当前位置:文档之家› 向量典型例题

向量典型例题

向量典型例题
向量典型例题

2011

年全国各地高考数学试题及解答分类汇编大全

(10平面向量)

一、选择题: 5.(2011辽宁理)若a ,b ,c 均为单位向量,且0=?b a ,0)()(≤-?-c b c a ,则||c b a -+的最大值为( ) A .12- B .1 C .2 D .2

7. (2011全国大纲卷理)设向量a r ,b r ,c r 满足||||1a b ==r r ,12

a b =-r r g ,,60a c b c ?<-->=r r r r ,则||c r 的最大

值等于( )

(A)2

(D)1 7.【答案】A

【解析】如图,设,,AB a AD b AC c ===uu u r r uuu r r uuu r r

,则120,60

B A D B

C D

??

∠=∠=180BAD BCD ?

∠+∠=,∴,,,ABC D

四点共圆,当AC 为圆的直径时,

||c r

最大,最大值为2.

选A 9. (2011山东文 )设1A ,2A ,3A ,4A 若

1312A A A A λ= (λ∈R),1412A A A A μ= (μ∈R),且11

2λμ

+=,则称3A ,4A 割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( )

(A) C 可能是线段AB 的中点 (B) D 可能是线段AB 的中点

(C) C ,D 可能同时在线段AB 上 (D) C ,D 不可能同时在线段AB 的延长线上 9.【答案】D

【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=

(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,

因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且

11

2c d

+=, 故选D. 10.解析:根据题意可知112c d

+=,若C 或D 是线段AB 的中点,则12c =,或1

2d =,矛盾;

若C,D 可能同时在线段AB 上,则01,01,c d <<<<则11

2c d

+>矛盾,若C,D 同时在线段AB 的延长线上,

则1,1c d >>,11

02c d <+<,故C,D 不可能同时在线段AB 的延长线上,答案选D 。

11.(2011上海文)设1234,,,A A A A 是平面上给定的4个不同的点,则使12340MA MA MA MA +++=

成立的点M 的个数为〖答〗 ( )

A .0

B .1

C .2

D .4

12. (2011上海理)设12345,,,,A A A A A 是平面上给定的5个不同点,则使

12345

MA MA MA MA MA ++++ 0=

成立的点

M 的个数为( )

(A )0. (B )1. (C )5. (D )10.

13.(2011四川文、理)如图,正六边形ABCDEF 中,BA CD EF ++=

( )

(A )0 (B )BE (C )AD

(D )CF 答案:D

解析:BA CD EF CD DE EF CF ++=++=

,选D .

14.(2011重庆文)已知向量(1,),(2,2),a k b a b a ==+且与共线,那么a b ?的值为

( ) A .1 B .2 C .3 D .4

二、填空题:

4.(2011湖南文)设向量,a b 满足||25,(2,1),a b ==

且a b 与的方向相反,则a 的坐标为 .

解析:由题2

||215b =+= ,所以2(4,2).a b =-=--

5.(2011湖南理)在边长为1的正三角形ABC 中, 设2,3,

BC BD CA CE == 则AD BE ?=

__________________.5.1

4

-

9.(2011全国新课标卷文)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量ka-b 垂直,则k=

9.解析:本题考查向量的基本运算和性质,属于容易题。 解法一:直接法 (a+b)(ka-b)=0展开易得k=1.

解法二:凭经验 k=1时a+b, a-b 数量积为0,易知k=1.

10.(2011上海文、理)在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则A B A D ?=

10.152

11.(2011天津文、理)已知直角梯形ABCD 中,AD //BC ,0

90ADC ∠=,2,1AD BC ==,

P 是腰DC 上的动点,则

3PA PB + 的最小值为____________ 【解析】建立如图所示的坐标系,设PC h =,则(2,0),(1,)A B h ,设(0,),(0)P y y h ≤≤

则(2,),(1,)PA y PB h y =-=- ,∴2325(34)255PA PB h y +=+-≥=

.

12.(2011浙江文、理)若平面向量α、β 满足11αβ=≤,且以向量α、β为邻边的平行四边形的面积为12

,则α和β的夹角 θ的取值范围是____________________________。 【解析】由题意得:2

1

sin =θβα,∵1=α,1≤β,∴2121sin ≥=

βθ, 又∵),0(πθ∈,∴5[,]65

ππ

θ∈

2012年高考真题理科数学解析分类汇编6 平面向量

2.【2012高考浙江理5】设a ,b 是两个非零向量。

A.若|a+b |=|a |-|b |,则a ⊥b

B.若a ⊥b ,则|a +b |=|a |-|b |

C.若|a +b |=|a |-|b |,则存在实数λ,使得b =λa

D.若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 【答案】C

【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立.

3.【2012高考四川理7】设a 、b 都是非零向量,下列四个条件中,使||||

a b

a b =

成立的充分条件是( )

A 、a b =-

B 、//a b

C 、2a b =

D 、//a b 且||||a b = 【解析】A.|

|||b a =为既不充分也不必要条件;B.可以推得||||

a b

a b =

=C .为充分不必要条件;D 同B.

5.【2012高考江西理7】在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则

2

2

2

PA PB PC

+= A .2 B .4 C .5 D .10【答案】D

命题意图:本题主要考查两点间的距离公式,以及坐标法这一重要的解题方法和数形结合的数学思想.【解

析】将直角三角形放入直角坐标系中,如图,设0,),,0(),0,(>b a b B a A ,则

)2,2(b a D ,)4,4(b a P ,所以1616)4()4(22222b a b a PC +=

+=,16916)4()4(222

22b a b b a PB +=-+=,16169)4()4(2222

2

b a b a a PA +=+-=,所以22222222210)16

16(101616916916PC b a b a b a PB PA =+=+++=+,

所以

102

2

2=+PC

PB PA ,选D.

6.【2012高考湖南理7】在△ABC 中,AB=2,AC=3,AB BC

= 1则___BC =.

C.

【答案】A

【解析】由下图知AB BC

= cos()2(cos )1AB BC B BC B π-=??-= .

1

cos 2B BC

∴=

-.又由余弦定理知222cos 2AB BC AC B AB BC +-=?

,解得BC =. .

8.【2012高考广东理8】对任意两个非零的平面向量α和β,定义β

ββ

αβα??=

.若平面向量a ,b 满足|a|≥|b |>0,a 与b 的夹角)4,

0(π

θ∈,且b 和a b 都在集合}|2{Z n n

∈中,则b = A .12

B.1

C. 32

D. 5

2

【解析】因为22

cos ||>≥=?=θθb a b b b a b a ,1cos <≤==

θθa b , 且b a 和a b 都在集合}|2{Z n n

∈中,所以21o s ||==θa b a b ,θcos 21||=a b ,所以

2c o s 2o s 2

<==θθb a ,因为)4,0(πθ∈,所以21<

9.【2012高考安徽理8】在平面直角坐标系中,(0,0),(6,8)O P ,

将向量OP 按逆时针旋转34

π

后,得向量OQ ,则点Q 的坐标是( )【答案】A

()

A (- ()B

(- ()C

(2)-- ()

D (-

C

【解析】【方法一】设34

(10cos ,10sin )cos ,sin 55

OP θθθθ=?== ,

则33(10cos(),10sin())(44

OQ ππθθ=++=- .

【方法二】将向量(6,OP = 按逆时针旋转

32

π

后得(8

,OM =-

,则

)(

OQ OP OM =+=- .

10.【2012高考天津理7】已知ABC ?为等边三角形,AB=2,设点P ,Q 满足λ=,)1(λ-=,

R ∈λ,若2

3

-=?,则λ=

(A )2

1

(B )221± (C )2101± (D )2223±-

【答案】A

【解析】如图

,设==, ,则2,2=?==,又

)1(λ-+-=+=,

λ+-=+=,由

2

3

-

=?得

2

3)1(1()(])1([2-

=?+-+--=+-?-+-λλλλλ,即

2

3

)1(24)1(42-=+-+--λλλλ,整理01442=+-λλ,即0)12(2=-λ,解得21=λ选A.

11.【2012高考全国卷理6】ABC ?中,AB 边上的高为CD ,若,,

0,||1,||2CB a CA b a b a b ==?===

,则AD =

A .1133a b -

B .2233a b -

C .3355a b -

D .4455

a b -

【解析】由0a b ?= 可得90ACB ∠=?,故AB =CD =,所以AD =,故

4444()5555

AD AB CB CA a b ==-=-

,故选答案D

12.【2012高考新课标理13】已知向量,a b 夹角为45?

,且1,2a a b =-= 则_____b = 【答案】

【解析】因为102=-a ,所以10)2(2

=-b a ,即104=?-,所以

104540

=-+06=--23=2-=(舍去).

13.【2012高考浙江理15】在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ?

=________. 【解析】法一此题最适合的方法是特例法.

假设?ABC 是以AB =AC 的等腰三角形,如图,

AM =3,BC =10,AB =AC .

cos ∠BAC =34341008

23417

+-=-?.AB AC ? =cos 16AB AC BAC ?∠=-

法二:163104

1

41)21()21(2222-=+?-=+-=+?+-

=?. 15.【2012高考山东理16】如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆

上一点P 的位置在(0,0),圆在x 轴上沿正向滚动。当圆滚动到圆心位于(2,1)时,OP

的坐标为

______________.

【答案】)2cos 1,2sin 2(-- 【解析】法

1:因为圆心移动的距离为2,所以劣弧2=PA ,即圆心角

2=∠P C A ,,则2

-

=∠PCA ,所以2c o s )2

2s i n (-=-=π

PB ,

2sin )22cos(=-=π

CB ,所以2s i

n 22-=-=CB x p ,2cos 11-=+=PB y p ,所以

)2cos 1,2sin 2(--=OP 。

法2:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为?

?

?+=+=θθsin 1cos 2y x ,且223,2-==∠π

θPCD ,

则点P 的坐标为??

???

-=-+=-=-+=2

cos 1)223sin(12sin 2)223cos(2π

πy x ,即)2cos 1,2sin 2(--=.

16.【2012高考北京理13】已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则CB DE ?的值为________,

DC DE ?的最大值为______。 【答案】1,1

【解析】根据平面向量的数量积公式=?=?DA DE CB DE θcos ||||DA DE ?,由图可知,

||cos ||DA DE =?θ,因此1||2==?DA CB DE ,

=?=?αcos ||||DC DE DC DE αcos ||?DE ,而αcos ||?DE 就是向量DE 在边上的射影,要想让DC DE ?最大,即让射影最大,此时E 点与B 点重合,射影为DC ,所以长度为1.

2013年高考真题理科数学解析分类汇编6 平面向量

一选择题

1.四川12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=

,则

λ=_____2_______

解析:

所以λ=2

2.安徽理(9)在平面直角坐标系中,o 是坐标原点,两定点,A B 满足

则点集{P|=

λ,所表示的区域的面积是

(A

)(B

)(C )

(D

)【答案】D

如图:在三角形OAB 内 λ+μ<1, λ>0, μ>0

同理在在三角形OCD 内 ?λ?μ<1,? λ>0,? μ>0, 在在三角形OAD 内 λ?μ<1, λ>0,? μ>0 在在三角形OBC 内 ?λ+μ<1,? λ>0, μ>0

3

2cos 4cos ||||π

θθθ=

?==??=?OB OA OB OA .

所以符合条件的是矩形ABCD 面积为所以选D

4.[湖南]6. 已知

是单位向量,

.若向量c 满足

,则

的取值范围是,

A .??

B .??

C .1????

D .1????

【解析】方法一: 因为

是单位向量,?所以建立平面直角坐标系设

, =

, =

,得

=1,

利用两圆的位置关系易得

方法二:因为

=

=1+1+0=2

?

?

?

因为所以

+=?+≤?

选A

6.辽宁(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ?若为直角三角形则必有

A .3b a =

B .31b a a

=+

C .()3310b a b a a ?

?---= ??? D .3310b a b a a -+--=

【答案】C

【解析】若A 为直角,则根据A 、B 纵坐标相等,所以30b a -=;若B 为直角,则利用1OB AB K K =-或

得31

0b a a

--

=,所以选C 8.

9.福建7. 在四边形ABCD 中,)2,1(=,)2,4(-=,则该四边形的面积为( )

A.5

B.52

C.5

D.10

11.新课标II (13)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?=

_______。 【答案】2

【解析】在正方形中,12

AE AD DC =+

,BD BA AD AD DC =+=- ,所以

2222111

()()222222AE BD AD DC AD DC AD DC ?=+?-=-=-?= 。

二填空题

12.天津(12) 在平行四边形ABCD 中,

= 1, 60BAD ?∠=, E 为CD 的中点. 若

,

则AB 的长为 .

60BAD ?∠=?

=

?①

?=1??②

解①②得?+ 0?

13.

14.[江苏] 10.设E D ,分别是ABC ?的边BC AB ,上的点,AB AD 21=,BC BE 3

2

=,

若21λλ+=(21λλ,为实数),则21λλ+的值为 . 【解析】)(32

213221AC BA AB BC AB BE DB DE ++=+=

+= AC AB AC AB 213

2

61λλ+=+-=

所以,611-=λ,3

2

2=λ,=+21λλ12 .

15.江西12.设1e ,2e 为单位向量。且1e ,2e 的夹角为3

π

,若123a e e =+,12b e =,则向量a 在b 方向上的射影为

17.山东15、已知向量 AB 与 AC 的夹角为0

120,且3, 2.== AB AC 若λ=+ AP AB AC ,

且⊥

AP BC ,则实数λ的值为

____________.

19.新课标II (13)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?=

_______。 【答案】2

【解析】在正方形中,12

A E A D D C =+

,BD BA AD AD DC =+=- ,所以。

A

D

B

C

E

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

平面向量经典习题_提高篇

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,- 2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与 c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116

C.6 11D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ =6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、 b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B.

(理)向量a ,b 满足|a |=1,|a -b |=3 2,a 与b 的夹角为60°, 则|b |=( ) A.12 B.1 3 C.1 4 D.15 [答案] A [解析] ∵|a -b |=32,∴|a |2+|b |2 -2a ·b =34, ∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2 -x =34,∵x >0,∴x =1 2 . 4. 若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示 c 为( ) A .-a +3b B .a -3b

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: ) AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 ) (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。

平面向量典型题型大全

平面向量 题型1.基本概念判断正误: 例2 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r ____;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则||a b c ++r r r =_____ (3)若O 是ABC V 所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r ,则ABC V 的形状为_ 9.与向量a =(12,5)平行的单位向量为 ( ) A .125,1313??- ??? B .12 5,1313??-- ??? C .125125,,13131313????-- ? ?????或 D .125125,,13131313???? -- ? ????? 或 10.如图,D 、E 、F 分别是?ABC 边AB 、BC 、CA 上的 中点,则下列等式中成立的有_________: ①+-=u u u r u u u r u u u r FD DA AF 0 ②+-=u u u r u u u r u u u r FD DE EF 0 ③+-=u u u r u u u r u u u r DE DA BE 0 ④+-=u u u r u u u r u u u r AD BE AF 0 11.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r ,则( ) A.0PA PB +=u u u r u u u r r B.0PC PA +=u u u r u u u r r C.0PB PC +=u u u r u u u r r D.0PA PB PC ++=u u u r u u u r u u u r r 12.已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=u u u r u u u r ,其中λ等于 ( ) A.2 B. 1 2 C.-3 D.-13 13.设向量a=(1, -3),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形, 则向量d 为 ( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 14.如图2,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+u u u r u u u r u u u r ,则 x = ,y = . 图2 15、已知O 是ABC △所在平面内一点D 为BC 边中点且20OA OB OC ++=u u u r u u u r u u u r r 那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 题型3平面向量基本定理 F E C B A

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。

平面向量经典习题-提高篇61861

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-1 3 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .-3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116 C.611 D.116 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ),

∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B. (理)向量a,b满足|a|=1,|a-b|= 3 2 ,a与b的夹角为60°,则|b|=( ) A.1 2 B. 1 3 C.1 4 D. 1 5 [答案] A [解析] ∵|a-b|= 3 2 ,∴|a|2+|b|2-2a·b= 3 4 ,

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

平面向量典型例题67629

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k , 3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =( 3,1)+(0,2)=( 3,3), ∵a +2b 与c 垂直,∴(a +2b )·c = 3k +3 3=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .- 611 B .-116 C.611 D.11 6 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611 . 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,

平面向量典型例题

平面向量典型例题

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116 C.611 D.116 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11. 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,∴〈a ,b 〉=120°,故选B. (理)向量a ,b 满足|a |=1,|a -b |=3 2 ,a 与b 的夹角为60°,则|b |=( ) A.12 B.13 C.14 D.15 [答案] A [解析] ∵|a -b |= 32,∴|a |2+|b |2-2a ·b =34 ,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1 2 .

空间向量和立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B . 3 C .3 D .2 3 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为11AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为1111 33 OA AA AB AC =- -,11AB AB AA =+ 2111126 ,,333 OA AB a OA AB ?= == 则1AB 与底面ABC 所成角的正弦值为 111 12 3 OA AB AO AB ?= . 二、填空题: 1 .(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11 (),22 AN AC AB EM AC AE =+=-, 11()()22AN EM AB AC AC AE ?=+?-=1 2 故EM AN ,所成角的余弦值 1 6 AN EM AN EM ?= 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

平面向量典型例题

平面向量经典例题: 1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于( ) A.-2 B.-1 3 C.-1 D.-2 3 [答案] C [解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1、 2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=( ) A.-1 B.- 3 C.-3 D.1 [答案] C [解析] a+2b=(3,1)+(0,2)=(3,3), ∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3、 (理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为( ) A.-6 11 B.- 11 6 C、6 11 D、 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11、 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴

〈a ,b 〉=120°,故选B 、 (理)向量a ,b 满足|a |=1,|a -b |=32 ,a 与b 的夹角为60°,则|b |=( ) A 、1 2 B 、1 3 C 、14 D 、15 [答案] A [解析] ∵|a -b |= 32 ,∴|a |2+|b |2-2a ·b = 34 ,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1 2、 4. 若AB →·BC →+AB →2 =0,则△ABC 必定就是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. 若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A.-a +3b B.a -3b C.3a -b D.-3a +b [答案] B [解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ), ∴?? ? λ+μ=-2λ-μ=4 ,∴?? ? λ=1μ=-3 ,∴c =a -3b ,故选B 、 在平行四边形ABCD 中,AC 与BD 交于O ,E 就是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC → = a ,BD →= b ,则AF → 等于( ) A 、1 4a +1 2b B 、2 3a +1 3b C 、12a +14 b D 、13a +23 b

平面向量典型例题

平面向量经典例题: 1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于() A.-2B.-1 3 C.-1 D.-2 3 [答案] C [解析]λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=() A.-1 B.- 3 C.-3 D.1 [答案] C [解析]a+2b=(3,1)+(0,2)=(3,3), ∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3. (理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为() A.-6 11B.- 11 6 C.6 11 D. 11 6 [答案] C [解析]a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11. 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为() A.150°B.120° C.60°D.30° [答案] B [解析]如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴ 〈a,b〉=120°,故选B. (理)向量a,b满足|a|=1,|a-b|= 3 2,a与b的夹角为60°,则|b|=() A.1 2 B. 1 3 C.1 4 D. 1 5 [答案] A

高中数学必修平面向量测试试卷典型例题含详细答案

高中数学必修平面向量测试试卷典型例题含详 细答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高中数学平面向量组卷一.选择题(共18小题) 1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度 |×|=||||sinθ,若 =(2,0),﹣=(1,﹣),则|×(+)|=() A.4B.C.6D.2 2.已知,为单位向量,其夹角为60°,则(2﹣) =() A.﹣1 B.0C.1D.2 3.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=() A.2B.C.0D.﹣ 4.向量,,且∥,则=()A.B.C.D. 5.如图,在△ABC中,BD=2DC.若,,则=() A.B.C.D. 6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=() A.B.C.D. 7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若 ,则的夹角为() A.B.C.D. 8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是() A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.已知点G是△ABC的重心,若A=,=3,则||的最小值为() A.B.C.D.2 10.如图,各棱长都为2的四面体ABCD中,=,=2,则向量=() A.﹣B.C.﹣D.

11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的 直线与该图象交于D,E两点,则() 的值为() A.B.C.1D.2 12.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)(+﹣2)=0,则 △ABC的形状一定为() A.等边三角形B.直角三角形C.钝三角形D.等腰三角形13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比 等于() A.B.C.D. 14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的() A.垂心B.外心C.重心D.内心15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D. 16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为() A.B.C.D. 17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于 () A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:3 18.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则= () A.2B.4C.5D.10 二.解答题(共6小题) 19.如图示,在△ABC中,若A,B两点坐标分别为(2,0),(﹣3,4)点C在AB上,且OC平分∠BOA. (1)求∠AOB的余弦值; (2)求点C的坐标.

平面向量经典练习题

第五章 平面向量 第一教时 教材:向量 目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相 等,根据图形判定向量是否平行、共线、相等。 过程: 一、开场白:课本P93(略) 实例:老鼠由A 向西北逃窜,猫在B 处向东追去, 问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了。 二、 提出课题:平面向量 1. 意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量等 注意:1?数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用 以研究空间性质。 2. 向量的表示方法: 1?几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) 2?字母表示法:可表示为(印刷时用黑体字) P95 例 用1cm 表示5n mail (海里) 3. 模的概念:向量 记作:|| 模是可以比较大小的 4. 两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 例:温度有零上零下之分,“温度”是否向量? 答:不是。因为零上零下也只是大小之分。 例:与是否同一向量? 答:不是同一向量。 例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。 三、 向量间的关系: 1. 平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 = = = 例:(P95)略 变式一:与向量长度相等的向量有多少个?(11个) 变式二:是否存在与向量长度相等、方向相反的向量?(存在) 变式三:与向量共线的向量有哪些?(,,) 四、 小结: A B A(起点) B (终点) a a b c C O B A

高一数学平面向量知识点及典型例题解析

高一数学平面向量知识点 及典型例题解析 Prepared on 22 November 2020

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB ,a ;坐标表示法 ),(y x j y i x a =+= 。 向量的模(长度),记作|AB |.即向量的大小,记作|a |。向量不能比较大小, 但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0平行于任何向量。(与0的区别) ③单位向量|0 a |=1。④平行向量(共线向量)方向相同或相反的非零向量, 记作a ∥b ⑤相等向量记为b a =。大小相等,方向相同 ),(),(2211y x y x =???==?2121 y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a 与b 的 和,记作a+b ,即 a+b AB BC AC =+=

特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR +++ ++=,但这时必须“首尾相连”。②向量减法: 同一 个图中画出a b a b +-、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线?有且只有一个实数λ,使得b =a λ。 二.【典例解析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)若 b a ==则, (3)单位向量都相等 (4) 向量就是有向线段

高二数学空间向量苏教版(文)

高二数学空间向量苏教版(文) 【本讲教育信息】 一. 教学内容: 空间向量 二. 本周教学目标: 1. 运用类比的方法,经历向量及运算由平面向空间推广的过程。 2. 了解空间向量的概念,掌握空间向量的线性运算及其性质.理解空间向量共线的条件。 3. 了解向量共面的含义,理解共面向量定理,能运用共面向量定理证明有关线面平行和点共面的简单问题。 4. 掌握空间向量基本定理及推论,理解空间任意一个向量可以用不共面的三个已知向量线性表示,而且这种表示是唯一的。 5. 能用坐标表示空间向量,掌握空间向量的坐标运算,会根据向量的坐标判断两个空间向量的平行。 6. 掌握空间向量夹角的概念,掌握空间向量的数量积的概念、性质和运算率。了解空间向量的几何意义;掌握空间向量数量积的坐标形式,会用向量的方法解决有关垂直、夹角和距离的简单问题。 三. 本周知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线 向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。

相关主题
文本预览
相关文档 最新文档