当前位置:文档之家› 飞思卡尔智能车竞赛的一些感悟(网络转载)

飞思卡尔智能车竞赛的一些感悟(网络转载)

从09年12月份,到10年7月23日,我们团队经历了半年多的学习,我们顺利的完成了第五届全国大学生智能车大赛,虽然成绩不是很理想,但是从学习的角度上看,我们确实学到了不少、成长了不少。作为团队的负责人与发起者(刚开始我们学校不支持,在我的努力下学校最后支持了我们,并我们是学校唯一的团队参加)过程感触颇多,回想经过的点点滴滴,感觉走了很多弯路。我是在前人的肩膀下走过来的,也希望为下一批的你们留点什么。

一、如果报名参加全国大学生智能车大赛

关注官网:https://www.doczj.com/doc/e3674477.html,/web/questionView.jsp

建议:1)如果学校不支持(在你的努力下还不支持)建议放弃,因为搞智能小车(竞速类)成本确实很高。


2)时刻关注官网,最后与赛区组委会有一定的联系。

二、团队组建

参赛队员:有所侧重,两个人擅长写程序,一个人软硬都有一定的了解,关键还有彼此谈的来,好沟通。

指导老师:建议请一些年轻的、有激情的老师。

三、元器件购买

由于我们是第一次参加这样的比赛,没什么经验,学校也不是很支持,所以这让我们头疼了下。如果你资金不是很雄厚,建议只要是非官网上统一购买的(好像就只有车模有强制规定)就淘宝网上购买,服务好而且便宜。

四、如何开始做飞思卡尔小车

1)团队有个大致分工

即团队成员有个大致的负责侧重点,但是要明白软件与硬件是分不开的,注意彼此相互学校。

2)熟悉核心控制芯片(今年是S12XS128系列的)

9S12XS128这类芯片看起来挺复杂,确实也挺复杂,不过用到的模块却不多,所以不要担心,你完全可以把它当成普通的51来学,你要用到哪里你就搞明白哪里,一个模块一个模块的做实验、调试。

核心掌握的模块有:.ECT ADC PWM MDC PLL SCI

因为要做一个智能车系统注意完成以下几个方面:

?单片机初始化模块,实时路径检测模块,舵机控制模块,驱动电机控制模块,中断速度采集模块。

?(1)单片机的初始化模块包括:I/O模块、PWM模块、AD模块、计时器模块、定时中断模块初始化。

?2)实时路径检测模块:光电传感器检测黑线,将返回信号输入单片机的输入端口,经单片机内部AD转换,进行分析,得出合适的PWM信号控制舵机转向。

?3)舵机控制模块,驱动电机控制模块:通过直接输出PWM信号控制。舵机的控制采用开环控制,驱动电机采用PID算法控制。

所以让小车跑起来不难,接下来我分享下我调试各模块一些方法与经验

IO口模块程序示例

Void PORTB_Init(void){

DDRB=0xff;
//PB口作输出使用,1为输出,0为输入


PORTB=0x00;
//PB口数据寄存器值

}

注意:IO口要注意以下几点:(1)每个IO口的数据寄存器名可能不同(2)AN口只能作输入用(3)PH,PJ(高两位,低两位),PP可用输入中断功能使用(4)IO口作输入与输出时有不同的寄存器对应(5)IO口作复用时不能作IO口用,相反也不行

IO口可用作:调试接口(接数码管、液晶、拨码开关等等)所以必须掌握

使用拨码开关要注意这样用;

DDRB=0XFF;
//输出

PORTB=0XFF;

DDRB=0X00;
//输入


AD模块程序示例

Void ATD_Init(void){

ATD0CTL1 = 0x00;
//8位精度,不放电


ATD0CTL2 = 0x42;
//快速清除标志位,禁止外部触发,使能中断


ATD0CTL3=0x8a;//右对齐,每序列4次转换,不用FIFO,进入FreezeMode完成当前转换


ATD0CTL4 = 0x03;
//采样用4个ATD周期,F(ATD)=1MHz[bus clock为8MHz]


ATD0CTL5 = 0x29;
//SCAN模式,单通道,通道9


ATD0DIEN = 0x00;
//禁止数据输入

}

Void main(void){

ATD_Init();

………………………………………

}

#pragma CODE_SEG NON_BANKED

void interrupt 22 Int_AD0(void)

{ DisableInterrupts;


AD_wData = ATD0DR0L; //读ATD转换的寄存器值(低八位)


ATD0STAT0_SCF=0;
//(当AFFC为1时,写0清零;为1 时写1清零)

EnableInterrupts;

}

注意:ATD模块要着重注意:(1)标志位清零(比较复杂)(2)多通道转换后的储存顺序(3)精度的选择和转换速度(4)
单个通道与多通道转换的区别

定时器模块程序示例

Void Timer_Init(void){


TSCR1=0X90;
//使能定时器并设置为自动清除标志TFLG1



TSCR2=0X03;

//设置分频系数为8,及23




TIE=0X01;
//定时器通道0中断使能



TIOS_IOS0=1;
//PT0口为输出比较

TC0=TCNT+1677;
//设定初值 //定的时间就是从0加到1677要的时间

EnableInterrupts;

Void main(void){

Timer_Init();

…………………..

}

#pragma
CODE_SEG
NON_BANKED


void interrupt 8 Timer(void) {


DisableInterrupts;


TC0=TCNT+1677;
//设定比较器下次中断时间


TSCR1=0x00;
//关定时器(一般情况定没必要用这个)


EnableInterrupts;


}

注意:定时器模块要关重注意以下几点:(1)初值的设定,每次中断都要置初值(2)标志位的清零方式(3)PT口作为输入捕捉时的设置区别

脉冲累加模块示例

Void PT7_Init(void){


PACTL=0X40;
//脉冲累加系统使能,下降没触发,使用预分频因子定义的时钟



PACNT=0X0000;
//设定脉冲累加计数寄存器初值

}

注意:脉冲累加模块注意以下几点:(1)PACTL中的各位配合使用表,可以在自备次料上查



PWM脉宽调制模块示例

Void PWM_Init(void){


PWME=0X02;

//使能PWM1口,及PP1口



PWMCTL=0X10;
//级连PP0和PP1



PWMPRCLK=0X07;
//预分频A系数为128



PWMCLK_PCLK1=0;
//级连通道01选择时钟A



PWMPOL=0X02;
//级连通道01极性们为先高电平输出



PWMCAE=0X00;
//级连通道01为左边对齐输出

PWMDTY01=1000;
//占空比寄存器值

PWMPER01=1500;
//周期寄存器值

}

注意:PWM模块要注意以下几点:(1)PWM级联时寄存器名称区别(2)预分频与分频的联合应用

串行口SCI程序示例

Void SCI_Init(void){


SCI0BDL=(byte)(8000000/9600/16);//设置总线为8M时SCI波特率为9600Hz




SCI0CR1=0x00;
//数据格式为8位(没有奇偶校验位)




SCI0CR2=0x2c;
//接收中断使能,发送使能,接收器使能

}

Void main(void){


SCI_Init();


………………………

}

#pragma CODE_SEG NON_BANKED


interrupt 20 void SCI_RX_IRS(void){


byte RxData,RX;


DisableInterrupts;


RX=SCI0SR1;
//读状态寄存器,为清零作准备


RxData=(byte)SCI0DRL; //读接收寄存器的值


EnableInterrupts;


}

注意:串行口SCI要注意以下几点:(1)波特率的设置注意总线频率是否有变(2)SCI数据格式(2)接收中断标志清零是先读状态寄存器再读数据寄存器(4)发送时不能用中断,只能轮询标志位(易错)!!!

琐相环模块程序示例

Void SetBusCLK_32M(void){


CLKSEL=0x00;
//不使用锁相环


PLLCTL_PLLON=1;
//锁相环电路允许


SYNR=0xc0|0x03;
//SYNDIV=3


REFDV=0xc0|0x01;
//REFDIV=1


POSTDIV=0x00;
//分频系数为20=1


_asm(nop);
//等待锁相环稳定


_asm(nop);


_asm(nop);


_asm(nop);


_asm(nop);


_asm(nop);


_asm(nop);


while(!(CRGFLG_LOCK==1));


CLKSEL_PLLSEL=1;
//使用锁相环(只能写最后)


}

注意:锁相环要注意以下几点(1)锁相环使用后改变了总线频率,所以相它与总线频率相关的各模块寄存器也要相应改变,以免出现低级错误(易错)!!(2)锁相环设置顺序(3)超率不能超出范围(4)公式中的FOSC为晶振频率而非时钟频率,别搞错了!



SPI通信模块程序示例

void SPI_Init(void){
//SPI初始化


SPI0CR1=0xde;
//SPI中断使能,SPI系统使能,SPI为主机模式,SPI时钟极性为低时钟有效,SPI传送期间从机SS脚可保持低电平


SPI0CR2=0x12;样
//模式错误使能,等待模式下停止SPI时钟


SPI0BR=0x07;
//分频系数为256


SPI0SR_SPIF=0;
//接收中断标志初始化为0

}

void Send_Data(unsigned char data){
//SPI发送数据


while(!SPI0SR_SPTEF);
//等待发送寄存器为空


SPI0DRL=data;


while(!(SPI0SR_SPIF));
//等待接收标志置1,接收到的是返回值


aa=SPI0DRL;

}

unsigned char Read_Data(){
//SPI读数据

unsigned char data;

while(!SPI0SR_SPTEF);
//等

待发送寄存器空(因为SPI中收、发都用一个寄存器)

SPI0DRL=0xff;

while(!SPI0SR_SPIF);
//等待接收标志置位

data=SPI0DRL;
//读出数据

return data;
//返回数据

}

注意:SPI要注意以下几点:(1)HCS12中SPI数据寄存器虽然有十六位,但有用的只有八位


(用到的)PC9S12XS128MAL中断向量表

#define VectorNumber_Vporth
25
PORTH中断号

#define VectorNumber_Vportj
24
PORTJ中断号

#define VectorNumber_Vatd0
22
A/D转换中断号

#define VectorNumber_Vsci1
21
串行口1中断号

#define VectorNumber_Vsci0
20
串行口0中断号

#define VectorNumber_Vtimch0
8
定时器中断

书籍与网站推荐:

大学生电子设计联盟:https://www.doczj.com/doc/e3674477.html,/index.php

智能车制作:https://www.doczj.com/doc/e3674477.html,/index.php

电子设计吧:https://www.doczj.com/doc/e3674477.html,/index.html

书籍:学做智能车等 网上有电子版

推荐的算法:

PID算法:

一般步骤:

1.负反馈

自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。

2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。

3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。 b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定积分时间常数Td 积分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。 d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。

舵机有关:

舵机的转向模块是赛车上的重要模块,赛车灵巧的转向是其能快速过弯的保证,所以如何加快舵机的响应速度是进行舵机改造时要考虑的关键问题。


舵机改造的建议:

1)
位置改变 2)舵机力臂加长
目的:减小拉力增大扭力

用的时候,注意舵机电压的大小,建

议在小车工作的时候和调试下载的时候测量下供给舵机电压的大小,因为如果过大很容易烧坏舵机。

写在最后的话:

感谢一路走来的团队,感谢给我们帮助的你们,由于本人也是初学者,错误在所难免,忘批评指正,共同成长,迎接挑战。

相关主题
文本预览
相关文档 最新文档