当前位置:文档之家› 乙醛氧化制醋酸氧化工段

乙醛氧化制醋酸氧化工段

乙醛氧化制醋酸氧化工段
乙醛氧化制醋酸氧化工段

乙醛氧化制醋酸工艺——氧化工段

目录

第一章概述 (2)

第二章生产方法及工艺路线 (3)

2.1生产方法及反应机理 (3)

2.2工艺流程简述 (4)

2.2.1 装置流程简述 (4)

2.2.2 氧化系统流程简述 (5)

第三章工艺技术指标 (6)

3.1控制指标 (6)

3.2分析项目 (7)

第四章岗位操作法 (7)

4.1冷态开车/装置开工 (7)

4.1.1 开工应具备的条件 (7)

4.1.2 引公用工程 (8)

4.1.3 N2吹扫、置换气密 (8)

4.1.4 系统水运试车 (8)

4.1.5 酸洗反应系统 (8)

4.1.6 全系统大循环和精馏系统闭路循环 (8)

4.1.7 第一氧化塔配制氧化液 (9)

4.1.8 第一氧化塔投氧开车 (9)

4.1.9 第二氧化塔投氧 (11)

4.1.10 吸收塔投用 (11)

4.1.11氧化塔出料 (11)

4.2正常停车 (12)

4.2.1 氧化系统停车 (12)

4.3紧急停车 (12)

4.3.1 事故停车 (12)

4.3.2 紧急停车 (12)

4.4岗位操作法 (14)

4.4.1 第一氧化塔 (14)

4.4.2 第二氧化塔(T102) (15)

4.4.3 洗涤液罐 (15)

4.5联锁停车 (15)

第一章 概述

乙酸又名醋酸,英文名称为acetic acid ,是具有刺激气味的无色透明液体,无水乙酸在低温时凝固成冰状,俗称冰醋酸。在16.7℃以下时,纯乙酸呈无色结晶,其沸点是118℃。乙酸蒸气刺激呼吸道及粘膜(特别是对眼睛的粘膜),浓乙酸可灼烧皮肤。乙酸是重要的有机酸之一。其结构式是:

乙酸是稳定的化合物;但在一定的条件下,能引起一系列的化学反应。如:在强酸(H 2SO 4或HCl )存在下,乙酸与醇共热,发生酯化反应:

乙酸是许多有机物的良好溶剂,能与水、醇、酯和氯仿等溶剂以任意比例相混合。乙酸除用作溶剂外,还有广泛的用途,在化学工业中占有重要的位置,其用途遍及醋酸乙烯、醋酸纤维素、醋酸酯类等多种领域。乙酸是重要的化工原料,可制备多种乙酸衍生物如乙酸酐、氯乙酸、乙酸纤维素等,适用于生产对苯二甲酸、纺织印染、发酵制氨基酸,也作为杀菌剂。在食品工业中,乙酸作为防腐剂;在有机化工中,乙酸裂解可制得乙酸酐,而乙酸酐是制取乙酸纤维的原料。另外,由乙酸制得聚酯类,可作为油漆的溶剂和增塑剂;某些酯类可作为进一步合成的原料。在制药工业中,乙酸是制取阿司匹林的原料。利用乙酸的酸性,可作为天然橡胶制造工业中的胶乳凝胶济,照相的显像停止剂等。

乙酸的生产具有悠久的历史,早期乙酸是由植物原料加工而获得或者通过乙醇发酵的方法制得,也有通过木材干馏而获得的。目前,国内外已经开发出了乙酸的多种合成工艺,包括烷烃、烯烃及其酯类的氧化,其中应用最广的是乙醛氧化法制备乙酸。下面主要介绍乙醛氧化法制备乙酸。

C

H 3C

OH

O

CH 3COOH+C 2H 5OH CH 3COOC 2H 5+H 2O

H

+

第二章 生产方法及工艺路线

2.1 生产方法及反应机理

乙醛首先与空气或氧气氧化成过氧醋酸,而过氧醋酸很不稳定,在醋酸锰的催化下发生分解,同时使另一分子的乙醛氧化,生成二分子乙酸。氧化反应是放热反应。

CH 3CHO+O 2→CH 3COOOH

CH 3COOOH+CH 3CHO →2CH3COOH 总的化学反应方程式为:

CH 3CHO + 1/2O 2 → CH 3COOH + 292.0kj/mol

在氧化塔内,还有一系列的氧化反应,主要副产物有甲酸、甲酯、二氧化碳、水、醋酸甲酯等。

CH 3COOOH →CH3OH+CO 2 CH 3OH+CO 2→HCOOH+ H 2O

CH 3COOOH+ CH 3COOH →CH 3COOCH 3+ CO 2+ H 2O CH 3OH+ CH 3COOH →+ H 2O CH 3OH →CH 4+CO

CH 3CH 2OH+ CH 3COOH →CH 3COOC 2H 5 + H 2O CH 3CH 2OH+ HCOOH →HCOOC 2H 5 + H 2O

3CH 3CHO+3O 2→HCOOH+ 2CH 3COOH+ CO 2+ H2O 4CH 3CHO+5O 2→4CO 2+ 4H 2O

3CH 3CHO+2O 2→CH 3CH(OCOCH 3)2+ H2O 2CH 3COOH →CH 3COCH 3+ CO 2+ H2O CH 3COOH →CH 4+CO 2

乙醛氧化制醋酸的反应机理一般认为可以用自由基的链接反应机理来进行解释,常温下乙醛就可以自动地以很慢的速度吸收空气中的氧而被氧化生成过氧醋酸。

CH 3CHO+O 2→

过氧醋酸以很慢的速度分解生成自由基。

C

H 3C O

O

OH

CH 3COOOH → + OH

自由基CH3COO 引发下列的链锁反应: + CH 3CHO → CH 3CO + CH 3COOH

CH 3CO + O2 → + CH 3CHO → + CH 3COOOH

+ CH 3CHO → 2 CH 3COOH

自由基引发一系列的反应生成醋酸。但过氧醋酸是一个极不安定的化合物,积累到一定程度就会分解而引起爆炸。因此,该反应必须在催化剂存在下才能顺利进行。催化剂的作用是将乙醛氧化时生成的过氧醋酸及时分解成醋酸,而防止过氧醋酸的积累、分解和爆炸。

2.2 工艺流程简述

2.2.1 装置流程简述

本反应装置系统采用双塔串联氧化流程,主要装置有第一氧化塔T101、第二氧化塔T102、尾气洗涤塔T103、氧化液中间贮罐V102、碱液贮罐V105。其中T101是外冷式反应塔,反应液由循环泵从塔底抽出,进入换热器中以水带走反应热,降温后的反应液再由反应器的中上部返回塔内;T102是内冷式反应塔,它是在反应塔内安装多层冷却盘管,管内以循环水冷却。

乙醛和氧气首先在全返混型的反应器-第一氧化塔T101中反应(催化剂溶液直

C H 3C

O

O OH

C

H 3C O

O O C H 3C

O

C

H 3C O

O

O

C

H 3C O

O

C H 3C

O

O

接进入T101内),然后到第二氧化塔T102中,通过向T102中加氧气,进一步进行氧化反应(不再加催化剂)。第一氧化塔T101的反应热由外冷却器E102A/B移走,第二氧化塔T102的反应热由内冷却器移除,反应系统生成的粗醋酸送往蒸馏回收系统,制取醋酸成品。

蒸馏采用先脱高沸物,后脱低沸物的流程。

粗醋酸经氧化液蒸发器E201脱除催化剂,在脱高沸塔T201中脱除高沸物,然后在脱低沸塔T202中脱除低沸物,再经过成品蒸发器E206脱除铁等金属离子,得到产品醋酸。

从低沸塔T202顶出来的低沸物去脱水塔T203回收醋酸,含量99%的醋酸又返回精馏系统,塔T203中部抽出副产物混酸,T203塔顶出料去甲酯塔T204。甲酯塔塔顶产出甲酯,塔釜排出废水去中和池处理。

2.2.2 氧化系统流程简述

乙醛和氧气按配比流量进入第一氧化塔(T101),氧气分两个入口入塔,上口和下口通氧量比约为1:2,氮气通入塔顶气相部分,以稀释气相中氧和乙醛。

乙醛与催化剂全部进入第一氧化塔,第二氧化塔不再补充。氧化反应的反应热由氧化液冷却器(E102A/B)移去,氧化液从塔下部用循环泵(P101A/B)抽出,经过冷却器(E102 A/B)循环回塔中,循环比(循环量:出料量)约110~140:1。冷却器出口氧化液温度为60℃,塔中最高温度为75~78℃,塔顶气相压力0.2Mpa(表),出第一氧化塔的氧化液中醋酸浓度在92~95%,从塔上部溢流去第二氧化塔(T102)。

第二氧化塔为内冷式,塔底部补充氧气,塔顶也加入保安氮气,塔顶压力0.1Mpa(表),塔中最高温度约85℃,出第二氧化塔的氧化液中醋酸含量为97~98%。

第一氧化塔和第二氧化塔的液位显示设在塔上部,显示塔上部的部分液位(全塔高90%以上的液位)。

出氧化塔的氧化液一般直接去蒸馏系统,也可以放到氧化液中间贮罐(V102)暂存。中间贮罐的作用是:正常操作情况下做氧化液缓冲罐,停车或事故时存氧化液,醋酸成品不合格需要重新蒸馏时,由成品泵(P402)送来中间贮存,然后用泵(P102)送蒸馏系统回炼。

两台氧化塔的尾气分别经循环水冷却的冷却器(E101)中冷却,凝液主要是醋

酸,带少量乙醛,回到塔顶,尾气最后经过尾气洗涤塔(T103)吸收残余乙醛和醋酸后放空,洗涤塔采用下部为新鲜工艺水,上部为碱液,分别用泵(P103、P104)循环。洗涤液温度常温,洗涤液含醋酸达到一定浓度后(70~80%),送往精馏系统回收醋酸,碱洗段定期排放至中和池。

第三章工艺技术指标

3.1 控制指标

序号名称仪表信号单位控制指标备注

1 T101压力PIC109A/B MPa 0.19±0.01

2 T102压力PIC112A/B Mpa 0.1±0.02

3 T101底温度TI103A ℃77±1

4 T101中温度TI103B ℃73±2

5 T101上部液相温度TI103C ℃68±3

6 T101气相温度TI103E ℃与上部液相温差大于

13℃

7 E102出口温度TIC104A/B ℃60±2

8 T102底温度TI106A ℃83±2

9 T102温度TI106B ℃85~70

10 T102温度TI106C ℃85~70

11 T102温度TI106D ℃85~70

12 T102温度TI106E ℃85~70

13 T102温度TI106F ℃85~70

14 T102温度TI106G ℃85~70

15 T102气相温度TI106H ℃与上部液相温差大于

15℃

16 T101液位LIC101 % 35±15

17 T102液位LIC102 % 35±15

18 T101加氮量FIC101 M3/H 150±50

19 T102加氮量FIC105 M3/H 75±25

3.2 分析项目

序号名称位号单位控制指标备注

1 T101出料含醋酸AIAS10

2 % 92~95

2 T101出料含醛AIAS10

3 % <4

3 T102出料含醋酸AIAS10

4 % >97

4 T102出料含醛AIAS107 % <0.3

5 T101尾气含氧AIAS101A、B、C % <5

6 T102尾气含氧AIAS105 % <5

7 T103中含醋酸AIAS106 % <80

第四章岗位操作法

4.1 冷态开车/装置开工

说明:斜体字部分是在仿真范围外或必须和其它工段配合的操作。

4.1.1 开工应具备的条件

(1)检修过的设备和新增的管线,必须经过吹扫、气密、试压、置换合格(若是氧气系统,还要脱酯处理)

(2)电气、仪表、计算机、联锁、报警系统全部调试完毕,调校合格、准确好用。

(3)机电、仪表、计算机、化验分析具备开工条件,值班人员在岗。

(4)备有足够的开工用原料和催化剂。

4.1.2 引公用工程

4.1.3 N2吹扫、置换气密

4.1.4 系统水运试车

4.1.5 酸洗反应系统

(1)首先将尾气吸收塔T103的放空阀V45打开;从罐区V402(开阀V57)将酸送入V102中,而后由泵P102向第一氧化塔T101进酸,T101见液位(约为2%)后停泵P102,停止进酸。“快速灌液”说明,向T101灌乙酸时,选择“快速灌液”按钮,在LIC101有液位显示之前,灌液速度加速10倍,有液位显示之后,速度变为正常;对T102灌酸时类似。使用“快速灌液”只是为了节省操作时间,但并不符合工艺操作原则,由于是局部加速,有可能会造成液体总量不守衡,为保证正常操作,将“快速灌液”按钮设为一次有效性,即:只能对该按钮进行一次操作,操作后,按钮消失;如果一直不对该按钮操作,则在循环建立后,该按钮也消失。该加速过程只对“酸洗”

和“建立循环”有效。

(2)开氧化液循环泵P101,循环清洗T101;

(3)用N2将T101中的酸经塔底压送至第二氧化塔T102,T102见液位后关来料阀停止进酸;

(4)将T101和T102中的酸全部退料到V102中,供精馏开车;

(5)重新由V102向T101进酸,T101液位达30%后向T102进料,精馏系统正常出料,建立全系统酸运大循环。

4.1.6 全系统大循环和精馏系统闭路循环

(1)氧化系统酸洗合格后,要进行全系统大循环:

V402 T101 T102 E201 T201

T202 T203 V209

E206 V204 V402

(2)在氧化塔配制氧化液和开车时,精馏系统需闭路循环。脱水塔T203全回流操作,成品醋酸泵P204向成品醋酸储罐V402出料,P402将V402中的酸送到氧化液中间罐V102,由氧化液输送泵P102送往氧化液蒸发器E201构成下列循环:(属另一工段)

顶顶全回流

T201 T202 T203

底E206 P204 V402 P402

E201 P102 V102

等待氧化开车正常后逐渐向外出料。

4.1.7 第一氧化塔配制氧化液

向T101中加醋酸,见液位后(LIC101约为30%),停止向T101进酸。向其中加入少量醛和催化剂,同时打开泵P101A/B打循环,开E102A通蒸汽为氧化液循环液通蒸汽加热,循环流量保持在700000KG/H(通氧前),氧化液温度保持在70~76℃,直到使浓度符合要求(醛含量约为7.5%)。

4.1.8 第一氧化塔投氧开车

(1)开车前联锁投入自动;

(2)投氧前氧化液温度保持在70~76 C,氧化液循环量FIC104控制在700000KG/H。

(3)控制FIC101 N2流量为120 M3/H

(4)按如下方式通氧:

a)用FIC110小投氧阀进行初始投氧,氧量小于100M3/H开始投。

首先特别注意两个参数的变化:

LIC101液位上涨情况;

尾气含氧量AIAS101三块表是否上升。

其次,随时注意塔底液相温度、尾气温度和塔顶压力等工艺参数的变化。

如果液位上涨停止然后下降,同时尾气含氧稳定,说明初始引发较理想,逐渐提高投氧量。

b)当FIC-110小调节阀投氧量达到320M3/H时,启动FIC-114调节阀,在FIC-114

增大投氧量的同时减小FIC-110小调节阀投氧量直到关闭。

c)FIC-114投氧量达到1000M3/H后,可开启FIC-113上部通氧,FIC-113与FIC-114

的投氧比为1:2。

原则要求:投氧在0~400M3/H之内,投氧要慢。如果吸收状态好,要多次小量

增加氧量。400~1000M3/H之内,如果反应状态好要加大投氧幅度,特别注意尾

气的变化及时加大N2量。

d)T101塔液位过高时要及时向T102塔出一下料。当投氧到400M3/H时,将循环量逐渐加大到850000KG/H;当投氧到1000M3/H时,将循环量加大到

1000M3/H。循环量要根据投氧量和反应状态的好坏逐渐加大。同时根据投氧量和酸的浓度适当调节醛和催化剂的投料量。

(5)调节方式:

a)将T101塔顶保安N2开到120M3/H,氧化液循环量FIC104调节为

500000~700000KG/H,塔顶PIC109A/B控制为正常值0.2Mpa。将氧化液冷却器(E102A/B)中的一台E102A改为投用状态,调节阀TIC104B备用。关闭E102A 的冷却水,通入蒸汽给氧化液加热,使氧化液温度稳定在70~76?C。调节T101塔液位为25±5%,关闭出料调节阀LIC101,按投氧方式以最小量投氧,同时观察液位、气液相温度及塔顶、尾气中含氧量变化情况。当液位升高至60%以上时需向T102塔出料降低一下液位。当尾气含氧量上升时要加大FIC101氮气量,若继续上升氧含量达到5%(v)打开FIC103旁路氮气,并停止提氧。若液位下降一定量后处于稳定,尾气含氧量下降为正常值后,氮气调回120m3/H,含氧仍小于5%并有回降趋势,液相温度上升快,气相温度上升慢,有稳定趋势,此时小量增加通氧量,同时观察各项指标。若正常,继续适当增加通氧量,直至正常。

待液相温度上升至84?C时,关闭E102A加热蒸汽。

当投氧量达到1000M3/H以上时,且反应状态稳定或液相温度达到90?C时,关闭蒸汽,开始投冷却水。开TIC104A,注意开水速度应缓慢,注意观察气液相温度的变化趋势,当温度稳定后再提投氧量。投水要根据塔内温度勤调,不可忽大忽小。在投氧量增加的同时,要对氧化液循环量做适当调节。

b)投氧正常后,取T101氧化液进行分析,调整各项参数,稳定一段时间后,根据投

氧量按比例投醛,投催化剂。液位控制为35±5%向T102出料。

c)在投氧后,来不及反应或吸收不好,液位升高不下降或尾气含氧增高到5%时,关

小氧气,增大氮气量后,液位继续上升至80%或含氧继续上升至8%,联锁停车,继续加大氮气量,关闭氧气调节阀。取样分析氧化液成分,确认无问题时,再次投氧开车。

4.1.9 第二氧化塔投氧

(1)待T-102塔见液位后,向塔底冷却器内通蒸汽保持氧化液温度在80?C,控制液位35±5%,并向蒸馏系统出料。取T-102塔氧化液分析。

(2)T-102塔顶压力PIC112控制在0.1Mpa,塔顶氮气FIC-105保持在90M3/H。由T102塔底部进氧口,以最小的通氧量投氧,注意尾气含氧量。在各项指标不超标的情况下,通氧量逐渐加大到正常值。当氧化液温度升高时,表示反应在进行。停蒸汽开冷却水TIC-105,TIC-106,TIC-108,TIC-109使操作逐步稳定。

4.1.10 吸收塔投用

(1)打开V49,向塔中加工艺水湿塔。

(2)开阀V50,向V105中备工艺水

(3)开阀V48,向V103中备料(碱液)

(4)在氧化塔投氧前开P103A/B向T103中投用工艺水

(5)投氧后开P104A/B向T103中投用吸收碱液

(5)如工艺水中醋酸含量达到80%时,开阀V51向精馏系统排放工艺水。

4.1.11氧化塔出料

(1)当氧化液符合要求时,开LIC102和阀V44向氧化液蒸发器E201出料。用LIC102控

制出料量。

4.2 正常停车

4.2.1 氧化系统停车

(1)将FIC102切至手动,关闭FIC-102,停醛。

(2)将FIC114逐步将进氧量下调至1000m3/H。注意观察反应状况,当第一氧化塔T101中醛的含量降至0.1以下时,立即关闭FIC114、FICSQ106,关闭T101、T102进氧阀。(3)开启T101、T102塔底排,逐步退料到V-102罐中,送精馏处理。停P101泵,将氧化系统退空。

4.3 紧急停车

4.3.1 事故停车

主要是指装置在运行过程中出现的仪表和设备上的故障而引起的被迫停车。采取的措施如下:

(1)首先关掉FICSQ102、FIC112、FIC301三个进物料阀。然后关闭进氧进醛线上的塔壁阀。

(2)根据事故的起因控制进氮量的多少,以保证尾气中含氧小于5%(V)。

(3)逐步关小冷却水直到塔内温度降为60?C,关闭冷却水TIC104A/B。

(4)第二氧化塔关冷却水由下而上逐个关掉并保温60?C。

4.3.2 紧急停车

生产过程中,如遇突发的停电、停仪表风、停循环水、停蒸汽等而不能正常生产时,应做紧急停车处理。

(1)紧急停电

仪表供电可通过蓄电池逆变获得,供电时间30分钟;所有机泵不能自动供电。

1.氧化系统

正常来说,紧急停电P101泵自动联锁停车。

a)马上关闭进氧进醛塔壁阀。

b)及时检查尾气含氧及进氧进醛阀门是否自动连锁关闭。

2.精馏系统

此时所有机泵停运。

a)首先减小各塔的加热蒸汽量。

b)关闭各机泵出口阀,关闭各塔进出物料阀。

c)视情况对物料做具体处理。

3.罐区系统

a)氧化系统紧急停车后,应首先关闭乙醛球罐底出料阀及时将两球罐保压。

b)成品进料及时切换至不合格成品罐V403。

(2)紧急停循环水

停水后立即做紧急停车处理。停循环水时PI508压力在0.25Mpa连锁动作(目

前未投用)。FICSQ102、FIC112、FIC301三电磁阀自动关闭。

1.氧化系统停车步骤同事故停车。注意氧化塔温度不能超得太高,加大氧化液循

环量。

1.精馏系统

a)先停各塔加热蒸汽,同时向塔内充氮,保持塔内正压。

b)待各塔温度下降时,停回流泵,关闭各进出物料阀。

(1)紧急停蒸汽

同事故停车。

(2)紧急停仪表风

所有气动薄膜调节阀将无法正常启动,应做紧急停车处理。

1.氧化系统

应按紧急停车按钮,手动电磁阀关闭FIC102、FIC103、FIC106三个进醛

进氧阀。然后关闭醛氧线塔壁阀,塔压力及流量等的控制要通过现场手动

副线进行调整控制。

其他步骤同事故停车。

2.精馏系统

所有蒸汽流量及塔罐液位的控制要通过现场手动进行操作。

停车步骤同二。

4.4 岗位操作法

4.4.1 第一氧化塔

塔顶压力0.18~0.2Mpa(表),由PIC109A/B控制。

循环比(循环量与出料量之比)为110~140之间,由循环泵进出口跨线截止阀控制,由FIC104控制,液位35±15%,由LIC101控制。

进醛量满负荷为9.86吨乙醛/小时,由FICSQ102控制,根据经验最低投料负荷为66%,一般不许低于60%负荷,投氧不许低于1500M3/H。

满负荷进氧量设计为2871M3/H由FI108来计量。进氧,进醛配比为氧:醛=0.35~0.4(WT),根据分析氧化液中含醛量,对氧配比进行调节。氧化液中含醛量一般控制为3~4×10-2(WT)。

上下进氧口进氧的配比约为1:2。

塔顶气相温度控制与上部液相温差大于13℃,主要由充氮量控制。

塔顶气相中的含氧量<5×10-2(<5%),主要由充氮量控制。

塔顶充氮量根据经验一般不小于80M3/H,由FIC101调节阀控制。

循环液(氧化液)出口温度TI103F为60±2℃,由TIC104控制E102的冷却水量来控制。

塔底液相温度TI103A为77±1℃,由氧化液循环量和循环液温度来控制。

4.4.2 第二氧化塔(T102)

塔顶压力为0.1±0.02MPa,由PIC112A/B控制

液位35±15%,由LIC102控制

进氧量:0~160M3/H,由FICSQ106控制。根据氧化液含醛来调节。

氧化液含醛为0.3×10-2以下

塔顶尾气含氧量<5%,主要由充氮量来控制。

塔顶气相温度TI106H控制与上部液相温差大于15℃,主要由氮气量来控制。

塔中液相温度主要由各节换热器的冷却水量来控制。

塔顶N2流量根据经验一般不小于60M3/H为好,由FIC105控制。

4.4.3 洗涤液罐

V103液位控制0~80%,含酸大于70~80×10-2就送往蒸馏系统处理。送完后,加盐水至液位35%。

4.5 联锁停车

开启INTERLOCK,当T101、T102的氧含量高于8%或液位高于80%,V6、V7关闭,联锁停车。

取消联锁的方法:

若联锁条件没消除(T101、T102的氧含量高于8%或液位高于80%),点击“INTERLOCK”按钮,使之处于弹起状态,然后点击“RESET”按钮即可;

若联锁条件已消除(T101、T102的氧含量低于8%且液位低于80%),直接点击“RESET”按钮即可。

化工总控工培训《乙醛氧化制醋酸工艺仿真软件氧化》指导书

茂名职业技术学院 化学工程系 实习(实训)指导书 (乙醛氧化制醋酸氧化工段仿真部分) 专业班级:15精化班 实习名称:化工总控工实训 实习时间:2016-2017-1 第16周至第17周 实习人数:51人 指导教师:陈颖峰、车文成、张燕、王丹菊、胡鑫鑫系主任:董利 审核日期: 2016.12.05

目录 第一章概述 (1) 第二章生产方法及工艺路线 (1) 2.1生产方法及反应机理 (1) 2.2工艺流程简述 (3) 2.2.1 装置流程简述 (3) 2.2.2 氧化系统流程简述 (3) 第三章工艺技术指标 (3) 3.1控制指标 (3) 3.2分析项目 (5) 第四章岗位操作法 (5) 4.1冷态开车/装置开工 (5) 4.1.1 开工应具备的条件 (5) 4.1.2 引公用工程 (5) 4.1.3 N2吹扫、置换气密 (5) 4.1.4 系统水运试车 (5) 4.1.5 酸洗反应系统 (5) 4.1.6 全系统大循环和精馏系统闭路循环 (6) 4.1.7 第一氧化塔配制氧化液 (6) 4.1.8 第一氧化塔投氧开车 (6) 4.1.9 第二氧化塔投氧 (7) 4.1.10 吸收塔投用 (8) 4.1.11氧化塔出料 (8) 4.2正常停车 (8) 4.2.1 氧化系统停车 (8) 4.3紧急停车 (8) 4.3.1 事故停车 (8) 4.3.2 紧急停车 (9) 4.4岗位操作法 (9) 4.4.1 第一氧化塔 (9) 4.4.2 第二氧化塔(T102) (10) 4.4.3 洗涤液罐 (10) 4.5联锁停车 (10)

第一章 概述 乙酸又名醋酸,英文名称为acetic acid ,是具有刺激气味的无色透明液体,无水乙酸在低温时凝固成冰状,俗称冰醋酸。在16.7℃以下时,纯乙酸呈无色结晶,其沸点是118℃。乙酸蒸气刺激呼吸道及粘膜(特别是对眼睛的粘膜),浓乙酸可灼烧皮肤。乙酸是重要的有机酸之一。其结构式是: 乙酸是稳定的化合物;但在一定的条件下,能引起一系列的化学反应。如:在强酸(H2SO4或HCl )存在下,乙酸与醇共热,发生酯化反应: 乙酸是许多有机物的良好溶剂,能与水、醇、酯和氯仿等溶剂以任意比例相混合。乙酸除用作溶剂外,还有广泛的用途,在化学工业中占有重要的位置,其用途遍及醋酸乙烯、醋酸纤维素、醋酸酯类等多种领域。乙酸是重要的化工原料,可制备多种乙酸衍生物如乙酸酐、氯乙酸、乙酸纤维素等,适用于生产对苯二甲酸、纺织印染、发酵制氨基酸,也作为杀菌剂。在食品工业中,乙酸作为防腐剂;在有机化工中,乙酸裂解可制得乙酸酐,而乙酸酐是制取乙酸纤维的原料。另外,由乙酸制得聚酯类,可作为油漆的溶剂和增塑剂;某些酯类可作为进一步合成的原料。在制药工业中,乙酸是制取阿司匹林的原料。利用乙酸的酸性,可作为天然橡胶制造工业中的胶乳凝胶济,照相的显像停止剂等。 乙酸的生产具有悠久的历史,早期乙酸是由植物原料加工而获得或者通过乙醇发酵的方法制得,也有通过木材干馏而获得的。目前,国内外已经开发出了乙酸的多种合成工艺,包括烷烃、烯烃及其酯类的氧化,其中应用最广的是乙醛氧化法制备乙酸。下面主要介绍乙醛氧化法制备乙酸。 第二章 生产方法及工艺路线 2.1 生产方法及反应机理 乙醛首先与空气或氧气氧化成过氧醋酸,而过氧醋酸很不稳定,在醋酸锰的催化下发生分解,同时使另一分子的乙醛氧化,生成二分子乙酸。氧化反应是放热反应。 CH 3CHO+O 2→CH 3COOOH CH 3COOOH+CH 3CHO →2CH3COOH 总的化学反应方程式为: C H 3C OH O

乙醛的氧化反应__报告

实验四学生实验的准备与实验教学研究 ——乙醛的氧化反应 一、实验计划 1、实验内容 a、探讨乙醛(CH3CHO)与银氨溶液、新制Cu(OH)2反应的适宜条件及操作技能,掌握实 验成败关键; b、进一步认识化学试剂的用量、浓度、pH、温度、滴加顺序等条件对实验成功的重要性, 培养良好的科学态度和方法; c、学习和探究组织中学生进行CH3CHO氧化反应实验的教学技能。 2、实验计划 (1)CH3CHO与银氨溶液反应适宜的硝酸银(AgNO3)浓度的探讨 a、AgNO3溶液的配制:取5%的AgNO3溶液,按AgNO3溶液与蒸馏水以1:4、2:3、3:2的 比例,配制三份分别是1%、2%、3%的AgNO3溶液,放置在烧杯里,贴上标签,备用; b、2%氨水溶液的配制:取25%~28%的氨水溶液8mL,再用蒸馏水稀释,用容量瓶配制 100mL的2%~2.24%的氨水溶液,转移至烧杯中,贴上标签,备用; c、20%乙醛溶液的配制:取40%的乙醛溶液,按乙醛:蒸馏水=1:1的比例关系,稀释一倍 (40%的乙醛20mL,蒸馏水20mL),放置在烧杯里,贴上标签,备用; 具体步骤: a、按上述的步骤配制好相关的浓度后,按顺序摆放好; b、取三根洁净的试管(做银镜反应用的试管必须十分洁净,若试管不清洁,还原出来的银 大部分呈疏松颗粒状析出,致使管壁上所附的银层不均匀平整,结果就得不到明亮的银镜,而是一层不均匀的黑色银粒子。为保证实验效果,事先最好将试管依次用热硝酸、10%的NaOH溶液洗涤后,再用蒸馏水冲洗干净),按照顺序,分别往三根试管中加入1mL的1%、2%、3%AgNO3溶液; c、分别往三根试管中滴加2%的氨水溶液,制备银氨溶液:制备银氨溶液时不能加入过量 的氨水,且应边振荡边滴加,滴加氨水的量最好以最初产生的沉淀在刚好溶解为宜。实验过程中先生成乳白色沉淀(AgOH),沉淀又变为棕褐色(AgOH被氧化成Ag2O),继

乙醛氧化制乙酸仿真步骤(精)

开车前准备(酸洗反应系统:过程正在评分 145.00 145.00 该过程历时6258秒 S0开启尾气吸收塔T103的放空阀V45(50%.(为节省时间,可使用“快速灌液” S1开启氧化液中间贮罐V102的现场阀V57(50%,向其中注酸 S2开启V102的输液泵 P102,向第一氧化塔T101注酸 S3 打开T101进酸控制阀FIC112 S4 V102的液位LI103超过50%后,关闭阀V57,停止向V102注酸 S5 T101的液位LIC101大于2%后,关闭泵P102,停止向T101注酸 S6 关闭T101注酸控制阀FIC112 S7 开启 T101的循环泵P101A/B的前阀V17 S8 开启泵P101A,酸洗第一氧化塔T101 S9打开酸洗回路阀V66 S10打开酸洗回路的流量控制阀FIC104(20% (开启约为一分钟S11关闭泵P101A,停止酸洗 S12关闭酸洗回路的流量控制阀FIC104 S13开启 T101的氮气控制阀FIC101,将酸压至第二氧化塔T102中 S14开启T101底阀V16,向T102压酸 S15开启T102底阀V32,由T101向T102压酸 16开启T102的底部控制阀V33,由T101向T102压酸 17T102液位LIC102大于0后,关闭T101的进氮气控制阀FIC101 (约为3分钟) 18 开启T102的进氮气控制阀FIC105,向 V102压酸 S19 开启V102的回酸阀V59,将T101、T102中的酸打回V102 S20 压酸结束后,关闭T102的进氮气控制阀FIC105 (FI120为0时关) S21 压酸结束后,关闭T101的底阀V16 S22压酸结束后,关闭T102底阀V32 S23压酸结束后,T102的底部控制阀V33 S24压酸结束后,关闭V102的回酸阀V59 S25开启 T101的压力调节阀PIC109A,放空T101内的气体 S26开启T102的压力调节阀PIC112A,放空T102内的气体 S27放空结束,关闭T101的压力调节阀PIC109A S28放空结束,关闭T102的压力调节阀PIC112A 建立循环:过程正在评分 30.00 30.00 该过程历时4849秒 S0开启泵P102,由V102向T101中注酸 S1 全开T101注酸控制阀FIC112 S2 当LIC101大于30%时,开启LIC101(开度约50%),根据LIC101液位随时调整 S3 开启T102底阀V32,向T102进酸 S4 当LIC102大于30%时,开启LIC102(开度约50%),根据LIC102液位随时调整 S5 开启T102的现场阀V44,向精馏系统出料,建立循环配制氧化液:过程正在评分 85.00 81.47 该过程历时3920秒 S0 将LIC101调至30%左右,停泵P102 S1 关闭T101注酸控制阀FIC112 S2 关闭T101的液位控制器LIC101 S3开启乙醛进料调节阀 FICSQ102(缓加,根据乙醛含量AIAS103来调整其开度,使AIAS103约为7.5% S4

乙醛氧化制醋酸精致工段

乙醛氧化制醋酸精制工段 第一章概述 大庆醋酸装置是大庆三十万吨乙烯一期工程的组成部分。此装置是依靠国内技术力量,参考上海石油化工总厂的实际生产情况,由上海医药设计院设计。大庆醋酸装置是西德引进乙醛装置的配套工程,起始原料为乙烯,乙烯氧化生成乙醛,再由乙醛为原料氧化生成醋酸。 醋酸装置设计年生产能力为成品醋酸7万吨/年。同时生产副产品混酸700吨/年,醋酸甲酯650吨/年。1997年10月改扩建,年生产能力为10万吨。 第二章生产方法及工艺路线 一生产方法及反应机理。 乙醛首先氧化成过氧醋酸,而过氧醋酸很不稳定,在醋酸锰的催化下发生分解,同时使另一分子的乙醛氧化,生成二分子乙酸。氧化反应是放热反应。 CH3CHO+O2→CH3COOOH CH3COOOH+CH3CHO→2CH3COOH 在氧化塔内,还有一系列的氧化反应。 乙醛氧化制醋酸的反应机理一般认为可以用自由基的链接反应机理来进行解释,常温下乙醛就可以自动地以很慢的速度吸收空气中的氧而被氧化生成过氧醋酸:过氧醋酸以很慢的速度分解生成自由基。 自由基引发一系列的反应生成醋酸。但过氧醋酸是一个极不安定的化合物,积累到一定程度就会分解而引起爆炸。因此,该反应必须在催化剂存在下才能顺利进行。催化剂的作用是将乙醛氧化时生成的过氧醋酸及时分解成醋酸,而防止过氧醋酸的积累、分解和爆炸。 二工艺流程简述。 1、装置流程简述 本装置反应系统采用双塔串联氧化流程,乙醛和氧气首先在全返混型的反应器——第一氧化塔T-101中反应(催化剂溶液直接进入T-101内)然后到第二氧化塔T-102中再加氧气进一步反应,不再加催化剂。一塔反应热由外冷却器移走,二塔反应热由内冷却器移除,反应系统生成的粗醋酸进入蒸馏回收系统,制取成品醋酸。 蒸馏采用先脱高沸物,后脱低沸物的流程。

乙醛生产工艺技术

乙醛生产工艺技术 制备原理: 通过控制乙醇的氧化可以获得乙醛。目前最重要的乙醛合成法是Wacker法。利用 PdCl2、CuCl2作催化剂,使空气和乙烯与水反应生成乙醛。 生产方法: 瓦克法(Wacker process),又称Hoechst-Wacker法,最早是指乙烯在含有四氯钯酸盐催化剂的水中,被空气中的氧气氧化为乙醛的反应。[1][2][3][4][5][6] 这是第一个工业化的有机金属(有机钯)反应,亦是均相催化和配位催化中很重要的一个反应,在1960年代后发展很快,在石油化工发达的国家已大幅取代了乙炔水合法,用于从烯烃制取醛、酮类。反应中的钯配合物与烯烃配合物蔡氏盐类似,不过后者是一个异相催化剂。 此反应形式上与氢甲酰化反应类似,都是工业上用于醛类的反应。但两者不同的是,氢甲酰化所用的是铑基催化剂,而且氢甲酰化是一个增碳过程。 还有一种方法,就是在汞盐(如HgSO4)的催化下,乙炔和水化合,生成乙醛。这种方法生产的乙醛纯度高,但操作人员容易发生汞中毒。现在科学家们正在研究用非汞催化剂,并已取得初步成效。 2003年的全球乙醛产量约106吨/年,[6]而主要的生产方法为Wacker过程,即通过氧化乙烯制备: 2CH2=CH2+O2→2CH3CHO 除此法之外,还可以通过在汞盐的催化下水解乙炔形成烯醇异构化得到乙醛。在Wacker 过程发明之前,该合成方法也作为主要的生产工艺[7]乙醛还可小规模的通过乙醇的脱氢反应和氧化反应进行制备。有些乙醛还可通过一氧化碳的氢化加成得到,但是该法无法用于商用生产。

这一反应很容易发生,将乙烯和空气通入含有铜盐的氯化钯(Ⅱ)-盐酸水中,乙烯几乎全部转化为乙醛。而氯化钯则被还原为钯,在氯化铜的作用下得到再生。氯化铜被还原生成的氯化亚铜又可被空气、纯氧或其他氧化剂再氧化为二价铜。这一过程形式上可以表示为: 工艺流程: 乙烯均相络合催化氧化制乙醛 以PdCl2-CuCl2为催化剂在水溶液中对烯烃进行氧化,生成相应的醛或酮的方法称为瓦克(Wacker)法。这是一种液相氧化法,由于反应在液相中进行,使用的又是络合催化剂,故又称作均相络合催化氧化法。氧化最容易在最缺氢的碳上进行,对乙烯而言, 两个碳原子都具有两个氢,氧化时双键打开同时加氧,得到乙醛:

乙醛氧化制醋酸总结

1.乙醛氧化制醋酸DCS图第一氧化塔温度怎么控制? 开大、关小换热器E102入口调节阀V20来控制第一氧化塔温度。 2. 一辈子活得就是这一颗人心! 但是善良,要有个度,因为总有人利用你的善良伤害你。 人善,人欺,天不欺;人好,心好,有好报 为人行善,你把善良给对了人,别人就会对你感恩; 为人行善,你把善良给错了人,那么别人就会让你寒心。 真心待人,你把心软给对了人,别人会感谢你情深意重; 真心待人,你把心软给错了人,那就会让你痛心疾首。 心软做人,你把宽容给对了人,别人会对你热忱款待; 心软做人,你把宽容给错了人,别人就会让你窝心难受。 人善,人欺,天不欺;人好,心好,有好报 你做人谦让可以,但要看情况, 如果遇到善解人意的人,那么就会各退一步; 如果遇到得寸进尺的人,那么就会更近一步。 你待人善良可以,但要看什么样的人, 如果遇到有良心的人,他就会知恩图报;

如果遇到没良心的人,他就会卸磨杀驴。 人善,人欺,天不欺;人好,心好,有好报 现实这么的残酷,别想拿什么装无辜。 改变不了的事就别太在意,太在意只会让自己更伤心, 留不住的人就试着学会放弃,强行留下,也是留下人,却留不住心,受了伤的心就尽力自愈,没有人会替你治疗, 活在世上,除了生死,都是小事,别为难自己。 04、淑女就是未进化的比卡丘。绅士就是披着羊毛的狼。 想在朋友圈文雅地爆粗,这些句子最适合不过了 05、世界上的脑残这么多,可是你却成了其中的佼佼者。 06、谢你抢了我对象,让我知道他是人模狗样。 07、生下来的人没有怕死的,怕死的都没生下来,所以谁都别装横! 08、我的心就算是驴肝肺,也足以喂饱一条狗的胃了。 想在朋友圈文雅地爆粗,这些句子最适合不过了 09、勃起不是万能的,但不能勃起却是万万都不能的! 10、过去一直喜欢她的胸怀宽广,其实那也无非是一片飞机场! 11、长得真有创意,活得真有勇气! 12、大哥,把你脸上的分辨率调低点好吗? 想在朋友圈文雅地爆粗,这些句子最适合不过了 13、谁骂我傻B我跟谁好,我就喜欢和2B交朋友。 14、你若废我现在,我必废你将来。 15、承诺,就像放屁,当时惊天动地,过后苍白无力。

乙醛的氧化反应

实验九乙醛的氧化反应 实验教学研究目的 1.探讨乙醛与银氨溶液、新制的氢氧化铜反应的适宜实验条件及操作技能,掌握实验 成败关键。 2.进一步认识化学试剂的用量、浓度、PH、温度、滴加顺序等条件对实验成功的重要 性,培养良好的科学态度和方法。 3.学习和探讨乙醛氧化反应演示实验的教法,训练演示技能。 实验教学研究的内容 1.乙醛与银氨溶液反应适宜的硝酸银浓度的探讨; 2.乙醛与新制的氢氧化铜反应适宜的氢氧化铜混合液的PH、反应温度探讨。3.乙醛与银氨溶液反应或与氢氧化铜反应的实验教学。 实验教学研究步骤 一、课前资料收集与研究方案的设计 1.思考与讨论 (1) 乙醛与银氨溶液、新制的Cu(OH)2反应的原理各是什么?乙醛与银氨溶液、新制的 氢氧化铜反应成功的关键是什么?各有哪些影响实验的重要因素? (2) 配制氢氧化铜时,对NaOH溶液和CuSO4溶液的浓度和滴加顺序有何要求? (3) 乙醛与新制的Cu(OH)2溶液反应时,溶液的最佳PH大约为多少? (4) 银氨溶液如何配制?影响银氨溶液配制的关键因素是什么?

(5) 乙醛与银氨溶液、新制氢氧化铜两个反应实验说明了乙醛的什么性质?如何通过演 示实验来体现说明? 2.阅读与资料收集 阅读下列内容,明确实验目的与要求,明确实验成败的关键,收集好与本实验教学研究 相关的资料。 (1) 本实验内容; (2) 中学有关乙醛氧化反应的教材内容; (3) 本实验中“参考资料”及有关文献。 3.实验研究方案的设计 在“思考与讨论”和“阅读与资料收集”的基础上,依据实验内容和实验条件,设计如下实验研究 的初步方案: (1) 乙醛与银氨溶液反应适宜的硝酸银浓度探讨。 ①设计比较质量分数分别为1%、2%、3% AgNO3溶液浓度配制的银氨溶液对银镜反应 影响的实验方 案。设计时注意选择适宜的氨水浓度,使银氨溶液的用量和银镜反应的温度等其它条件控制 在同一水平,最好设计相应的表格进行试验。设计实验方案时还应注意反应试管的洁净、反 应时温度、装置的要求、银镜生成的时间和质量的比较、注意反应后废物的处理等设计。

乙醛氧化制醋酸氧化工段

乙醛氧化制醋酸工艺——氧化工段 目录 第一章概述 (2) 第二章生产方法及工艺路线 (3) 2.1生产方法及反应机理 (3) 2.2工艺流程简述 (4) 2.2.1 装置流程简述 (4) 2.2.2 氧化系统流程简述 (5) 第三章工艺技术指标 (6) 3.1控制指标 (6) 3.2分析项目 (7) 第四章岗位操作法 (7) 4.1冷态开车/装置开工 (7) 4.1.1 开工应具备的条件 (7) 4.1.2 引公用工程 (8) 4.1.3 N2吹扫、置换气密 (8) 4.1.4 系统水运试车 (8) 4.1.5 酸洗反应系统 (8) 4.1.6 全系统大循环和精馏系统闭路循环 (8) 4.1.7 第一氧化塔配制氧化液 (9) 4.1.8 第一氧化塔投氧开车 (9) 4.1.9 第二氧化塔投氧 (11) 4.1.10 吸收塔投用 (11) 4.1.11氧化塔出料 (11) 4.2正常停车 (12) 4.2.1 氧化系统停车 (12) 4.3紧急停车 (12) 4.3.1 事故停车 (12) 4.3.2 紧急停车 (12) 4.4岗位操作法 (14) 4.4.1 第一氧化塔 (14) 4.4.2 第二氧化塔(T102) (15) 4.4.3 洗涤液罐 (15) 4.5联锁停车 (15)

第一章 概述 乙酸又名醋酸,英文名称为acetic acid ,是具有刺激气味的无色透明液体,无水乙酸在低温时凝固成冰状,俗称冰醋酸。在16.7℃以下时,纯乙酸呈无色结晶,其沸点是118℃。乙酸蒸气刺激呼吸道及粘膜(特别是对眼睛的粘膜),浓乙酸可灼烧皮肤。乙酸是重要的有机酸之一。其结构式是: 乙酸是稳定的化合物;但在一定的条件下,能引起一系列的化学反应。如:在强酸(H 2SO 4或HCl )存在下,乙酸与醇共热,发生酯化反应: 乙酸是许多有机物的良好溶剂,能与水、醇、酯和氯仿等溶剂以任意比例相混合。乙酸除用作溶剂外,还有广泛的用途,在化学工业中占有重要的位置,其用途遍及醋酸乙烯、醋酸纤维素、醋酸酯类等多种领域。乙酸是重要的化工原料,可制备多种乙酸衍生物如乙酸酐、氯乙酸、乙酸纤维素等,适用于生产对苯二甲酸、纺织印染、发酵制氨基酸,也作为杀菌剂。在食品工业中,乙酸作为防腐剂;在有机化工中,乙酸裂解可制得乙酸酐,而乙酸酐是制取乙酸纤维的原料。另外,由乙酸制得聚酯类,可作为油漆的溶剂和增塑剂;某些酯类可作为进一步合成的原料。在制药工业中,乙酸是制取阿司匹林的原料。利用乙酸的酸性,可作为天然橡胶制造工业中的胶乳凝胶济,照相的显像停止剂等。 乙酸的生产具有悠久的历史,早期乙酸是由植物原料加工而获得或者通过乙醇发酵的方法制得,也有通过木材干馏而获得的。目前,国内外已经开发出了乙酸的多种合成工艺,包括烷烃、烯烃及其酯类的氧化,其中应用最广的是乙醛氧化法制备乙酸。下面主要介绍乙醛氧化法制备乙酸。 C H 3OH O

醋酸-氧化装置操作规程(乙醛氧化制醋酸仿真软件)

乙醛氧化制醋酸仿真软件——氧化工段 北京东方仿真控制技术有限公司 仿真教学事业部

第一章概述 大庆醋酸装置是大庆三十万吨乙烯一期工程的组成部分。此装置是依靠国内技术力量,参考上海石油化工总厂的实际生产情况,由上海医药设计院设计。 大庆醋酸装置是西德引进乙醛装置的配套工程,起始原料为乙烯,乙烯氧化生成乙醛,再由乙醛为原料氧化生成醋酸。 醋酸装置设计年生产能力为成品醋酸7万吨/年。同时生产副产品混酸700吨/年,醋酸甲酯650吨/年。1997年10月改扩建,年生产能力为10万吨。

第二章生产方法及工艺路线 一生产方法及反应机理。 乙醛首先氧化成过氧醋酸,而过氧醋酸很不稳定,在醋酸锰的催化下发生分解,同时使另一分子的乙醛氧化,生成二分子乙酸。氧化反应是放热反应。 CH3CHO+O2→CH3COOOH CH3COOOH+CH3CHO→2CH3COOH 在氧化塔内,还有一系列的氧化反应。 乙醛氧化制醋酸的反应机理一般认为可以用自由基的链接反应机理来进行解释,常温下乙醛就可以自动地以很慢的速度吸收空气中的氧而被氧化生成过氧醋酸:过氧醋酸以很慢的速度分解生成自由基。 自由基引发一系列的反应生成醋酸。但过氧醋酸是一个极不安定的化合物,积累到一定程度就会分解而引起爆炸。因此,该反应必须在催化剂存在下才能顺利进行。催化剂的作用是将乙醛氧化时生成的过氧醋酸及时分解成醋酸,而防止过氧醋酸的积累、分解和爆炸。 二工艺流程简述。 1、装置流程简述 本装置反应系统采用双塔串联氧化流程,乙醛和氧气首先在全返混型的反应器——第一氧化塔T-101中反应(催化剂溶液直接进入T-101内)然后到第二氧化塔T-102中再加氧气进一步反应,不再加催化剂。一塔反应热由外冷却器移走,二塔反应热由内冷却器移除,反应系统生成的粗醋酸进入蒸馏回收系统,制取成品醋酸。 蒸馏采用先脱高沸物,后脱低沸物的流程。 粗醋酸经氧化液蒸发器E-201脱除催化剂,在脱高沸塔T-201中脱除高沸物,然后在脱低沸塔T-202中脱除低沸物,再经过成品蒸发器E-206脱除铁等金属离子,得到产品醋酸。 从低沸塔T-202顶出来的低沸物去脱水塔T-203回收醋酸,含量99%的醋酸又返回精馏系统,塔T-203中部抽出副产物混酸,T-203塔顶出料去甲酯塔T-204。甲酯塔塔顶产出甲酯,塔釜排出废水去中和池处理。 2、氧化系统流程简述 乙醛和氧气按配比流量进入第一氧化塔(T-101),氧气分两个入口入塔,上口和下口通氧量比约为1:2,氮气通入塔顶气相部分,以稀释气相中氧和乙醛。 乙醛与催化剂全部进入第一氧化塔,第二氧化塔不再补充。氧化反应的反应热由氧化液冷却器(E-102)移去,氧化液从塔下部用循环泵(P-101)抽出,经过冷却器(E-102)循环回塔中,循环比(循环量:出料量)约110~120。冷却器出口氧化液温度为60℃,塔中最高温度为75~78℃,塔顶气相压力0.2Mpa(表),出第一氧化塔的氧化液中醋酸浓度在92~94×10-2,从塔上部溢流去第二氧化塔(T-102)。 第二氧化塔为内冷式,塔底部补充氧气,塔顶也加入保安氮气,塔顶压力0.1Mpa(表),塔中最高温度约85℃,出第二氧化塔的氧化液中醋酸含量为97~98×10-2。 第一氧化塔和第二氧化塔的液位显示设在塔上部,显示塔上部的部分液位。 出氧化塔的氧化液一般直接去蒸馏系统,也可以放到氧化液中间贮罐(V-102)暂存。中间贮罐的作用是:正常操作情况下做氧化液缓冲罐,停车或事故时存氧化液,醋酸成品不合格需要重新蒸馏时,由成品泵(P-402)送来中间贮存,然后用泵(P-102)送蒸馏系统回炼。

乙醛氧化制醋酸

1.1概述 乙酸在常温下是一种有强烈刺激性酸味的无色液体。乙酸的熔点16.6℃(289.6 K )。沸点117.9℃(391.2 K )。相对密度1.05,闪点39℃,爆炸极限4%~17%(体积)。纯的乙酸在低于熔点时会冻结成冰状晶体,所以无水乙酸又称为冰醋酸。乙酸易溶于水和乙醇,其水溶液呈弱酸性。乙酸盐也易溶于水。乙酸是重要的有机酸之一。其结构式是: 乙酸是稳定的化合物;但在一定的条件下,能引起一系列的化学反应。如:在强酸(H 2SO 4或HCl )存在下,乙酸与醇共热,发生酯化反应: 乙酸的生产具有悠久的历史,早期乙酸是由植物原料加工而获得或者通过乙醇发酵的方法制得,也有通过木材干馏而获得的。目前,国内外已经开发出了乙酸的多种合成工艺,包括烷烃、烯烃及其酯类的氧化,其中应用最广的是乙醛氧化法制备乙酸。下面主要介绍乙醛氧化法制备乙酸。 1.2生产方法及反应机理 乙醛首先与空气或氧气氧化成过氧醋酸,而过氧醋酸很不稳定,在醋酸锰的催化下发生分解,同时使另一分子的乙醛氧化,生成二分子乙酸。氧化反应是放热反应。 CH 3CHO+O 2→CH 3COOOH CH 3COOOH+CH 3CHO→2CH 3COOH 总的化学反应方程式为: CH 3CHO + 1/2O 2 → CH 3COOH + 292.0kj/mol 在氧化塔内,还有一系列的氧化反应,主要副产物有甲酸、甲酯、二氧化碳、水、醋酸甲酯等。 CH 3COO OH→CH 3OH+CO 2 CH 3OH+CO 2→HCO OH+ H 2O CH 3COOOH+ CH 3COO H→CH 3COOCH 3+ CO 2+ H 2O CH 3OH+ CH 3COO H→+ H 2O CH 3OH→CH 4+CO CH 3CH 2OH+ CH 3COO H→CH 3COOC 2H 5 + H 2O CH 3CH 2OH+ HCOO H→HCO OC 2H 5 + H 2O 3CH 3CHO+3O 2→HCO OH+ 2CH 3COOH+ CO 2+ H 2O 4CH 3CHO+5O 2→4CO 2+ 4H 2O 3CH 3CHO+2O 2→CH 3CH (OCOCH 3) 2+ H 2O C H 3C OH O

乙醛氧化制醋酸的基本原理

乙醛氧化制醋酸基本原理 一、反应方程式: 乙醛首先氧化成过氧醋酸,而过氧醋酸很不稳定,在醋酸锰的催化下发生分解,同时使另一分子的乙醛氧化,生成二分子醋酸。氧化反应是放热反应。 CH3CHO+O2 CH3COOOH (1)CH3COOOH+CH3CHO 2CH3COOH (2)在氧化塔内,还进行下列副反应: CH3COOOH CH3OH+CO2(3)CH3OH+O2 HCOOH+H2O (4)CH3COOOH+ CH3COOH CH3COOCH3+CO2+H2O (5)CH3OH+ CH3COOH CH3COOCH3+H2O (6) CH3CHO CH4+CO (7) CH3CH2OH+ CH3COOH CH3COOC2H5+H2O (8) CH3CH2OH+ HCOOH HCOOC2H5+H2 (9) 3CH3CHO+3O2 HCOOH+ CH3COOH+CO2+H2O (10) 2CH3CHO+5O2 4CO2+4H2O (11) 3CH3CHO+O2 CH3CH(OCOCH3)2+H2O (12) 2CH3COOH CH3COCH3+CO2+H2O (13) CH3COOH CH4+CO2 (14) 乙醛氧化制醋酸的反应机理一般认为可以用自由基的连锁反应机理来进行解释。常温下乙醛就可以自动地以很慢的速度吸收空气中

的氧而被氧化生成过氧醋酸。 二、反应条件对化学反应的影响: 1、物系相态: 氧化过程可以在气相中进行,也可以在也相中进行。 在气相状态下,乙醛和氧气或空气相混合,氧化反应极易进行,而不必使用催化剂。但是由于空气密度小、热容小、导热系数小,乙醛氧化反应放出的大量热量极难排出,系统温度难以控制,造成恶性爆炸事故。因而气相氧化过程没有得到实际应用。 工业上实际使用的液相过程,向装有乙醛的醋酸溶液的氧化塔中通入氧气或空气,氧气首先扩散到液相,再被乙醛所吸收,借催化剂的作用使乙醛氧化为醋酸。由于液体的密度较大,热容量也大,传热速率高,热量很容易通过冷却管由工业水带走,不易产生局部过热,反应温度能有效地加以控制,确保安全生产。 2、催化剂: 采用催化剂能使反应过程显著加速,特别是能加速过氧醋酸的分解。这样可以避免过氧醋酸的积聚,消除爆炸性危险。变价金属盐,如铁、钴、锰、镍、铜、铬的盐类均可作催化剂。 工业中常用醋酸锰作为乙醛氧化制醋酸的催化剂。同时,国内对锰、钴、镍复合催化剂也进行了一定的研究工作。 另外一些重金属盐是负催化剂,它们的存在使反应速度减慢,比没有催化剂存在时还要慢。按其反应速度的影响顺序排列如下:

乙醛氧化制醋酸的基本原理

乙醛氧化制醋酸的基本原理

乙醛氧化制醋酸基本原理 一、反应方程式: 乙醛首先氧化成过氧醋酸,而过氧醋酸很不稳定,在醋 酸锰的催化下发生分解,同时使另一分子的乙醛氧化,生成 二分子醋酸。氧化反应是放热反应。 CH3CHO+O2 CH3COOOH (1) CH3COOOH+CH3CHO 2CH3COOH (2) 在氧化塔内,还进行下列副反应: CH3COOOH CH3OH+CO2(3) CH3OH+O2 HCOOH+H2O (4) CH3COOOH+ CH3COOH CH3COOCH3+CO2+H2O (5) CH3OH+ CH3COOH CH3COOCH3+H2O (6) CH3CHO CH4+CO (7) CH3CH2OH+ CH3COOH CH3COOC2H5+H2O (8) CH3CH2OH+ HCOOH HCOOC2H5+H2 (9) 3CH3CHO+3O2 HCOOH+ CH3COOH+CO2+H2O (10) 2CH3CHO+5O2 4CO2+4H2O (11) 3CH3CHO+O2CH3CH(OCOCH3)2+H2O (12)

氧发生反应生成1mol醋酸。 CH3CHO + 1/2O2 CH3COOH 44.05 16 60.05 1000 X X=1000*16/44.05=363.2kg 即每1000kg乙醛需耗363.2kg纯氧(254.3Nm3)。在实际生产中,通常采取氧气稍微过量,以提高乙醛的利用率。使用纯氧氧化的装置,一般氧气过量5-10%,使用空气氧化的装置过量还要大些。但氧气过多也是有害的。一方面增加气相反应的危险性,因为气相中含醛超过40%,含氧超过3%就有爆炸危险。另一方面造成乙醛深度氧化,使甲酸增多,影响产品质量,给后处理带来困难。另外由于每个副反应几乎都伴有水的生成,使氧化液中总酸含量下降,水分含量升高,催化剂活性下降,从而影响氧的吸收。 在生产中,一旦醛氧比失控,要恢复正常是需要一个很长的过程。因此,实际操作时要根据中间分析结果严格控制醛氧配比。 值得一提的是,这里所说的醛氧配比是指纯氧,在比值不变的情况下,由于氧气中氧含量波动实际上改变了醛氧配比。在实际操作中,还要及时注意氧气的氧含量,以便求得正确的醛氧配比。 6、气体分配 实际生产中,氧气或空气是分段进入氧化塔。内冷式氧化塔分4-5节进塔,外冷式氧化塔分2-3节进塔。 塔内乙醛浓度是由下数第一节开始逐渐递减的,因而产生了第一

实验九 乙醛的氧化反应

实验九乙醛的氧化反应 【实验教学研究目的】 1)探讨乙醛与银氨溶液、新制的氢氧化铜反应的适宜实验条件以及操作技能,掌握实验成败的关键。 2)进一步认识化学式试剂的用量、浓度、pH、温度、滴加顺序等条件对实验成功的重要性,培养良好的科学态度和方法。 3)学习和探讨乙醛氧化反应演示实验的教法,训练演示技能。 【实验教学研究内容】 1)乙醛与银氨溶液反应适宜的硝酸银浓度的探讨; 2)乙醛与新制氢氧化铜反应适宜的氢氧化铜混合液的pH、反应、温度探讨; 3)乙醛与银氨溶液反应或与氢氧化铜反应的实验教学。 【实验教学研究步骤】 1、课前资料收集与研究方案的设计 (1)思考与讨论 1)乙醛与银氨溶液、新制氢氧化铜反应的原理各是什么?乙醛与银氨溶液、新制氢氧化铜反应成功的关键是什么?各有哪些影 响实验的重要因素? 2)新制氢氧化铜时,对氢氧化钠和硫酸铜溶液的浓度和滴加顺序有何要求? 3)乙醛与新制氢氧化铜反应时,溶液的最佳pH大约为多少? 4)银氨溶液如何配制?影响银氨溶液配制的关键因素是什么? 5)乙醛与银氨溶液、新制氢氧化铜反应实验说明了乙醛的什么性质?如何通过演示实验来体现说明? (2)阅读与资料收集 阅读下列内容,明确实验目的与要求,明确实验成败的关键,收集好 与本实验教学研究相关的资料。 1)本实验内容; 2)中学有关乙醛氧化反应的教材内容; 3)本实验中“参考资料”及有关文献。 (3)实验研究方案的设计 在“思考与讨论”和“阅读与资料收集”的基础上,依据实验内容和 实验条件,设计如下实验研究的初步方案: 1)乙醛与银氨溶液反应适宜的硝酸银浓度探讨:a 设计比较质量分数分别为1%、2%、3%硝酸银浓度配制的银氨溶液对银镜反应 影响的实验方案;设计时注意选择适宜的氨水浓度,是银氨溶 液的用量和银镜反应的温度等其他条件控制在同一水平,最好 设计相应的表格进行实验。设计实验方案的比较、注意反应 后废物的处理等设计。b 设计银氨溶液的配制方案和配制的要 求。 2)乙醛与新制氢氧化铜反应适宜的氢氧化铜混合液pH、反应温度探讨:a 设计比较氢氧化铜混合液pH为9、11、13时,加热 温度分别为80摄氏度、90摄氏度、100摄氏度与乙醛的反应

乙醛氧化制醋酸氧化工段仿真练习总结

乙醛氧化制醋酸氧化工段仿真(冷态开车)练习总结 一、反应机理 乙醛首先与氧气氧化生成过氧醋酸,过氧醋酸很不稳定,在催化剂醋酸锰下发生分解反应,与另一分子乙醛氧化,生成二分子醋酸。整个反应为放热反应。 CH3CHO+O2→CH3COOOH CH3COOOH+CH3CHO→2CH3COOH 总反应方程式为: CH3CHO + 1/2O2 → CH3COOH + 292.0KJ/mol 过氧醋酸很不稳定,积累到一定程度就会分解引起爆炸。因此该反应必须在催化剂的存在下才能进行。另外,此反应为放热反应,主反应对温度敏感,高温时副反应增多,不利于产品收率,且高温不利于安全操作,故温度控制为本反应的控制重点和难点,尤其是第一氧化塔T101的塔温控制。 二、工艺流程简述 本反应系统采用双塔串联氧化流程,主要装置有第一氧化塔T101、第二氧化塔T102、尾气洗涤塔T103、氧化液中间贮罐V102、洗涤液储罐V103、碱液贮罐V105。其中T101是外冷式反应塔,T102是内冷式反应塔。 乙醛在催化剂下和氧气首先在第一氧化塔T101中反应(催化剂溶液直接加入T101内),然后到第二氧化塔T102中,通过向T102中加氧气,进一步进行氧化反应(不再加催化剂)。第一氧化塔T101的反应热由外冷却器E102A/B移走,第二氧化塔T102的反应热由内冷却器移除,反应系统生成的粗醋酸送往蒸馏回收系统,制取醋酸成品。 两台氧化塔的尾气分别冷却器(E101)冷却,凝液主要是醋酸,带少量乙醛,回到塔顶,尾气最后经过尾气洗涤塔(T103)吸收残余乙醛和醋酸后放空,洗涤塔采用下部为新鲜工艺水,上部为碱液,分别用泵(P103、P104)循环。 三、操作过程要点 1、酸洗: (1)向T101注酸时可使用“快速灌装”按钮,节省操作时间。 (2)等T102推算结束后再关T102塔底阀V32、V33,再进行下一步操作,防止退酸未结束就进酸。 2、建立循环: (1)向T101注酸时,T101液位LIC101达到20%时,在确定阀V32、V44开启的情况下,开启LIC101开度为10%向T102注酸,此时T101液位会阶跃式快速上升至规定值(30%),动态评分20分可得满分。维持30%液位,T101、T102的LIC101、LIC102的开度为52.6%、52.0%。

乙醛使溴水褪色的解释

乙醛使溴水褪色的解释 1、问题提出 对于乙醛使溴水褪色的反应,通常老师是这样向学生解释的:碳氧双键和碳碳双键相似但也有不同之处,C=C能与Br2加成,而C=O不能和Br2加成;而溴水是一种强氧化剂,能把乙醛氧化成乙酸。所以乙醛能使溴水褪色,但不能加成而是氧化。 2、实验事实 为了能让学生理解乙醛使溴水褪色的实质,设计了如下对比实验: 实验1:1ml溴的CCl4溶液中加入1ml乙醛,发现溶液分层,下层橙黄色,即无明显现象。此实验可证明乙醛与溴水不能发生加成反应。 实验2:1ml溴水中加入1ml乙醛,振荡试管后静置,发现溴水褪色。 此实验证明乙醛与溴水发生了化学反应。 3、现象解释 溴的CCl4溶液中,溴仅作为溶质溶解于溶剂CCl4中,溶质与溶剂间并未发生化学反应;而溴水中,溶质溴除了溶解与溶剂水之外,还发生了化学反应: Br2+H2O=HBr+HBrO (1) 生成的HBrO与乙醛发生了氧化反应: CH3CHO+HBrO=CH3COOH+HBr 使反应(1)中HBrO浓度降低,促使平衡向右移动,最终使溴水褪色。 4、结论 综上所述,通过乙醛与溴水,溴的四氯化碳溶液反应的对比实验,能较圆满地解释乙醛使溴水褪色本质不是加成而是氧化。 5、反思 检验乙烯的最佳试剂是溴的四氯化碳溶液而非溴水。。。 也由此想到了一个几乎成为经典的题目: 已知柠檬醛的结构简式(CH3)2C=CHCH2CH2CH=CHCHO,如何检验出其中的谈谈双键?通常答案是:先加足量的银氨溶液(或新制Cu(OH)2)

使醛基氧化成羧基,然后再用酸性KMnO4溶液(或溴水)检验碳碳双键。其实这个题目只需要回答“溴的四氯化碳”就可以!

乙醛氧化制醋酸工艺仿真事故处理及正常停车

T101顶压力升高 以下为各过程操作明细:操作状态应得实得操作步骤说明 T101顶压力升高:过程正在评分70.00 36.36 该过程历时991秒√10.00 10.00 打开T101的塔顶压力控制阀PIC109B √10.00 10.00 将PIC109B投自动,设为0.19MPa √10.00 10.00 将PIC109A关闭 该步骤为质量评分20.00 0.00 T101的塔顶压力P109A/B 该步骤为扣分步骤20.00 0.00 塔顶压力超过0.3MPa 该步骤为质量评分20.00 6.36 将T101塔釜温度TI103A调至77℃ T101进醛流量降低 以下为各过程操作明细:操作状态应得实得操作步骤说明 T101进醛流量降低:过程正在评分100.00 21.42 该过程历时1317秒√10.00 10.00 将T101的进醛控制阀FICSQ102增大至50以上 √10.00 10.00 将FICSQ102调至9852kg/h,投自动 该步骤为质量评分20.00 18.62 醛进料量 该步骤为质量评分20.00 1.71 将T101的塔底温度TI103A调至77℃ 该步骤为质量评分20.00 1.09 将T101的液位LIC101调至35% 该步骤为质量评分20.00 0.00 将T101的压力PIC109A调至0.19MPa 该步骤为扣分步骤10.00 0.00 T101尾气中氧气的含量高于7.5% 该步骤为扣分步骤10.00 0.00 T102尾气中氧气的含量高于7.5% 该步骤为扣分步骤20.00 0.00 进氧电磁阀V7被锁 该步骤为扣分步骤20.00 0.00 进氧电磁阀V6被锁 该步骤为扣分步骤20.00 -20.00 塔顶压力超过0.3MPa T101氮气进量波动 以下为各过程操作明细:操作状态应得实得操作步骤说明 T101氮气进量波动:过程正在评分60.00 53.86 该过程历时1049秒√10.00 10.00 开FIC103 √10.00 10.00 关FIC101 该步骤为质量评分20.00 18.99 将T101的塔顶压力PIC109调至0.19MPa 该步骤为质量评分20.00 14.87 将T101塔釜温度TI103A调至77℃ 该步骤为扣分步骤10.00 0.00 T101尾气中氧气的含量高于7.5% 该步骤为扣分步骤10.00 0.00 T102尾气中氧气的含量高于7.5% 该步骤为扣分步骤10.00 0.00 进氧电磁阀V6被锁 该步骤为扣分步骤10.00 0.00 进氧电磁阀V7被锁 该步骤为扣分步骤20.00 0.00 塔顶压力超过0.3MPa T101泵P101A坏 以下为各过程操作明细:操作状态应得实得操作步骤说明 T101泵P101A坏:过程正在评分90.00 -9.00 该过程历时903秒√10.00 10.00 开P101B √10.00 10.00 关闭P101A 该步骤为质量评分20.00 0.00 将T101循环温度TIC104A调至60℃ 该步骤为质量评分20.00 0.00 将T101塔釜温度TI103A调至77℃ 该步骤为质量评分30.00 21.00 将T101循环流量FIC104调至1518000kg/h

乙醛氧化法生产乙酸工艺流程

乙醛氧化法生产乙酸工艺流程 乙酸的这种生产方法有着较畏久的历史,早年的乙琏主妾来白电石乙块.而现在就低界范国来说’乙餐的主耍来源是曲乙堀合成'即阿法.遠样由乙烯生卢乙皱将分聘步进荷,肯先.乙恍輒化生产乙曜,丽后乙隆氧化生产乙観u这个过程的裤珞流程、如曲2」所示。 Fig .2*1 Produchon of iK ciakkhydc from cthylei/c 这种主产方法’自乙烯开始的总收率司达到対%议上。而4反应象件(辰应谢哎、反理压力綁)比校温和B其不足之处布丁时热量的冋收比我困蒲.Hoechsi公祠止I乙匯生产 Fig.2.± ^ixxlwtion of a^edc acid from acetaldehyde L一催此剂帰2—《(化曙:4、5、5-区慟塔 2.2上海石化KT5.5万吨醋酸養置向 2.2. L坡置撷况 谨装輙厲设计公称生产能力为3力占地而5700m2,建筑両积1706rtl3.谍捷瓷完全依揉国内自己的H艺技术.设备材料.电器.仪表U及设计制趟能力、由上握崔箱工业设计院和上海石油化工总厂联合设if,上海设备安裝公司安裝,主要非定型设备由上裨化工机條总厂制進.

2.22装置特点 (一)外冷却武反应黙 国内時酸工业生产所用的反应器,多采用冬节盘管内冷却立式结构-外冷却式反应器则是将冷却系统设计在反应器外*由立式反应饕空铛与列符式冷却器通过合成液循坏泵连结组成,设备结构简单,制作方使,列管冷却器可史型配套,楡條维护方便? (二)髙效的箱细系统 采用合适的分离精制工艺,高效的浮闽塔结构,配以合理的操作条件,便諾酸成品纯度,冰点等指标达到国际戍尿水平,而杂威、甲酸、境金属含虽、色度等指标更优于田际水平. 《三)双塔氣化反应器 原设计的氧化反应器为单塔反应器,反应液含矚酸94%,水2%,乙醛珈公右。改为双塔后"使反应液中的醋酸含最提局到97%以上?合水降至L5%Zc右,含乙醉0.Z %以下.由于反应液中杂质大幅度减少,为粕制和回收创造了区好的条件? 2.23工艺流程 乙醉在反应黯内溶于含0」%馆盐醋酸溶液屮,纯氧通过分如管分散在反应器中上部,反应在均相汽液彼泡悄况下进行,反应热由反应器外换热購移去.丁艺流稅如下:100单元氧化反应 200-230单元闪蒸梢馆 (一)100 m元氧化反应 (1)反应机理 主反应:-C CH/2HO + 轨":勢Y Hf OOH + 298.3kJ (2-1)副反应; Cfi^CHO十2O2 -> HCOOH十CO2 +H.O CU^CHO + CH&Ogg十Hp + CO2 CH,CQOH + CH、OH -> CH^COOCH. + HQ MHjCHO + O: f CH、CH(CHQG6〉+ HQ 2CH&HO + 禺t 4CO2 + 4H Z O CH y CH(CH.COO\ t (CHg,O + CH,CHO (2)流程说明(见图2.3)(2-2) (2-3) (2-4) (2-5) (2-6) (2-7) (2-8) (2?9)

相关主题
文本预览
相关文档 最新文档