司于一九九九年底推出的版本,是Adobe After effects 4.0的升级版。 版本简介 Adobe After Effects 4.1针对不同需求的人士,提供Standard、Production Bundle两种版本,Standard版本提供所有主要的合成控制,2D动画及专业动画制作上的特效程序,较适合从事影视动画制作的相关人士。Production Bundle版本更加入了多种混色去背景能力,提供了高级的运动控制、变形特效、粒子特效,是专业的影视后期处理工具。 功能介绍 图形视频处理Adobe After Effects软件可以帮助您高效且精确地创建无数种引人注目的动态图形和震撼人心的视觉效果。利用与其他Adobe软件无与伦比的紧密集成和高度灵活的2D和3D合成,以及数百种预设的效果和动画,为您的电影、视频、DVD和Macromedia Flash作品增添令人耳目一新的效果。强大的路径功能就像在纸上画草图一样,使用Motion Sketch可以轻松绘制动画路径,或者加入动画模糊。强大的特技控制After Effects使用多达85种的软插件修饰增强图象效果和动画控制。同其他Adobe软件的结合After Effects在导入Photoshop和IIIustrator文件时,保留层信息。After Effects提供多种转场效果选择,并可自主调整效果,让剪辑者通过较简单的操作就可以打造出自然衔接的影像效果。高质量的视频After Effects支持从4*4到30000*30000像素分辨率,包括高清晰度电视(HDTV)。多层剪辑 无限层电影和静态画术,使After Effects可以实现电影和静态画面无缝的合成。高效的关键帧编辑 After Effects中,关键帧支持具有所有层属性的动画,After Effects可以自动处理关键帧之间的变化。无与伦比的准确性After Effects可以精确到一个象素点的千分之六,可以准确地定位动画。

相关主题
文本预览
相关文档 最新文档