当前位置:文档之家› 高速信号反射分析模型

高速信号反射分析模型

高速信号反射分析模型
高速信号反射分析模型

高速信号反射分析模型

2008-12-11 21:14

建立如图所示的高速信号反射分析模型,Vs为驱动器的源电压;Zs为等效源内阻;ZL为等效负载电阻;信号传输路径为特性阻抗为Zo的微带传输线。源的实际输出电压为Vinc,若负载阻抗ZL=ZO,则入射电压Vinc全部到达负载不会被反射;否则,当入射波到达负载时,一部分电压将被反射回来,并在传输路径上和入射电压叠加。但入射电压和反射电压互不干扰的独自传输,当反射电压到达源端时,若源内阻ZS和传输线特性阻抗不匹配,将会产生第二次反射,这样,信号就会在源端和负载端之间来回形成多次反射即反弹,直到到达稳态。

图1 高速系统反射分析模型

通常门电路的输入阻抗很大,在此假设传输线末端开路,即负载ZL为无穷大;传输线特性阻抗为50Ω;时延为1 ns:驱动源信号Vs上升沿为0.1 ns;电压为3 V的阶跃波形;源内阻为25Ω;接收端的波形应该如何?

首先,信号在传输线的始端感受到的瞬态阻抗为50Ω,则源的实际输出电压满足如下分压关系:

这个2V的信号经过1 ns后到达末端,在末端发生第一次反射,反射系数为

于是产生2V的反射信号返回源端,而末端电压为入射信号和反射信号电压之和,即4V。

再过1 ns,2V的反射信号到达源端,又一次遇到阻抗突变,反射系数为

此时发生第二次反射,产生-o.61 V的反射电压到远端,再反射,如此下去,直到稳定,通常采用反弹图来手工计算多次反射,如图2所示。

图2 反弹图

用信号完整性分析工具“Hyperlynx”对上述电路进行仿真,仿真电路原理如图3所示,得到的源输出电压及末端负载电压波形如图4所示。可以看出:首先,远端的电压最终逼近源电压3 V,因为末端是开路的;其次,末端电压有时大于源电压,有时小于源电压,出现振铃现象,这往往会给系统带来危害,过分的过冲会损坏器件,欠冲则会使电路逻辑长期处于不确定状态,可能导致误判。

图3 反射模型Hyperlynx电路原理图

图4 仿真结果

但是,并不是所有的反射都会引起振铃,反射会因源内阻、负载阻抗、路径延迟和波形上升时间等的不同给系统带来不同程度的影响。如果上面的其他参数保持不变,源内阻发生变化时末端的电压波形会有怎样的表现呢?

如图5所示,当源内阻小于传输线特性阻抗时会出现振铃,称为过载传输线;当源内阻大于传输线特性阻抗时会将信号上升沿拉长,称为欠载传输线;只有当二者相等时,多次反射才不会发生;最终的电压都稳定在3V,因为负载端开路。在第5章里将详细介绍为了排除源端反射所要采取的端接方法。

图5 源内阻变化时的接收端电压

上升沿对反射的影响

简单的系统由近端驱动器、传输线和远端接收器组成,如图所示的高速系统反射分析模型。一般情况下,驱动器为低输出阻抗,接收器为高输入阻抗,信号在两端之间来回反弹。那么,中间的传输线对反射有何影响呢?

假设驱动器内阻为25Ω,末端接收器等效为开路,源信号的上升时间为0.5 ns,下面观察传输线的时间延迟分别为0.1 ns、0.5 ns和1 ns时的接收端波形,如图所示。

可见,随着传输线的变长,反射噪声越趋严重。如果导线足够短,虽然反射依然会发生,但来自另一端的反射是在信号状态转换完成以前就到达,那么就被信号的边沿所掩盖,几乎看不出来,如图3所示中TD=0.1 ns时。那么,如何衡量布线的长度对反射的影响,有没有一个标准呢?

图传输线长度对反射的影响

根据电路设计者的经验,在没有有效端接的情况下,当传输线的时延TD大于信号上升时间RT的20%时,反射的影响就不能忽视了,不然将带来信号完整性问题。

瞬态阻抗及反射

在高速数字系统中,所关注的是信号波形的传输及系统的瞬态响应。反射是带来波形失真的一个重

要因素,其定义可简单概括为:当信号沿路径传输时,将探测或感受到路径上的瞬态阻抗。如果探测到瞬态阻抗发生改变,则一部分信号将被反射,另一部分发生失真并继续传播下去。然而,什么是瞬态阻抗呢?

对于一分立元件的阻抗ZL,在其两端加上任一电压V,其电流为I=V/ZL,故其瞬态阻抗为ZL。

对于传输线,可以建立一个传输线的零阶模型来分析它。此模型由一系列的小单元组成,每个单元由一个时延和一个小电容组成,如图1所示。

在此模型中,单元长度为纰,则每个单元的电容为单位长度电容Co和单元长度△z的乘积:

C=C0.△z (3-31)

信号沿z方向传播,信号边沿对某一电容充电,充电电流为r。根据电流的定义有

由此可得出结论:传输线上的瞬态阻抗即为其特性阻抗。

图1 传输线的零阶模型

常见的导致瞬态阻抗发生突变的因素有:线的末端、线宽变化、拐角、分支、线交叉、桩线、返回路径上的缝隙、叠层间的过孔、测试焊盘、封装引线,以及器件输入门电容等。

只要瞬态阻抗改变,就会产生发射。然而,究竟为什么信号遇到阻抗突变就会产生反射呢?产生反射是为了保证边界条件:信号到达瞬态阻抗不同的两个区域的边界时,在交界面两侧的电压及回路电流都应该是相同的。如果没有产生反射回源端的信号,要保证边界条件,必有

因此,这是一个错误的假设。为了保证系统的稳定,在边界处必须产生一个反射回源端的电压为

Vref的波形,如图2所示。

图2 阻抗突变及反射形成

分界面两侧电压相等的条件是:

入射波和反射波传播方向相反,因而其电流回路方向也相反,则分界面两侧电流相等的条件是:

以上的电压、电流均为瞬态值,Z)和饧分别为两个区域的瞬态阻抗,则有如下关系:

在此,不必追究反射产生的物理实质,但只有产生之后,交界面处的电压和电流才是连续的,只有这样,才能保证系统的稳定。

信号参考电源层的仿真分析

大多数layout工程师以及SI/硬件工程师都知道, 信号除了不能跨分割层布线之外,一般还不容许参考电源层布线的(当然,这里指的高速高频信号),为什么不能参考电源层?究竟会带来多大影响?如果叠层空间限制的情况下可以容许哪 些信号参考电源?针对这些问题,本篇将结合ANSYS/Ansoft仿真软件进行理论及仿真方法介绍。 1 参考电源层的回流路径 首先,从信号回流路径的角度开始基本理论的回顾。一个简单四层PCB信 号通过过孔换层参考电源,其信号的回流路径如图1 示意: 图1 信号回流路径 由上图可见,当高速信号在信号线上传播时,在信号电流向前传播的过程当中,由于与参考平面之间存在容性耦合,所以当发生dV/dt时,就会有电流经耦合电容流向参考平面的现象,传输线正下方位置都会有瞬态电流流回到源端电路。如果信号的参考为电源平面,那么信号回流将首先流向电源层,然后再通过电源与地网络之间的Cpg流向地网络,最后再经地层流向源端电路,最终形成一个 完整的电流回路。我们都知道,控制好高速信号的回路阻抗非常关键,因为它直接影响到信号传输特性。 当信号参考电源层布线时,回流路径当中对信号影响最大的就是Cpg电源与地网络之间的容性通道。它可以是电源地网络上分布复杂的退耦电容,也可能包含电源地层平面之间的平板电容,构成非常复杂,在各个频点所表现的阻抗特性都不一样,难以量化与控制。所以不建议高速信号参考电源。 那么究竟有多大影响,下面通过仿真软件来帮忙我们看看具体信号传输差异的情况。

2,参考电源层的仿真分析 2.1 基础研究模型的建立 有了以上理论了解之后,接下来通过仿真技术协助研究,到底参考电源层会跟信号传输带来怎样的影响? 为了说明问题,把模型简单化,这里利用板级仿真工具SIwave的自行建模功能(也可通过版图工具画一个类似PCB走线再导入)建立一个简单的10X10四层PCB, 叠层分布为SIG/GND/PWR/SIG,第二层全部为地,第三层电源平面为一小块不规则平面,如下图,并布置两根传输线,一根为表层走线,此案例中,它属于完全参考地层平面的微带线,一根为表层走线经过孔到底层走线的微带线,属于部分参考地层又部分参考电源层的走线。即建立了我们需要研究的参考电源的信号模型。如图2所示: 图2 简单的四层PCB模型 2.2 回流仿真分析 通过SIwave2014以上版本的AC CURRENTS 功能可以进行信号回流路径的仿真分析,只需要在两条传输线两端分别添加相应频率的信号源和负载,即可仿真得到信号源传输时,各个平面层上的电流分别情况。如图3所示,显示为地层的电流分布,跟前面理论分析结论非常一致。完全参考地层的传输线,回流路径主要集中在走线正下方,而参考电源层的信号回流会经电源地耦合到地层上,所以在电源与地层重叠的地方分布,不同频点的回流分布也不尽相同,这势必会影响信号传送质量,同时也可能对外界电路造成干扰。

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

高速数字信号的信号完整性分析

科研训练 设计题目:高速数字信号的信号完整性分析专业班级:科技0701 姓名:张忠凯 班内序号:18 指导教师:梁猛 地点:三号实验楼236 时间:2010.9.14~2010.11. 16 电子科学与技术教研室

摘要: 在高速数字系统设计中,信号完整性(SI)问题非常重要的问题,如高时钟频率和快速边沿设计。本文提出了影响信号完整性的因素,并提出了解决电路板中信号完整性问题的方法。 关键词:高速数字电路;信号完整性;信号反射;串扰 引言: 随着电子行业的发展,高速设计在整个电子设计领域所占的比例越来越大,100 MHz 以上的系统已随处可见,采用CS(线焊芯片级BGA)、FG(线焊脚距密集化BGA)、FF(倒装芯片小间距BGA)、BF(倒装芯片BGA)、BG(标准BGA)等各种BGA封装的器件大量涌现,这些体积小、引脚数已达数百甚至上千的封装形式已越来越多地应用到各类高速、超高速电子系统中。 从IC芯片的封装来看,芯片体积越来越小、引脚数越来越多;这就带来了一个问题,即电子设计的体积减小导致电路的布局布线密度变大,同时信号的上升沿触发速度还在提高,从而使得如何处理高速信号问题成为限制设计水平的关键因素。随着电子系统中逻辑复杂度和时钟频率的迅速提高,信号边沿不断变陡,印刷电路板的线迹互连和板层特性对系统电气性能的影响也越发重要。对于低频设计,线迹互连和板层的影响可以不考虑,但当频率超过50 MHz时,互连关系必须考虑,而在评定系统性能时还必须考虑印刷电路板板材的电参数。因此,高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。 1.信号完整性的概念: 信号完整性是指信号未受到损伤的一种状态,良好的信号完整性是指在需要时信号仍然能以正确的时序和电压电平值做出响应。差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。 2.信号完整性问题的分析: 高速不是就频率的高低来说的,而是由信号的边沿速度决定的,一般认为上升时间小于4倍信号传输延迟时可视为高速信号。信号完整性问题的起因是由于不断缩小的上升和下降时间。假如信号的上升沿和下降沿变化比较缓慢,则电路结构和元器件所造成的影响不大,可以忽略。 当信号的上升沿和下降沿变化加快时,整个电路则会转化为传输线问题,即电路的延迟、反射等问题;当电路中有大的电流涌动时会引起地弹,如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面( 0 V)上产生电压的波动和变化,犹如从地面弹回电路的信号一样;通常表现为在一根信号线上有信号通过时,在上与之

信号分析与处理仿真实验

实验报告 实验名称MATLAB仿真实验 课程名称信号分析与处理 院系部: 专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:2015-11-29

实验一信号的产生与运算 1.单位阶跃信号 (1)源程序 t=-0.5:0.01:1.5; u=stepfun(t,0); u1=stepfun(t,0.5); figure(1) plot(t,u);axis([-0.5 1.5 -0.2 1.2]);title('单位阶跃信号波形'); figure(2) plot(t,u1);axis([-0.5 1.5 -0.2 1.2]);title('延迟单位阶跃信号波形'); (2)实验结果

2.单位冲激信号 (1)源程序 clear;clc; t=-1:0.001:1; for i=1:3 dt=1/(i^4); x=(1/dt)*((t>=-(1/2*dt))-(t>=(1/2*dt))); subplot(1,3,i); stairs(t,x); end (2)实验结果

3.抽样信号 (1)源程序 clear;clc; t=-20:0.01:20; x=sinc(t/pi); plot(t,x); title('抽样信号'); (2)实验结果

4.单位样值序列(1)源程序 clear;clc; n1=input('n1='); n2=('n2='); n=n1:n2; k=length(n); x1=zeros(1,k); x1(1,-n1+1)=1 subplot(1,2,1); stem(n,x1,'filled') (2)实验结果

PCB高速时钟信号布线技术技巧简要分析

PCB 高速时钟信号布线技术技巧简要分析 在PCB 的设计过程中,越来越多的工程师选择合理利用高速时钟信号布线技术,来有效提升其信号传输的有效性和传输速度。本文将会就PCB 高速时钟信号布线技术的相关技巧,展开简要分析,希望能够对刚刚开始接触PCB 设计工作的新人工程师提供一定的帮助。 相信很多电子工程师都非常明白的一点是,时钟电路的设计和应用在目前覆盖范围最广泛的数字电路中占有非常重要地位。在未来的DSP 现代电子系统应用设计中,对时钟布线要求也会越来越高。高速时钟信号线优先级最高,一般在布线时,需要优先考虑系统的主时钟信号线。高速时钟信号线信号频率高,要求走线尽量地短,保证信号的失真度最小。 在时钟电路的设计中,高频时钟作为一种敏感程度非常高的重要元件,对电路中的噪声干扰特别敏感,这也就需要工程师特别针对高频时钟信号线进行保护和屏蔽,力求将干扰降到最小。高频时钟主要指的是20MHz 以上的时钟或上升沿少于5ns 的时钟,在进行PCB 布线设计时,高频时钟必须有地线护送,时钟的线宽至少10rail,护送地线的线宽则至少要达到20mil。高频信号线的保护地线两端必须由过孔与地层良好接触,且每5em 左右要打过孔与地层相连。地线护送与数据线基本等长,推荐手工拉线。时钟发送侧必须串接一个22~220Q 左右的阻尼电阻。 在进行PCB 的高速时钟信号走线设计时,工程师需要特别注意,应当将其尽量设计在同一层面上,高速时钟信号线周围尽量没有其他的干扰源和走线。高频时钟连线建议采用星型连接或采用点对点连接,采用T 型连接要保证等臂长,尽量减少过孔的数量,在晶振或时钟芯片下需敷铜防止干扰。避免由这些线带来的信号噪声所产生的干扰。

雷达系统中杂波信号的建模与仿真

1.雷达系统中杂波信号的建模与仿真目的 雷达的基本工作原理是利用目标对雷达波的散射特性探测和识别目标。然而目标存在于周围的自然环境中,环境对雷达电磁波也会产生散射,从而对目标信号的检测产生干扰,这些干扰就称为雷达杂波。对雷达杂波的研究并通过相应的信号处理技术可以最大限度的压制杂波干扰,发挥雷达的工作性能。 雷达研制阶段的外场测试不仅耗费大量的人力、物力和财力,而且容易受大气状况影响,延长了研制周期。随着现代数字电子技术和仿真技术的发展,计算机仿真技术被广泛应用于包括雷达系统设计在内的科研生产的各个领域,在一定程度上可以替代外场测试,降低雷达研制的成本和周期。 长期以来,由于对杂波建模与仿真的应用己发展了多种杂波类型和多种建模与仿真方法。然而却缺少一个集合了各种典型杂波产生的成熟的软件包,雷达系统的研究人员在需要用到某一种杂波时,不得不亲自动手,从建立模型到计算机仿真,重复劳动,造成了大量的时间和人力的浪费。因此,建立一个雷达杂波库,就可以使得科研人员在用到杂波时无需重新编制程序,而直接从库中调用杂波生成模块,用来产生杂波数据或是用来构成雷达系统仿真模型,在节省时间和提高仿真效率上的效益是十分可观的。 从七十年代至今已经公布了很多杂波模型,其中有几类是公认的比较合适的模型。而且,杂波建模与仿真技术的发展己有三十多年的历史,己经有了一些比较成熟的理论和行之有效的方法,这就使得建立雷达杂波库具有可行性。 为了能够反映雷达信号处理机的真实性能,同时为改进信号处理方案提供理论依据,雷达杂波仿真模块输出的杂波模拟信号应该能够逼真的反映对象环境的散射环境。模拟杂波的一些重要散射特性影响着雷达对目标的检测和踉踪性能,比如模拟杂波的功率谱特性与雷达的动目标显示滤波器性能有关;模拟杂波的幅度起伏特性与雷达的恒虚警率检测处理性能有关。因此,杂波模拟方案的设计是雷达仿真设计中极其重要的内容,杂波模型的精确性、通用性和灵活性是衡量杂波产生模块的重要指标。 2.Simulink简介 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和

DSB信号的仿真分析

《MATLAB课程设计》报告题目:基于MATLAB的DSB调制与解调分析专业班级: 通信1104班 学生姓名: 指导教师:

MATLAB课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的DSB调制与解调分析 设计内容和要求 DSB信号的仿真分析 调制信号:分别为300Hz正弦信号和矩形信号;载波频率:30kHz; 解调:同步解调; 要求:画出以下三种情况下调制信号、已调信号、解调信号的波形、频谱以及解调器输入输出信噪比的关系曲线; 1)调制信号幅度=×载波幅度;2)调制信号幅度=载波幅度; 3)调制信号幅度=×载波幅度; 时间安排 2013年12月25日:复习DSB的原理,初步构想设计的流程。 2013年12月26日至28日:程序编写及调试。 2013年12月29日:写报告。 指导教师签名:年月日

目录

摘要 调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。MATLAB软件广泛用于数字信号分析,系统识别,时序分析与建模,神经网络、动态仿真等方面有着广泛的应用。本课题利用MATLAB软件对DSB 调制解调系统进行模拟仿真,分别利用300HZ正弦波和矩形波,对30KHZ正弦波进行调制,观察调制信号、已调信号和解调信号的波形和频谱分布,并在解调时引入高斯白噪声,对解调前后信号进行信噪比的对比分析,估计DSB调制解调系统的性能。 Abstract Modulation in communication systems have an important role. Through the modulation, not only can move the spectrum, the modulated signal spectrum move to the desired position, which will convert into a modulated signal suitable for transmission of modulated signals, and that its transmission system, the effectiveness and reliability of transmission has a great impact, the modulation method is often decided on a communication system performance. MATLAB software is widely used in digital signal analysis, system identification, time series analysis and modeling, neural networks, dynamic simulation have a wide range of applications. This topic using MATLAB software DSB modulation and demodulation system simulation, use, respectively, 300HZ sine wave and rectangular wave, sine wave modulation of the 30KHZ observed modulated signal modulated signal and demodulate the signal waveform and spectrum distribution, and in the solution white Gaussian noise introduced when adjusted for demodulating the signal-noise ratio before and after the comparative analysis, it is estimated DSB modulation and demodulation performance of the system.

随机信号分析大作业

随机信号分析实验报告 信息25班 2120502123 赵梦然

作业题三: 利用Matlab 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),并通过一脉冲响应为 (0.8)(0)0 n n h n else =≥??? 的线性滤波器。 (1) 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),检验其一维概率密度函 数是否与理论相符。 (2) 绘出输入输出信号的均值、方差、自相关函数及功率谱密度的图形,讨论输出信号服从 何种分布。 (3) 试产生在[-1,+1]区间均匀分布的白噪声序列,并将其替换高斯白噪声通过上述系统。 画出此时的输出图形,并观察讨论输出信号服从何种分布。 作业要求 (1) 用MATLAB 编写程序。最终报告中附代码及实验结果截图。 (2) 实验报告中必须有对实验结果的分析讨论。 提示: (1) 可直接使用matlab 中已有函数产生高斯白噪声随机序列。可使用hist 函数画出序列的 直方图,并与标准高斯分布的概率密度函数做对比。 (2) 为便于卷积操作,当N 很大时,可近似认为h(N)=0。卷积使用matlab 自带的conv 函 数。 (3) 分析均值、方差等时,均可使用matlab 现有函数。功率谱密度和自相关函数可通过傅 里叶变换相互获得。傅里叶变换使用matlab 自带的fft 函数。 (4) 作图使用plot 函数。

一、作业分析: 本题主要考察的是加性高斯白噪声相关问题,因此构造一个高斯白噪声十分重要,故在本题中使用randn函数随机生成一个个符合高斯分布的数据,并由此构成高斯白噪声;而且由于白噪声是无法完全表示的,故此根据噪声长度远大于信号长度时可视为高斯白噪声,构造了一个长度为2000的高斯白噪声来进行试验。 二、作业解答: (1)matlab程序为: x-1000:1:1000; k=1*randn(1,length(x));% 生成零均值单位方差的高斯白噪声。 [f,xi]=ksdensity(x);%利用ksdensity函数估计样本的概率密度。 subplot(1,2,1); plot(x,k); subplot(1,2,2); plot(xi,f); 实验结果为:

五款信号完整性仿真分析工具

SI 五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB 设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,An soft公司的仿真工具能够从三维场求解的角度出发,对PCB 设计的信号完整性问题进行动态仿真。 Ansoft 的信号完整性工具采用一个仿真可解决全部设计问题: Slwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何 数量的过孔和信号引线条构成。仿真结果采用先进的3D 图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿 (二)SPECCTRAQuest Cade nee的工具采用Sun的电源层分析模块: Cade nee Design System 的SpeeetraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI 。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer 可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

反激变换器小信号模型Gvd(s)推导__1210

一、反激变换器小信号模型的推导 1.1 DCM 1.1.1 DCM buck-boost 小信号模型的推导 根据状态空间平均法推导DCM buck-boost 变换器小信号模型如下: +-v in (t)v o (t)一般开关网络 图1 1理想Buck-Boost 变换器开关网络 1231d d d ++= (1) 首先,定义开关网络的端口变量1122,,,v i v i ,建立开关周期平均值 1 1 2 2 ,,,s s s s T T T T v i v i 之间的关系: 11()s g T g pk s s v t v i d T d T L L <>= = (2) 根据工作模态:113()()()0s s s L T g T T v t d v t d v t d <>=<>+<>+ (3) []1 1 ()()()s s s t T t T L T L s t t s s s di L v t v d L d i t T i t T T d T τττ++<>= = =+-? ? (4) DCM 下,()()0s i t T i t +==,所以()0s L T v t <>=,结合(3)式: 11()()0s s g T T d v t d v t <>+<>= (5) 21()(t)=-(t)()s s g T T v t d d v t <><> (6) 根据工作模态:1123()()0()(()())()()s s s s T g T T g T v t d t d t v t v t d t v t <>=+<>-<>+<>(7) 消去上式的2d 和3d 得:1()()s s T g T v t v t <>=<> (8) 根据工作模态:2123()()(()())()0(()) s s s s T g T T g T v t d t v t v t d t d v t <>=<>-<>++-<>

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

高速电路中的信号完整性问题

高速电路中的信号完整性问题 许致火 (07级信号与信息处理 学号 307081002025) 1 信号完整性问题的提出 一般来讲,传统的低频电路设计对于电子工程师并不是多么复杂的工作。因为在低于30MHz的系统中并不要考虑传输线效应等问题,信号特性保持完好使得系统照常能正常工作。但是随着人们对高速实时信号处理的要求,高频信号对系统的设计带来很大的挑战。电子工程师不仅要考虑数字性能还得分析高速电路中各种效应对信号原来 面目影响的问题。 输入输出的信号受到传输线效应严重的影响是我们严峻的挑战 之一。在低频电路中频率响应对信号影响很小,除非是传输的媒介的长度非常长。然而伴随着频率的增加,高频效应就显而易见了。对于一根很短的导线也会受到诸如振玲、串扰、信号反射以及地弹的影响,这些问题严重地损害了信号的质量,也就是导致了信号完整性性能下降。 2 引起信号完整性的原因 2.1 传输线效应 众所周知,传输线是用于连接发送端与接收段的连接媒介。传统的比如电信的有线线缆能在相当长的距离范围内有效地传输信号。但是高速的数字传输系统中,即使对于PCB电路板上的走线也受到传输线效应的影响。如图1所示,对于不同高频频率的PCB板上的电压分布是不同的。 图 1 PCB在不同频率上的电压波动

因为低频电路可以看成是一个没有特性阻抗、电容与电感寄生效应的理想电路。高速电路中高低电平的快速切换使得电路上的走线要看成是阻抗、电容与电感的组合电路。其等效电路模型如图2所示。导线的阻抗是非常重要的概念,一旦传输路径上阻抗不匹配就会导致信号的质量下降。 图 2 传输线等效电路模型 由图2的模型可得电报方程: 2.2 阻抗不匹配情况 信号源输出阻抗(Zs)、传输线上的阻抗(Zo)以及负载的阻抗(ZL)不相等时,我们称该电流阻抗不匹配。也这是说信号源的能量没有被负载全部吸收,还有一部分能量被反射回信号源方向了。反射后又被信号源那端反射给负载,除了吸收一部分外,剩下的又被反射回去。这个过程一直持续,直到能量全部被负载吸收。这样就会出现过冲与下冲(Overshoot/Undershoot)、振铃(ring)、阶梯波形(Stair-step Waveform)现象,这些现象的产生导致信号出现错误。 当传输媒介的特性阻抗与负载终端匹配时,阻抗就匹配了。对于PCB板来说,我们可以选取合适的负载终端策略及谨慎地选择传输介

信号仿真实验报告

信号与系统仿真实验报告

实验一 (1)()t δ Function-M 文件 function [x,t]=dirac(t1,t2,t0) %y=dirac(t-t0),t1> [y,t]=dirac(-1,5,0); >> stairs(t,y); >> axis([-1,5,0,1.2/0.001]) >> title('单位冲击信号') 分析:由于理想的单位冲击函数在Matlab 中不能实际给出,于是就在t0附近取一个很小的区间dt ,在这个区间中,函数可以认为是一个宽度很窄的门函数,幅值为1/dt ,以满足冲击函数定义要求 (2)()t ε Function-M 文件 function f=heaviside(t,t0) %f=heaviside(t-t0) f=(t-t0>0); %t>t0时f 为1,否则为0 end 主程序 >> t=-1:0.001:5; %时间区间定义 >> t0=0; %函数向右位移距离 >> f=heaviside(t,t0);%生成向右位移t0的阶跃信号 >> plot(t,f) >> axis([-1,3,-0.2,1.2])

分析:在新版的Matlab 函数库中有自带的阶跃函数,调用方法为f=heaviside(t),这里为了方便画位移后0()t t ε-的图像,故自定义了一个阶跃函数。 (3)指数 ①a=1; >> f=sym('exp(t)'); >> ezplot(f,[-3,3]) >> xlabel('时间t') >> ylabel('函数f (x )') ②a=-1; f=sym('exp((-1)*t)'); >> ezplot(f,[-3,3]) >> xlabel('时间t') >> ylabel('函数f (x )') 图a )a=1时的指数信号图像 图b )a=-1时的指数函数图像 分析:y=sym (‘f (x )’)是用了符号运算法 (4)(),5N R t N = >> t=-1:0.001:10; >> y=heaviside(t,0)-heaviside(t,5); >> plot(t,y) >> axis([0,10,-0.2,1.2]) 分析:采用两个跳变点不等的阶跃函数相减得到一个矩形函数的方法生成的门函数。

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(mod ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)3116N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

五款信号完整性仿真分析工具

SI五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

ASK信号的仿真分析matlab课程设计报告

课程设计任务书 学生姓名:_________ 专业班级:____通信0803班______ 指导教师:____魏洪涛____ 工作单位:_____信息工程学院____ 题目:ASK信号的仿真分析 课程设计目的: 1.较全面的了解常用的数据分析与处理原理及方法; 2.能够运用相关软件进行模拟分析; 3.掌握基本的文献检索和文献阅读的方法; 4.提高正确的撰写论文的基本能力。 课程设计内容和要求 1.内容:ASK信号的调制和解调 2.要求:调制信号:300Hz正弦信号,经过μ律PCM编码;载波频率:100kHz; 解调方式:同步解调;画出调制信号、已调信号、解调信号的波形、频谱以及误码率与输入信噪比的关系曲线; 初始条件 .matlab仿真平台 时间安排 第18周,安排任务 第18周,程序设计与计算 第21周,完成(答辩,提交报告,演示) 指导教师签名: 年月日系主任(或责任教师)签名: 年月日

目录 1. 2ASK系统介绍 0 . 2ASK系统的意义、主要功能 0 . 调制解调原理、系统性能分析 0 2. 设计流程 (1) . 产生2ASK信号产生 (1) . 功率谱分析 (1) . 对已调信号的相干解调 (2) 3. 源程序 (2) . μ律PCM编码 (2) . 信号的调制 (4) . 信道加噪 (7) . 信号的解调 (7) . ASK的误码率 (10) 4. 心得体会 (11) 5. 参考文献 (13)

摘要 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JA V A的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。 关键字:matlab,软件,编程,计算

第四章 放大电路基础(2)小信号模型及三种基本电路2016 [兼容模式]

§4.3 放大电路的分析方法 ——小信号模型分析法
思路:在Q点附近,三极管特性曲线可近似看为线性的,把非线性问题转为 线性问题求解。条件:输入为交流小信号(微变信号) 式中各量均是全量,包 一、H参数等效电路: 含直流和交流两部分
1、H参数的导出:
v BE = VBE + vbe
iB = I B + ib iC = I C + ic
iC iB
+
vCE = VCE + vce
vBE=f1 (iB , vCE ) iC=f 2 (iB , vCE )
电气工程学院 苏士美
T
+
输入回路关系 输出回路关系
v BE 2016/3/7
PDF pdfFactory Pro
v CE -
1
https://www.doczj.com/doc/e413126629.html,

小信号模型分析法
考虑微变关系,对两式取全微分:
vBE=f1 (iB , vCE ) iC=f 2 (iB , vCE )
式中: dvBE = vbe , diB = ib , dvCE = vce , diC = ic
dvBE=
?vBE ?iB
? diB +
vCE
?vBE ?vCE
? dvCE
iB
vbe=hie ib + hre vce
在小信号情况下: H参数,具有不同的 量纲,混合参数
共e下BJT的输入 电阻rbe(欧姆) 电流放大系数β
输出对输入的反作 用μr(无量纲) 输出电导1/rce
?iC diC= ?iB
2016/3/7
PDF pdfFactory Pro
vCE
?iC ? diB + ?vCE
? dvCE
iB
电气工程学院 苏士美
ic=hfe ib + hoe vce
2
https://www.doczj.com/doc/e413126629.html,

相关主题
文本预览
相关文档 最新文档