当前位置:文档之家› Radial Velocity Studies of Southern Close Binary Stars.I

Radial Velocity Studies of Southern Close Binary Stars.I

Radial Velocity Studies of Southern Close Binary Stars.I
Radial Velocity Studies of Southern Close Binary Stars.I

a r

X

i

v

:a

s t

r o

-

p

h

/

6

6

5

1

8v

1

2

1

J u

n

2

6

Radial Velocity Studies of Southern Close Binary Stars.I 1Slavek M.Rucinski David Dunlap Observatory,University of Toronto P.O.Box 360,Richmond Hill,Ontario,Canada L4C 4Y6rucinski@astro.utoronto.ca and Hilmar Duerbeck WE/OBSS,Vrije Universiteit Brussel,Pleinlaan 2,B-1150Brussels,Belgium hduerbec@vub.ac.be ABSTRACT Radial-velocity measurements and sine-curve ?ts to the orbital velocity variations are presented for nine contact binaries,V1464Aql,V759Cen,DE Oct,MW Pav,BQ Phe,EL Aqr,SX Crv,VZ Lib,GR Vir;for the ?rst ?ve among these,our observations are the ?rst available radial velocity data.Among three remaining radial velocity variables,CE Hyi is a known visual binary,while CL Cet and V1084Sco are suspected to be multiple systems where the contact binary is spectrally dominated by its companion (which itself is a binary in V1084Sco).Five additional variables,V872Ara,BD Cap,HIP 69300,BX Ind,V388Pav,are of unknown type,but most are pulsating stars;we give their mean radial velocities and V sin i .Subject headings:stars:close binaries -stars:eclipsing binaries –stars:variable stars

1.INTRODUCTION

The origins of this paper are related to those of the series of radial velocity studies of short period binaries currently conducted at the David Dunlap Observatory (DDO papers 1–10)(Lu &Rucinski 1999;Rucinski &Lu 1999;Rucinski,Lu,&Mochnacki 2000;Lu et al.2001;Rucinski et al.2001,2002,2003;Pych et al.2004;Rucinski et al.2005).Both authors realized in the 1990’s that with availability of good Hipparcos parallaxes (ESA 1997),the limiting factor in gathering spatial

velocities of contact binaries would be radial velocities(RV).While the DDO studies have since succeeded in obtaining RV data for now over one hundred of northern binaries,for many reasons the data presented in this paper are so far the only e?ort for the southern binaries.We present these results because chances of continuation of these observations is basically nil:the telescope has been retired,and the remaining ESO telescopes are assigned for technically more demanding tasks.

The observations reported in this paper have been collected on4nights of August8–11, 1998.To optimize on the returns from such a short survey,the17targets were selected to be a mixture of contact binaries possibly o?ering reasonable orbital solutions with a selection of variables suspected to be contact binaries(Duerbeck1997).The next paper will contain similar results for Spring southern targets.

In this paper,we attempt to stay close to the format of the DDO series.In particular,we use the same data extraction procedures through the Broadening Function(BF)approach,as described in the DDO interim summary paper Rucinski(2002a,DDO-7).Of17stars discussed in this paper, four contact binaries(EL Aqr,SX Crv,VZ Lib,GR Vir)in the meantime have been observed during the DDO program resulting in good RV orbits;we include these systems here to report the Southern observations as a check of consistency.The remaining stars have been observed by us for radial-velocity variations for the?rst time.We have derived the radial velocities in the same way as described in the DDO papers;see the DDO-7paper for a discussion of the broadening-function technique used in the derivation of the radial-velocity orbit parameters:the amplitudes,K i,the center-of-mass velocity,V0,and the time-of-primary-eclipse epoch,T0.The primary radial velocity standard used to determine the BF’s as well as to?nd radial velocities was6Cet(F5V)assumed to have the velocity of+14.9km s?1(Simbad).This was the only su?ciently well observed standard which could be used as the BF template,but appeared to serve well for the whole range of the spectral types from mid-A to mid-G;the disparity of the spectral types manifested itself mostly in the broadening function intensities which would not normalize to unity as expected for perfect spectral matches.

We describe our results in the context of the existing photometric data from the literature and the Hipparcos project.We also utilize the mean(B?V)color indexes taken from the Tycho-2 catalog(H?g et al.2000)and the photometric estimates of the spectral types using the relations published by Bessell(1979).The spectral types are taken uniformly from the5volumes of the Michigan Catalogue of HD Stars(Houk et al.1975–1999);from now on called HDH.Because the high incidence of companions to contact binary stars(Pribulla&Rucinski2006),we checked all stars for possible membership in visual systems using the Washington Double Star Catalog(WDS)2. DE Oct and CE Hyi have been identi?ed as members of already known visual binaries.VZ Lib is a previously recognized(Lu et al.2001,DDO-4)spectroscopic triple system.

The observations were carried with the ESO1.52-m telescope at ESO La Silla,equipped with a Boller&Chivens Cassegrain spectrograph.Holographic grating No.32(2400lines/mm)was used in combination with Loral CCD No.39(2048×2048pix).The slit with was set to220μm. The broadening functions were extracted from the wavelength region of401.6–499.8nm.Thus, compared with the DDO results based on the Mg I triplet at518.4nm,with the window of about 25–30nm,the ESO spectra are longer and more blue.They also have a lower resolution:While for the DDO spectra,the broadening functions have a resolution of typicallyσ?13?18km s?1, the spectra described here have the BF resolution of typicallyσ?23?27km s?1.Stellar exposure times ranged between10and20min,depending on the brightness of the object;each exposure was followed by the exposure of a He-Ar spectrum.Spectrum extraction and wavelength calibration was carried out using the ESO MIDAS software system3.

This paper is structured in a way similar to the DDO series.We comment on individual contact binary systems in Section2.Three additional variables which may be members of multiple systems with a dominating third component are described in Section3,while additional?ve stars of mostly unknown types are described in Section4.In each section,the stars appear in the constellation order.The individual measurements are listed in Tables1and2,while Table3gives parameters of spectroscopic orbits derived for9binary stars discussed in Section2.The broadening functions for selected phases of the9contact binaries are shown in Figure1,while radial velocity orbital solutions for these stars are shown in Figure2.We show the broadening functions for single stars or binaries without orbital solutions in Figure3.The conclusions of the paper are summarized in Section5.

2.CONTACT BINARY SYSTEMS

2.1.V1464Aql

The variable star V1464Aql(HIP97600,HD187438)was suggested to be a contact binary by Duerbeck(1997)(hereinafter D97)on the basis of the low-amplitude Hipparcos light curve.We found that the star is indeed a close binary and our six observations con?rm that the period is two times longer than the original Hipparcos period and is equal to0.697822days.The SB1orbit is shown in Figure2while the orbital elements are given in Table3,together with the remaining binary stars.The RV data are in Table2,together with the oher stars showing single-lined spectra.

A search for the presence of the signature of the secondary star in the BF was unsuccessful. The visible component shows a relatively large broadening of its spectral lines with V sin i=94±4 km s?1(Figure1).The star is bright,V max=8.6.The Tycho-2color index B?V=0.237 suggests,with no reddening,the spectral type of A8–F0,much later than given in HDH,A2V.

The Hipparcos parallax of7.16±1.26mas suggests M V=2.9at the light maximum,which corresponds to F1/2V rather than early A.We do not have su?ciently many spectral standards to attempt our own classi?cation,but the general appearance of our spectra for V1464Aql indeed supports an early F spectral type.

2.2.EL Aqr

EL Aqr(HIP117317)was the subject of a previous DDO study(Rucinski et al.2001,DDO-5) where the orbital coverage was good,but the reported?nal elements had a larger scatter than for most of the DDO systems,probably because of typically large zenith distances and of a relative faintness of the system at V max=10.35.The B?V given in DDO-5was incorrect;the value of B?V=0.47better agrees with the DDO spectral type of F3V,but still suggests some amount of interstellar reddening.The spectral type is not available in HDH.For more information about the system,please consult DDO-5.

Our15observations are concentrated in the?rst half of the orbit.They con?rm the DDO results,but the K2semi-amplitude is signi?cantly smaller.This may be an indication of an insuf-?cient spectral resolution,although the peaks in the BF’s are quite well separated(Figure1).The primary eclipse prediction of T0from the DDO observations served well the new observations and was adopted here without a change.

2.3.V759Cen

The bright contact binary V759Cen(HIP69256,HD123732)was discovered by Bond(1970). In spite of its brightness of V max?7.45,it has not been much observed since then with only sporadic photometric observations for eclipse timing.The color b?y=0.39and the spectral type F8(Bond1970)or G0V(HDH)and the period of0.394days suggest a typical contact binary.

The binary was observed6times within our program and these were its?rst RV observations. The phase distribution of the observations was far from optimal so that the orbital elements must be treated as preliminary.As can be seen in Figure1,the spectral resolution was insu?cient for this binary which is probably visible at a low inclination angle.

The Cracow database consulted in April2006provided an ephemeris used for our observations, as given in Table3.Our bootstrap estimated errors are very large because of the insu?cient number of observations.The mass ratio is probably close to q?0.2.

2.4.SX Crv

The very interesting and important contact binary SX Crv(HIP61825,HD110139)with the currently smallest known mass ratio of q?0.07(Rucinski et al.2001,DDO-5)was observed8times. The BF’s show the faint peak of the secondary component quite well although the DDO-5elements are de?nitely better established as they were based on49best observations selected from among 96available ones.As may be expected for a lower spectral resolution,the current observations give a smaller K2,but the center of mass velocity appears to be also di?erent;the latter e?ect may be due to the uneven phase distribution of the observations.

For more information about SX Crv,please consult DDO-5.Note the incorrect value of B?V in that paper which should be0.44.The HDH spectral type is F7V.

2.5.VZ Lib

The spectroscopically triple system VZ Lib(HIP76050)was analyzed in Lu et al.(2001,DDO-4).The current observations show all three components,but the lower spectral resolution results in a much stronger merging of the primary and tertiary peaks in the BF.As observed for other binaries,the value of the semi-amplitude K2is again smaller for the current observations.For more information about VZ Lib,please consult DDO-4.

In DDO-4,a continuous change of the radial velocity of the companion in four seasons was noted.The current observations with the mean value V3=?36.7±2.9at JD2,451,034(see Table2 for individual observations)con?rm the V3variability within the combined span of4years very well.The“kink”in V3visible in Figure5in DDO-4is apparently real so that the orbital period of the triple system is probably quite short,of the order of a few years.It may be necessary to look for systematic changes in the center of mass data for the binary VZ Lib itself to con?rm its motion. The fact that no obvious changes of V0have been noted so far suggests that the third component is probably much less massive than the binary.

2.6.DE Oct

DE Oct(HIP100187,HD191803)was observed spectroscopically for the?rst time within this program.D97had suggested that this is a contact binary with the orbital period twice as long as the Hipparcos discovery period,2×P=0.5555922days.With this period,our3observations cannot properly de?ne an orbit and no estimates of element uncertainties could be determined. However,we can exclude applicability to our observations of the Hipparcos conjunction time at T0=2,448,500.157;the new value of T0is given in Table3.The BF’s are poorly resolved so that the measured velocities,particularly of the secondary component,are very tentative.

DE Oct is a visual binary with the angular separation of22.9arcsec at the position angle 129?and the magnitude di?erence between the visual components of2.85(WDS20194-7608).The secondary was far enough not to be included in the spectrograph slit.

The Tycho-2color index B?V=0.319suggests a spectral type F1/2V,while the HDH spectral type is A9IV.The star is relatively bright,V max=9.15.

2.7.MW Pav

MW Pav(HIP102508,HD197070)was observed within our program for the?rst time and was the best observed star of this series with18observations de?ning a good radial velocity orbit. The spectral signatures are well separated in the BF’s,although one must take into account the warning signs from the other binaries that K2might be systematically underestimated at the available resolution.We assumed the value of the period from the Hipparcos results.

MW Pav is a well known southern contact binary with V max=8.80,B?V=0.33(Tycho-2),the spectral type F3IV/V(HDH)and a relatively long orbital period of0.795day.It was discovered by Eggen(1968)and initially designated as BV894.A light curve solution was presented by Lapasset(1980).The secondary eclipse seemed to be total,so that evaluation of the mass ratio appeared to be possible.However,q phot=0.122±0.003,disagrees with our spectroscopic determination,q sp=0.228±0.008,even if we consider a possibility of a probable systematic under-estimate of K2by(at most)10%.Our spectroscopic observation should permit a combined solution of the parameters of this binary.

2.8.BQ Phe

BQ Phe(HIP2005,HD2145)was suggested by D97to be a contact binary with the period twice longer than given by the Hipparcos discovery observations,2×P=0.437days.We con?rm that BQ Phe is a contact binary,but with only4observations our orbital solution is indicative rather than de?nitive and the formal errors are very large.We assumed both the T0and the double Hipparcos period(see Table3).

The star was a bit faint for this program,V max=10.4.Its spectral type F3/5V(HDH)agrees with B?V=0.51(Tycho-2).

2.9.GR Vir

GR Vir(HIP72138)was analyzed for radial velocity variations by Rucinski&Lu(1999,DDO-2)where a good orbital solution was presented.With only5new observations we can only say that

we fully con?rm the DDO-2solution.We assumed both the T0and the period from the DDO-2 results.

For more information about GR Vir,please consult DDO-2.As for other systems observed before,we see that our value of K2is slightly lower than that observed at DDO.

3.POSSIBLE BINARY MEMBERS OF MULTIPLE SYSTEMS

3.1.CL Cet

CL Cet(HIP2274,HD2554)was suggested in D97to be a contact binary with a period twice longer than the Hipparcos discovery result,2×P=0.6216days.The star has V max=9.9and the Tycho-2color index B?V=0.313;the latter agrees with the spectral type of F2V(HDH).

Our spectroscopic observations do not have su?cient resolution to analyze apparent changes in the single-peaked,wide broadening function(Figure3).It is possible that the binary signature is masked by a relatively rapidly rotating companion with V sin i=135±8km s?1.The single peak in the BF has the velocity V=?18.9±1.2km s?1.However,a signi?cant shift by10km s?1from the average was observed for the last of our four observations.The case for a complex blending of three components in this system is the weakest one among the three cases discussed here;the star may be in fact a pulsating one.

3.2.CE Hyi

CE Hyi(HIP7682,HD10270)is an other case suggested to be a contact binary by D97. Again,the orbital period suggested was2×P=0.4408days.

The star is known as a visual double star WDS01389-5835(HU1553)with the angular separation of1.9arcsec at the position angle of10?and a small magnitude di?erence of only 0.24.Our3observations show very clearly that the spectrum is dominated by a slowly rotating companion,while the close,low-inclination,contact binary is visible only in the base of the combined BF pro?le.Hipparcos and Tycho photometry of individual components shows that it is the fainter star(B)which is the photometric variable and thus the contact binary.

The comparable light contribution of both components to the combined spectrum is visible in the BF where the sharp-lined star shows the peak with V sin i which is un-measurably low, below the spectral resolution of our observations,while the contact binary light is distributed in the velocity domain within±200km s?1(Figure3).The radial velocity of the slowly rotating companion is V3=9.00±0.33km s?1.

The observed V max?8.3is for the combined light of both visual components.The Tycho-2 catalog gives V A=9.08,V B=9.29and(B?V)A=0.333,(B?V)B=0.497,respectively.The

Simbad database gives B?V=0.49and F5V for CE Hyi.The spectral type is after HDH.

3.3.V1084Sco

V1084Sco(HIP86294,HD159705)was suggested by D97to be a contact binary with the period twice the Hipparcos period,2×P=0.3003days.

We have only3observations which show that system is a complex one:It appears to be a quadruple system consisting of a detached binary giving two sharp peaks in the BF(see Figure3), and of a slightly fainter contact binary responsible for the short-period photometric variability.The contact binary–because of the stronger line broadening–is just barely detectable at the base of the BF.The radial velocities of the sharp-line binary components(designated as“3”and“4”in Table2)varied during the3days of observations between?19and?31km s?1for the stronger component and+77and+83km s?1for the fainter component.Thus,the detached binary must be also relatively compact,but our observations were insu?cient to determine any parameters of the radial velocity orbit.The star was included in the major radial velocity survey of Nordstrom et al.(2004)where it appears with the average radial velocity of+21.3km s?1.

This star is a very interesting object for further studies,particularly if the mutual period of revolution of the two binaries turns out moderately short to be observable.The star is relatively bright,V max=9.0,while the color and the spectral type given in Simbad are late,B?V=0.76 and G6V(HDH).The Tycho-2catalog is in agreement with B?V=0.73.

4.RADIAL VELOCITY V ARIABLES OF UNKNOWN TYPE

4.1.V872Ara

This star,at that time identi?ed as HIP81650(HD149989)was suspected in D97to be a contact binary with the orbital period of0.8532days.Very little can be said on the basis of its light variations which are very small(0.02mag.).Three observations obtained here show a wide, rotationally broadened pro?le with the average V sin i=142±6km s?1.The mean velocity is constant at+42.1±2.4km s?1,but the variation between+37and+45km s?1is larger than the measurement error of about±1.2km s?1so that some small variability may be present.

Our results are fully consistent with the recent study of de Cat et al.(2006)which explains the variability of V872Ara byγDor-type pulsations with the originally suggested period of0.42658 days.The measured value of V sin i=134±3km s?1is consistent within the combined errors with our estimate.We refer the reader to the paper of de Cat et al.(2006)for more information on this star.The spectral type is A8/F0V(HDH).

4.2.BD Cap

BD Cap(HIP99365,HD191301)was suggested by D97to be a contact binary with the period twice as long as the one given by the Hipparcos project,2×P=0.3204days.Our three spectra show a very broad BF with V sin i=133±10km s?1.The mean velocity is practically constant at+9.7±1.0km s?1.We cannot say more about this star except we note that it was included in the catalog of suspected and con?rmedδSct pulsating stars(Rodrigez et al.2000)as well as in the survey of spatial velocities of nearby stars(Nordstrom et al.2004).The spectral type is A9III (HDH).

4.3.Anon Cen=HIP69300

HIP69300(HD123720)was an other suggestion of D97to be a contact binary.Our two observations substantially di?er in radial velocity of the star,?94.6and?25.9km s?1,but the broadening pro?le has the same V sin i=116±7km s?1.The star does not have an entry in the General Catalog of Variable Stars4and no variable star name has been assigned to it yet,but it is de?nitely a radial velocity variable.The spectral type is A4V(HDH).

4.4.BX Ind

BX Ind(HIP108741,HD208999),an other candidate of D97,appears to be a slowly rotating star.Our seven observations all show a BF peak consistent with no rotation.Some small radial velocity changes within?32and?20km s?1appear to be present with the mean value?27.6±1.7 km s?1.This is de?nitely not a close binary star.It is listed in the Catalog of Delta Scuti stars of Rodrigez et al.(2000).The spectral type is F2V(HDH).

4.5.V388Pav

We have only two observations of V388Pav(HIP103803,HD199434),another candidate of D97.The radial velocity may be constant at the mean of+5.6±1.2km s?1,while the BF’s indicate a mild broadening of V sin i=45±7km s?1.It is not a close binary star.It is listed in the Catalog of Delta Scuti stars of Rodrigez et al.(2000).The spectral type is F5II(HDH).

5.SUMMARY

This program of radial velocity measurements of known and suspected southern contact binary stars was performed to?ll the growing disparity in the available RV data for northern and southern hemispheres.With only four successive nights,the program could not achieve the same goals as the current David Dunlap Observatory survey.Still some useful results have been obtained for17 targets of the Fall southern sky.

We have con?rmed the suggestion of Duerbeck(1997)(D97)that V1464Aql,DE Oct,BQ Phe are contact binaries and obtained the?rst preliminary orbital data for these systems;V1464Aql is a single-lined binary(SB1)while the rest are double-lined systems.We obtained the?rst radial velocity orbital data(SB2)for the well known southern systems V759Cen and MW Pav.We con?rmed the David Dunlap Observatory results for the double-lined binaries EL Aqr,SX Crv, VZ Lib,GR Vir,but we noticed that in all these systems the secondary star semi-amplitude K2 is by a few percent smaller than observed at DDO which may be a result of the lower spectral resolution.

Three systems could not be analyzed because of the presence of companions.In the case of CE Hyi,a visual companion had been known,but we see spectral signatures of a binary companion in V1084Sco(so that the system is a quadruple one)and suspect a presence of a companion in CL Cet.We are not able to say much about other variables suggested in D97:V872Ara,BD Cap, HIP69300,BX Ind,V388Pav,but most appear to be pulsating stars and have been included in catalogs of such objects;we give their mean radial velocities and V sin i.

Thanks are due to George Conidis for participation in reductions of the data used in this paper. Thanks are also due to the reviewer,Dr.Vakhtang S.Tamazian,for a few very pointed suggestions on the improvement of the paper.

Support from the Natural Sciences and Engineering Council of Canada to SMR is acknowledged with gratitude.The research made use of the SIMBAD database,operated at the CDS,Strasbourg, France and accessible through the Canadian Astronomy Data Centre,which is operated by the Herzberg Institute of Astrophysics,National Research Council of Canada.This research made also use of the Washington Double Star(WDS)Catalog maintained at the U.S.Naval Observatory and the General Catalog of Variable Stars maintained at the Sternberg Astronomical Institute,Moscow, Russia.

REFERENCES

Bessell,M.S.1979,PASP,91,589

Bond,H.E.1970,PASP,82,1065

de Cat,P.,Eyer,L.,Cuypers,J.,Aerts,C.,Vandenbussche,B.,Uytterhoeven,K.,Reyniers,K., Kolenberg,K.,Groenewegen,M.,Raskin,G.,Maas,T.,Jankov,S.2006,A&A,449,281 Duerbeck,H.W.1997,Inf.Bull.Var.Stars,4513(D97)

Eggen,O.J.1968,Inf.Bull.Var.Stars,308A

European Space Agency.1997.The Hipparcos and Tycho Catalogues(ESA SP-1200)(Noordwijk: ESA)(HIP)

Houk,N.et al.,1975–1999.Michigan Catalogue of HD stars,Vols.1–5(CDS catalogues III/31B, 51B,80,133,214)

H?g,E.,Fabricius,C.,Makarov,V.V.,Urban,S.,Corbin,T.,Wyco?,G.,Bastian,U., Schwekendiek,P.,&Wicenec,A.2000,A&A,355L,27

Lapasset,E.1980,AJ,85,1098

Lu,W.,&Rucinski,S.M.1993,AJ,106,361(DDO-1)

Lu,W.,Rucinski,S.M.,&Ogloza,W.2001,AJ,122,402(DDO-4)

Nordstrom B.,Mayor M.,Andersen J.,Holmberg J.,Pont F.,Jorgensen B.R.,Olsen E.H.,Udry S.,Mowlavi N.2004,A&A,418,989

Pribulla,T.&Rucinski,S.M.2006,AJ(June2006;astro-ph/0601610)

Pych,W.,Rucinski,S.M.,DeBond,H.,Thomson,J.R.,Capobianco,D.C.,Blake,R.M.,Ogloza, W.,Stachowski,G.,Rogoziecki,P.,Ligeza,P.,Gazeas,K.2004,AJ,127,1712(DDO-9) Rodriguez E.,Lopez-Gonzalez M.J.,Lopez de Coca P.2000,A&AS,144,469

Rucinski,S.M.2002a,AJ,124,1746(DDO-7)

Rucinski,S.M2002b,PASP,114,1124

Rucinski,S.M.,&Duerbeck,H.W.1997,PASP,109,1340

Rucinski,S.M.,&Lu,W.1999,AJ,118,2451(DDO-2)

Rucinski,S.M.,Lu,W.,&Mochnacki,S.W.2000,AJ,120,1133(DDO-3)

Rucinski,S.M.,Lu,W.,Mochnacki,S.W.,Ogloza,W.,&Stachowski,G.2001,AJ,122,1974 (DDO-5)

Rucinski,S.M.,Lu,W.,Capobianco,C.C.,Mochnacki,S.W.,Blake,R.M.,Thomson,J.R., Ogloza,W.,&Stachowski,G.2002,AJ,124,1738(DDO-6)

Rucinski,S.M.,Capobianco,C.C.,Lu,W.,DeBond,H.,Thomson,J.R.,Mochnacki,S.W., Blake,R.M.,Ogloza,W.,Stachowski,G.,&Rogoziecki,P.2003,AJ,125,3258(DDO-8) Rucinski,S.M.,Pych,W.,Ogloza,W.,DeBond,H.Thomson,J.R.,Mochnacki,S.W.,Capobianco,

C.C.Conidis,G.,&Rogoziecki,P.2005,AJ,130,767(DDO-10)

Captions to?gures:

Fig. 1.—Broadening functions for9contact binary systems discussed in Section2.The orbital phase is given in the right side of each panel.The last panel gives the BF representing the nominal resolution of the method.

Fig.2.—The orbital solutions for9contact systems discussed in Section2.Observations of lower quality are marked by open symbols.Dashes at the bottom mark orbital phases when signatures of the components were unresolved.The sine curve solutions based on DDO data are shown by broken lines.Note that present solutions give systematically smaller values of K2.V1464Aql is the only single lined binary(SB1)in this group of stars.

Fig.3.—The3?rst panels show broadening functions for multiple systems discussed in Section3, while the next5panels show the respective functions for radial velocity variables of mostly unknown type,as discussed in Section4.Note that“strengths or“intensities”of the BF’s have di?erent vertical scales for di?erent stars.This is because the BFs depend not only on the geometric (rotational)broadening,but also on how well spectral types of the template and of the program star match.For a perfect?t,the integral of the BF should give unity.The Y-axis units correspond to the BF sampling at12.5km s?1per point.

Table1.Radial velocity observations of double lined binaries(the full table is available in

electronic form)

Star HelJD RV1W1RV2W2

Note.—The table gives the radial velocities RV i and

associated weights W i for observations of8stars described

in Section2.The velocities are expressed in km s?1.The

weights W i were used in the orbital solutions and can take

values of1.0,0.5or0;the zero weight observations may be

eventually used in more extensive modeling of broadening

functions.

Table2.Radial velocity observations of single lined stars(the full table is available in electronic

form)

Star HelJD RV

Note.—The table gives the radial

velocities RV for observations of stars

described in Sections2and3.The

velocities are expressed in km s?1.

Table3.Spectroscopic orbital elements for9contact binaries Name DDO n obs n used V0σV0K1σK1K2σK2T0–2,400,000σT0P

Note.—The column DDO gives the number of the DDO paper or“new”for this paper.n obs and n used give the number of available and used RV measurements,respectively.The radial velocity parameters V0,K1and K2and their rms errors are in km s?1.T0is the heliocentric Julian Day of the superior conjunction(eclipse).The period P is in days.The assumed and?xed quantities are in square brackets.

门禁管理系统设计方案

1.1.门禁管理系统 1.1.1.概述 门禁管理系统是非接触式IC卡一卡通系统的子系统之一,同时也是大楼综合保安系统的重要组成部分,其设计之主要目的是为实现人员出入权限控制及出入信息记录。 当人员进门时只需持卡靠近读卡器进行读卡,读卡器接触到IC卡信息后,门禁控制器首先判断该卡号是否合法,如合法则发出“滴”一声,绿灯点亮,同时开锁,并将该卡号、日期、时间等信息保存以供查询。否则门不打开,红灯亮,蜂鸣器发出“滴滴”两声。 几乎在所有的一卡通系统中,门禁比重是最大的,对整个安防领域来说,门禁系统发挥的作用是至关重要的,由于门禁系统是一项不间断长期工作的系统,并且和我们的正常生活和工作息息相关,所以门禁系统的稳定性显得尤为重要。甚至可以说是决定一卡通系统稳定与否的最关键因素。 1.1. 2.系统架构与拓扑图 披克门禁系统TCP/IP一级结构方案,稳定可靠、功能全、性能好,性价比高,适应于各种大、小系统的不同应用场合;特别适应实时性要求高,或单个门用户量大、脱机信息存储量大的场合 TCP/IP一级结构控制器采用采用32位ARM9CPU,TCP/IP通讯,实时性强、能实时上传各种报警、数据信息;功能强大,持卡人数40000个(可扩10万个),信息10万条;适应实时性要求强、安全性高、功能全的场合,拓扑图如下:

1.1.3.门禁系统主要功能特点 1)系统容量大 整个系统管理的人员可以管理超过1000000人,具体到每个门可管理3000人进出,系统可以同时管理并处理上万个门禁点的实时数据(包括读卡、按钮、各种报警)。 2)简便易学、清晰鲜明的软件架构设计 全中文Windows XP风格软件操作界面,无需专业知识即刻轻松掌握,培训学习更加轻松.远离国外品牌繁琐复杂的操作培训 3)无缝兼容Wigand协议输入设备 核心科研机构、财务部门、数据机房等涉及金融、科研机密的高安全门禁,万一卡片遗失没有及时挂失,给不法分子可乘之机,财产的失窃、科研人员的研究成果泄密,将给用户单位造成不可挽回的损失,凡在安全级别高、人员少的门禁,披克建议: 1、密码读卡器,实现卡+密码方式双重认证 2、读卡前端采用指纹、面部、虹膜等生物识别 披克所有门禁系列产品都无缝兼容Wigand协议输入设备 4)多级权限控制

门禁管理系统说明

门禁管理系统 1.1.1 系统概述 采用现代信息传输技术、网络技术,结合非接触式IC卡技术,对建筑物各通道出入口实施门锁控制,并在系统中进行相关资料的记录与存储,对进出相关通道的人员实施管理。 1.1.2 门禁设计 在门禁系统服务器设置在网络中心。选用科学的系统结构,该系统采用分布式IP网络结构。各门禁控制器直接连接网络交换机(支持TCP/IP协议)与智能卡系统管理服务器之间建立双向数据通道从而构成完整的系统,各门禁控制器能够在网络不畅乃至通信中断时单独正常工作。网络门禁控制器由UPS 供电(接口?),网络门禁控制器采用加密进行通讯(如何加密?标准),其接入到就近的智能网交换机。 门禁管理子系统数据通过智能化专网提供数据传输链路。系统的管理工作站中心机房内(与消防控制中心合用),并连接一卡通管理服务器进行系统功能设置、发卡、权限控制统一管理。 达实门禁管理系统为两级控制,即:服务器→网络交换机→门禁控制器→门禁点设备(门禁感应器、电锁、门磁、开门按钮、紧急按钮等),无需其他中间设备。 1.1.3 系统功能 ?出入口管理系统采用1/2/4网络控制器,可以满足100万用户名单的记录,在跟服务器中心断开的情况下可自主读取并保持用户进出记录,待 网络恢复记录会自动上传至智能卡管理服务器,每个门禁控制器均有 100000条事件记录的存储容量和5000条报警事件,5000条巡更记录。 ?存储各门控的所有用户名单及权限信息

?支持用户名单和记录数量均是100,000 ?设备支持TCP、RS485等多种通讯方式,通讯电路具备自检功能,损坏后自动断开,不会影响其它设备稳定运行 ?支持256个时间段,16个时间组,128个节假日同时,每个时段允许设定运行模式(常开/常闭),支持卡、密码、卡或密码、卡加密码等认证方式,验证组合(比如首卡、多卡等),支持节假日及调休配置; ?定时开关门: 支持非节假日定时开关门。 ?设备存储空间大,采用双存储芯片实现名单与记录隔离 ?支持脱机、实时多种运行模式 ?开门控制方式多样化:刷卡、按钮、计算机远程、公共密码、胁迫密码、卡+密码、多卡开门、多卡多群组开门、首卡常开、首卡启动 ?支持多种组合控制类型:单向门、双向门、反潜回门、互锁门 ?支持跨网段通讯 ?存储各门控的通行数据、报警数据、日志数据 ?针对门控级别的多门互锁 ?支持半联机及实时状态下的用户权限判断 ?针对门控级别的防潜回功能 ?针对门控故障更换设备时的触发式数据下载 ?随时切换门禁运行模式(常开/常闭) ?支持门禁数据WEB浏览 ?支持远程开门功能 ?门锁控制:控制门锁开与关,亦可加装门磁设备,实时监测门开关状态;?远程控制:在管理中心可通过系统软件远程控制门锁的开、关,并能实时监控门禁的开关情况; ?远程设置:在管理中心可通过管理软件随时更改门禁工作状态和运行参数; ?用户管理:支持用户级别设置及级别分配,用户级别采用全灵活配置以支持普通用户、超级管理员及胁迫用户等;对人员的权限及时限进行统一管理,可按个人及团体两种方式进行权限的设置及下载;

velocity入门使用教程

V elocity入门使用教程 一、使用velocity的好处: 1.不用像jsp那样编译成servlet(.Class)文件,直接装载后就可以运行了,装载的过程在web.xml里面配置。【后缀名为.vhtml是我们自己的命名方式。也只有在这里配置了哪种类型的文件,那么这种类型的文件才能解析velocity语法】 2.web页面上可以很方便的调用java后台的方法,不管方法是静态的还是非静态的。只需要在toolbox.xml里面把类配置进去就可以咯。【调用的方法$class.method()】即可。 3.可以使用模版生成静态文档html【特殊情况下才用】 二、使用 1、下载velocity-1.7.zip 、velocity-tools-2.0.zip 2、解压后引用3个jar文件velocity-1.7.jar、velocity-tools-2.0.jar、velocity-tools-view-2.0.jar 还有几个commons-…..jar 开头的jar包 三、配置文件: Web.xml velocity org.apache.velocity.tools.view.VelocityViewServlet 1 velocity *.vm velocity *.jsp velocity *.html

VRay中文使用手册

VRay中文使用手册 9030 目录 1. license 协议 2. VRay的特征 3. VRay软件的安装 4. VRay的渲染参数 5. VRay 灯光 6. VRay 材质 7. VRay 贴图 8. VRay 阴影 9. VRay的分布式渲染 10. Terminology术语 11. Frequently Asked Questions常见问题 VRay的特征 VRay光影追踪渲染器有Basic Package 和 Advanced Package两种包装形式。Basic Package具有适当的功能和较低的价格,适合学生和业余艺术家使用。Advanced Package 包含有几种特殊功能,适用于专业人员使用。 Basic Package的软件包提供的功能特点

·真正的光影追踪反射和折射。(See: VRayMap) ·平滑的反射和折射。(See: VRayMap) ·半透明材质用于创建石蜡、大理石、磨砂玻璃。(See: VRayMap) ·面阴影(柔和阴影)。包括方体和球体发射器。(See: VRayShadow) ·间接照明系统(全局照明系统)。可采取直接光照 (brute force), 和光照贴图方式(HDRi)。(See: Indirect illumination) ·运动模糊。包括类似Monte Carlo 采样方法。(See: Motion blur) ·摄像机景深效果。(See: DOF) ·抗锯齿功能。包括 fixed, simple 2-level 和 adaptive approaches等采样方法。(See: Image sampler) ·散焦功能。(See: Caustics ) ·G-缓冲(RGBA, material/object ID, Z-buffer, velocity etc.) (See: G-Buffer ) Advanced Package软件包提供的功能特点 除包含所有基本功能外,还包括下列功能: ·基于G-缓冲的抗锯齿功能。(See: Image sampler) ·可重复使用光照贴图 (save and load support)。对于fly-through 动画可增加采样。(See: Indirect illumination) ·可重复使用光子贴图 (save and load support)。(See: Caustics) ·带有分析采样的运动模糊。(See: Motion blur ) ·真正支持 HDRI贴图。包含 *.hdr, *.rad 图片装载器,可处理立方体贴图和角贴图贴图坐标。可直接贴图而不会产生变形或切片。

门禁考勤管理系统操作说明书

门禁考勤管理系统(V1.11/V1.15) 操 作 用 说 明 书

目录 一、前言 (4) 二、软件安装 1、系统要求 (6) 2、安装 (6) 3、卸载 (8) 三、操作说明 (10) 1、系统管理 (11) 2、人事管理 (19) 3、考勤管理 (21) 4、查询 (24) 5、数据管理 (25)

四、操作流程 (30) 五、常见故障与解决方法 (30) 前言: 软件安装默认目录:C: \Program Files\门禁考勤管理系统,(建议安装到D:\Program Files\门禁考勤管理系统) 。在WIN2000系统安装时,一定要以管理员帐号登陆WIN2000系统才能安装;否则安装运行门禁考勤管理软件时会出错! 硬件建议:赛扬1.5G或PIII 1.0G以上,128M内存,20G硬盘7200转以上补充说明: 1.如果安装完后运行门禁考勤管理系统时出现如下错误:“连接数据出错” 请作出如下调整: A.在控制面板中‘“区域选项”日期设为{yyyy-mm-dd}的形式,时间设为 {hh:mm:ss}的形式 做完A步骤后如果再出现“连接数据出错”再做B步骤 B.在控制面板中的ODBC项中建立一个的ODBC是HYkaoqin 的ODBC

到控制面板中的ODBC项双击“数据源(ODBC)” 进入以下界面后,点击选择:MS Access Database,再点击“添加” 再进入如下界面再点击“完成”

进入如下界面,在“数据源名(N)”输入:Hykqoqin然后点击“确定” 创建完毕。

门禁考勤网络结构图: Com口 485转换器

智能门禁管理系统

智能门禁管理系统 门禁管理系统概述 与传统钥匙门锁相比,门禁系统在携带,遗失等情况时的处理更加方便,无须更换大量门锁和钥匙,仅需要在软件中做出相应的操作即可。与监控、报警等安防方式相比,门禁系统化被动为主动,将安全隐患直接排除在管制通道之外。 门禁管理系统功能 灵活丰富的权限管制: 通过时区、周计划、假期信息、管制群组的自由设置可以控制任何一个持卡人在任何一个房门的任意时刻的开门权限和开门方式。◆通道管制、胁迫报警: 系统允许对某些房门进行管制,实行手动或自动布防和撤防,布防时间内仅系统卡和警卫卡才具有开门权限。胁迫报警是指发生不法分子挟持合法用户强迫开门事件时具备报警机制。 ◆强大的报警设置功能: 系统具有胁迫报警、防撬报警、强行进入报警、超时报警和反潜回功能。 ◆电子公告功能: 在具备液晶的读卡器上具有立方独特的电子公告功能,通过软件编辑后可向读卡机发布自定义的电子公告,用户刷卡后即可显示该短信息。 ◆强大的系统联动: 用户可以对系统的各个I/O口进行功能设置,实现与第三方系统或一卡通其他子系统进行联动。 ◆多种开门方式:

系统支持多种开门方式,如刷卡开门、密码开门、刷卡+密码开门、刷卡+密码+触发开门、刷多卡开门方式等,可根据不同的安全需求进行灵活的选择。 ◆动态电子地图显示: 系统具有电子地图,在电子地图上实时的以图形和文字的形式显示事件,如刷卡事件、进出房门、门状态变化、系统报警和各种紧急事件等。 可以输入多幅地图,从不同角度监控现场出入情况。 ◆具备多种发卡方式: 系统可以用连接电脑的发卡器或连接控制器的读卡器发卡、也可以先由控制器发卡后上传到数据库再指定用户。◆互锁通道、反潜回: 系统允许管理员对指定的通道或房门实行互锁,互锁组的房门在同一时间只能开启其中的一扇。反潜回指在合法卡刷卡进入后,必须再规定时间内外出。 ◆自动与手动的布防/撤防: 系统支持对指定房门的自动布防和撤防功能,可以在有权限的情况下指定某些房门在到达指定的时间段内处于布防状态,过了这段时间之后,系统会自动撤防;也允许在有限的条件下,随时对房门进行布防和撤防操作。 门禁管理系统优势 ◆安全: 圣坤科技门禁系统本身具备了企业级的密钥认证体系、严格的通信协议加密体系、完善的数据库安全管理体系,具有极高的系统安全性能;产品外壳坚固耐用,具备防水、防撬设计;在业务上从专业的安防角度出发,设计了最完善全面的安全功能,包括多卡认证、自动布防/撤防、反胁迫、反潜回、通道互锁、强行进入、防撬报警等,可以实现客户对系统安全性最细微的需求。 ◆美观:

fluent 使用基本步骤

fluent 使用基本步骤 步骤一:网格 读入网格(*.msh) File →Read →Case 读入网格后,在窗口显示进程 检查网格 Grid →Check Fluent对网格进行多种检查,并显示结果。注意最小容积,确保最小容积值为正。 显示网格 Display →Grid 以默认格式显示网格 能够用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作关于同样类型的多个区域情形专门有用,以便快速区不它们。 网格显示操作 Display →Views 在Mirror Planes面板下,axis 点击Apply,将显示整个网格 点击Auto scale, 自动调整比例,并放在视窗中间 点击Camera,调整目标物体位置 用鼠标左键拖动指标钟,使目标位置为正 点击Apply,并关闭Camera Parameters 和Views窗口 步骤二:模型 1. 定义瞬时、轴对称模型 Define →models→Solver 保留默认的,Segregated解法设置,该项设置,在多相运算时使用。

在Space面板下,选择Axisymmetric 在Time面板下,选择Unsteady 2. 采纳欧拉多相模型 Define→Models→Multiphase (a) 选择Eulerian作为模型 (b)如果两相速度差较大,则需解滑移速度方程 (c)如果Body force比粘性力和对流力大得多,则需选择implicit b ody force 通过考虑压力梯度和体力,加快收敛 (d)保留设置不变 3. 采纳K-ε湍流模型(采纳标准壁面函数) Define →Models →Viscous (a) 选择K-ε( 2 eqn 模型) (b) 保留Near wall Treatment面板下的Standard Wall Function设置 在K-εMultiphase Model面板下,采纳Dispersed模型,dispersed湍流模型在一相为连续相,而材料密度较大情形下采纳,而且Stocks数远小于1,颗粒动能意义不大。 4.设置重力加速度 Define →Operating Conditions 选择Gravity 在Gravitational Acceleration下x或y方向填上-9.81m/s2 步骤三:材料 Define →Materials 复制液相数据作为差不多相 在Material面板。点击Database, 在Fluid Materials 清单中,选Water -Liquid (h2o(1))

LAMMPS手册-中文版讲解

L A M M P S手册-中文版 讲解 https://www.doczj.com/doc/ef4945082.html,work Information Technology Company.2020YEAR

LAMMPS手册-中文解析 一、简介 本部分大至介绍了LAMMPS的一些功能和缺陷。 1.什么是LAMMPS? 2. LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。 LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。 LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。 通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。 3.L AMMPS的功能 总体功能: 可以串行和并行计算 分布式MPI策略 模拟空间的分解并行机制 开源 高移植性C++语言编写 MPI和单处理器串行FFT的可选性(自定义) 可以方便的为之扩展上新特征和功能 只需一个输入脚本就可运行 有定义和使用变量和方程完备语法规则 在运行过程中循环的控制都有严格的规则

LAMMPS手册中文讲解

LAMMPS手册-中文解析 一、简介 本部分大至介绍了LAMMPS的一些功能和缺陷。 1.什么是LAMMPS? LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。 LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。 LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。 通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。 2.LAMMPS的功能 总体功能:

可以串行和并行计算 分布式MPI策略 模拟空间的分解并行机制 开源 高移植性C++语言编写 MPI和单处理器串行FFT的可选性(自定义) 可以方便的为之扩展上新特征和功能 只需一个输入脚本就可运行 有定义和使用变量和方程完备语法规则 在运行过程中循环的控制都有严格的规则 只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型: (atom style命令) 原子 粗粒化粒子 全原子聚合物,有机分子,蛋白质,DNA 联合原子聚合物或有机分子 金属 粒子材料 粗粒化介观模型 延伸球形与椭圆形粒子 点偶极粒子

门禁管理系统方案

3.8门禁管理 3.8.1总体性能要求 ?系统是利用现代计算机网络通信及大型数据库为技术基础,基于WINDOWS 管理平台建立统一的“一卡通”综合管理系统。 ?系统采用模块化设计方法,每个子系统的软硬件保持较大的冗余度。某部分出现问题不会影响其它子系统的正常运行。 ?各子系统统一管理平台,实现所有子系统的设备在管理中心集中管理,权限统一制授,用户卡的挂失、消权等集中处理,并记录跟踪卡片发生数据。 ?门禁和闭路监控的联动方式采用硬件方式,当非法入侵时,监视显示器中弹出相应报警画面,并产生报警信号。 ?主干及分支网络:门禁业务主机可控制和管理下级的所有门禁系统硬件设备,各子系统管理电脑、管理中心以组网方式相联。 ?安全管理:系统管理人员权限采用模块化分配和多级管理。 3.8.2技术细则 证卡制作中心: 证卡制作中心是感应IC卡(一卡通系统)的管理中心,主要功能包括: ?制定IC卡应用法规; ?统一制作、管理和维护用户卡片; ?补发和注销工作人员和管理卡(含有有效期限); ?协调行内本系统各子系统之间IC卡应用中的关系; ?整套“一卡通”系统配置管理; ?提供一卡通查询系统; ?提供密码、时间、区域、等级优先等多种安全模式控制。 3.8.3、一楼保安监控中心: 保安监控中心是xxxxx医院新建医疗大楼安防系统的枢纽,在本系统中主要设计完成

下列功能: ?设置门禁、门锁监控主机,监控整个门禁、门锁系统的运作和查询; ?各管制通道进出实时监控; ?当门非法打开时提供报警信息; ?与消防、闭路监控系统联动; ?紧急开门; 3.8.4、智能发卡子系统 ?制定IC卡应用法规; ?统一制作、管理和维护用户卡片; ?补发和注销IC卡; ?协调各部门之间IC卡应用中的关系。 3.8.5系统设计 3.8.5.1、一卡通系统数据流特点 如一卡通系统网络数据流示意图所示,一卡通系统的数据交换方式可分为两类: (1)业务数据流: 它是指一卡通子系统内从服务器到工作站,工作站到服务器及各工作站之间的数据流,通过大厦局域网进行传输。一卡通系统的业务数据流都触发对数据库的某种操作。由于一卡通系统的各个模块功能可能分布于不同的部门,为使这些模块之间的数据同步和实现快速高效的WEB查询,中央数据库是必须的。同时,为了减轻服务器的负担,又要尽量做到数据的分布式处理。这使一卡通系统的数据库分为两部分:《1》中央数据库:位于服务器上。《2》本地库:运行在各管理子系统工作站上。本地库与中央数据库之间的同步数据流有三个方向: a) 中央数据库------》本地库; b) 本地库--------》中央数据库;

Velocity教程

Velocity教程 关键字: velocity教程 Velocity是一个基于java的模板引擎(template engine)。它允许任何人仅仅简单的使用模板语言(template language)来引用由java代码定义的对象。当Velocity应用于web开发时,界面设计人员可以和java程序开发人员同步开发一个遵循MVC架构的web站点,也就是说,页面设计人员可以只关注页面的显示效果,而由java程序开发人员关注业务逻辑编码。Velocity将java代码从web页面中分离出来,这样为web站点的长期维护提供了便利,同时也为我们在JSP和PHP之外又提供了一种可选的方案。 官方网站:https://www.doczj.com/doc/ef4945082.html,/velocity/ Velocity脚本摘要 1、声明:#set ($var=XXX) 左边可以是以下的内容 Variable reference String literal Property reference Method reference Number literal #set ($i=1) ArrayList #set ($arr=["yt1","t2"]) 技持算术运算符 2、注释: 单行## XXX 多行#* xxx xxxx xxxxxxxxxxxx*# References 引用的类型 3、变量Variables 以"$" 开头,第一个字符必须为字母。character followed by a VTL Identifier. (a .. z or A .. Z). 变量可以包含的字符有以下内容: alphabetic (a .. z, A .. Z) numeric (0 .. 9) hyphen ("-") underscore ("_") 4、Properties $Identifier.Identifier $https://www.doczj.com/doc/ef4945082.html,

GOCAD中文手册

GOCAD综合地质与储层建模软件 简易操作手册 美国PST油藏技术公司 PetroSolution Tech,Inc.

目录 第一节 GOCAD综合地质与储层建模软件简介┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 一、GOCAD特点┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 二、GOCAD主要模块┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 第二节 GOCAD安装、启动操作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2 一、GOCAD的安装┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2 二、GOCAD的启动┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉3 第三节 GOCAD数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5 一、井数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5 二、层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11 三、断层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11 四、层面、断层面加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 五、地震数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 第四节 GOCAD构造建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13 一、准备工作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13 二、构造建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉14 三、构造建模流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉40 第五节建立GOCAD三维地质模型网格┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 一、新建三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 二、三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 三、三维地质模型网格流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉47 第六节 GOCAD储层属性建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 一、建立属性建模新流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 二、属性建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 三、属性建模后期处理┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉66 四、网格粗化┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉74 第七节 GOCAD地质解释和分析┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉78

AVL-FIRE中文入门教程+AVL-FIRE软件的使用方法

A VL-FIRE中文入门教程+A VL-FIRE软件的使用方法 流场分析的基本流程(FIRE软件) ID:qxlqixinliang 一、网格自动生成 (2) 二、网格划分工具的使用 (5) 1、Mesh tools (5) 2、surface tools (7) 3、edge tools (7) 三、网格和几何信息工具 (8) 1、网格check (8) 2、Geo info (9) 四、流场求解求解器的设置 (9) AVL Fire 软件的使用方法 .................................................................错误!未定义书签。

一、网格自动生成 根据电池包内部流场的特点,我们一般使用fame的网格自动生成和手动划分网格,两者相结合基本上能完成网格划分。对于电池数量较少的模型(如下图)完全可以用网格自动生成功能来实现网格划分。 下面介绍网格自动生成的流程: 1)准备面surface mesh和线edge mesh:要求:面必须是封闭曲面,一般FIRE中可以应用的是.stl的文件,在PRO/E,CATIA 等三维的造型软件中都可以生成;与面的处理相似的还要准备边界的线数据 2)Hybrid assistant,选择start new meshing,分别定义表面网格define surface mesh和线网格define edge mesh 3)然后进入高级选项fame advanced hybrid,在这里定义最大网格尺寸和最小网格尺寸,最大网格尺寸是最小网格尺寸的2^n倍 4)选择connecting edge,一般在计算域的进出口表面建立face selection,这样可保证edge 处的网格贴体,否则网格在几何的边角会被圆滑掉,另外还可以保证进出口面的网格方向与气流方向正交,有利于计算的精确性和收敛性。通过add添加上进出口的selection 即可。

sph-常用关键字手册

sph-常用关键字手册

1.*CONSTRAINED_GLOBAL 全局约束 Purpose: Define a global boundary constraint plane.定义一个全局平面边界约束 TC Translational Constraint: 平动约束 EQ.1: constrained x translation, EQ.2: constrained y translation, EQ.3: constrained z translation, EQ.4: constrained x and y translations, EQ.5: constrained y and z translations, EQ.6: constrained x and z translations, EQ.7: constrained x, y, and z translations, RC Rotational Constraint: 转动约束 EQ.1: constrained x-rotation, EQ.2: constrained y-rotation, EQ.3: constrained z-rotation, EQ.4: constrained x and y rotations, EQ.5: constrained y and z rotations, EQ.6: constrained z and x rotations, EQ.7: constrained x, y, and z rotations. DIR Direction of normal 正常的方向 EQ.1: global x, EQ.2: global y, EQ.3: global z. X x-offset coordinate x方向偏移坐标 Y y-offset coordinate y方向偏移坐标 Z z-offset coordinate z方向偏移坐标 Remarks: Nodes within a mesh-size-dependent tolerance are constrained on a global plane. This

vr中文手册

VR中文手册 目录 1. VRay的特征 2. VRay的渲染参数 3. VRay 灯光 4. VRay 材质 5. VRay 贴图 6. VRay 阴影 一、VRay的特征 VRay光影追踪渲染器有Basic Package 和Advanced Package两种包装形式。Basic Package具有适当的功能和较低的价格,适合学生和业余艺 术家使用。Advanced Package 包含有几种特殊功能,适用于专业人员使用。 Basic Package的软件包提供的功能特点 ·真正的光影追踪反射和折射。(See: VRayMap) ·平滑的反射和折射。(See: VRayMap) ·半透明材质用于创建石蜡、大理石、磨砂玻璃。(See: VRayMap) ·面阴影(柔和阴影)。包括方体和球体发射器。(See: VRayShadow) ·间接照明系统(全局照明系统)。可采取直接光照(brute force), 和光照贴图方式(HDRi)。(See: Indirect illumination) ·运动模糊。包括类似Monte Carlo 采样方法。(See: Motion blur) ·摄像机景深效果。(See: DOF) ·抗锯齿功能。包括fixed, simple 2-level 和adaptive approaches等采样方法。(See: Image sampler) ·散焦功能。(See: Caustics ) · G-缓冲(RGBA, material/object ID, Z-buffer, velocity etc.) (See: G-Buffer ) Advanced Package软件包提供的功能特点 除包含所有基本功能外,还包括下列功能: ·基于G-缓冲的抗锯齿功能。(See: Image sampler) ·可重复使用光照贴图(save and load support)。对于fly-through 动画可增加采样。(See: Indirect illumination) ·可重复使用光子贴图(save and load support)。(See: Caustics) ·带有分析采样的运动模糊。(See: Motion blur ) ·真正支持HDRI贴图。包含*.hdr, *.rad 图片装载器,可处理立方体贴图和角贴图贴图坐标。可直接贴图而不会产生变形或切片。 ·可产生正确物理照明的自然面光源。(See: VRayLight) ·能够更准确并更快计算的自然材质。(See: VRay material) ·基于TCP/IP协议的分布式渲染。(See: Distributed rendering) ·不同的摄像机镜头:fish-eye, spherical, cylindrical and cubic cameras (See: Camera)

一个简单的XNA3D游戏教程

这也是https://www.doczj.com/doc/ef4945082.html,上的一个示例。 新建一个XNA(Windowsgame)工程,取名为Windows3DGame。 右击解决方案资源管理器中的Content节点,添加两个文件夹,分别命名为Audio和Models,然后向这两个文件夹里分别添加所需资源。(h ttp://https://www.doczj.com/doc/ef4945082.html,上可下载,也可从我的源码中获得,地址在下面。)注意添加Model资源时,项目中只添加后缀名为.fbx的文件。 添加一个新类,命名为GameObject.cs,其代码如下: https://www.doczj.com/doc/ef4945082.html,ing System; https://www.doczj.com/doc/ef4945082.html,ing System.Collections.Generic; https://www.doczj.com/doc/ef4945082.html,ing Microsoft.Xna.Framework; https://www.doczj.com/doc/ef4945082.html,ing Microsoft.Xna.Framework.Audio; https://www.doczj.com/doc/ef4945082.html,ing Microsoft.Xna.Framework.Content; https://www.doczj.com/doc/ef4945082.html,ing Microsoft.Xna.Framework.GamerServices; https://www.doczj.com/doc/ef4945082.html,ing Microsoft.Xna.Framework.Graphics; https://www.doczj.com/doc/ef4945082.html,ing Microsoft.Xna.Framework.Input; https://www.doczj.com/doc/ef4945082.html,ing https://www.doczj.com/doc/ef4945082.html,; 10.u sing Microsoft.Xna.Framework.Storage; 11. 12.n amespace Windows3DGame 13.{ 14. class GameObject 15. { 16. public Model model = null; 17. public Vector3 position = Vector3.Zero; //位置参数 18. public Vector3 rotation = Vector3.Zero; //旋转参数 19. public float scale = 1.0f; //缩放参数 20. } 21.} 一、绘制背景,载入地形。 1. 在Game.cs中添加几个变量 1. GameObject terrain = new GameObject(); //地形 2. 3. Vector3 cameraPosition = new Vector3( //摄像机位置 4. 0.0f, 60.0f, 160.0f); 5. Vector3 cameraLookAt = new Vector3( //观察方向 6. 0.0f, 50.0f, 0.0f); 7. 8. Matrix cameraProjectionMatrix; //Projection矩阵 9. Matrix cameraViewMatrix; //View矩阵 2. 在LoadContent()函数中添加如下代码: 1. //设置View矩阵 2. cameraViewMatrix = Matrix.CreateLookAt(

VRay最完整手册

VRay的特征 VRay光影追踪渲染器有Basic Package 和Advanced Package两种包装形式。Basic Package具有适当的功能和较低的价格,适合学生和业余艺术家使用。Advanced Package 包含有几种特殊功能,适用于专业人员使用。 Basic Package的软件包提供的功能特点 ·真正的光影追踪反射和折射。(See: VRayMap) ·平滑的反射和折射。(See: VRayMap) ·半透明材质用于创建石蜡、大理石、磨砂玻璃。(See: VRayMap) ·面阴影(柔和阴影)。包括方体和球体发射器。(See: VRayShadow) ·间接照明系统(全局照明系统)。可采取直接光照(brute force), 和光照贴图方式(HDRi)。(See: Indirect illu mination) ·运动模糊。包括类似Monte Carlo 采样方法。(See: Motion blur) ·摄像机景深效果。(See: DOF) ·抗锯齿功能。包括fixed, simple 2-level 和adaptive approaches等采样方法。(See: Image sampler) ·散焦功能。(See: Caustics ) ·G-缓冲(RGBA, material/object ID, Z-buffer, velocity etc.) (See: G-Buffer ) Advanced Package软件包提供的功能特点 除包含所有基本功能外,还包括下列功能: ·基于G-缓冲的抗锯齿功能。(See: Image sampler) ·可重复使用光照贴图(save and load support)。对于fly-through 动画可增加采样。(See: Indirect illuminati on) ·可重复使用光子贴图(save and load support)。(See: Caustics) ·带有分析采样的运动模糊。(See: Motion blur ) ·真正支持HDRI贴图。包含*.hdr, *.rad 图片装载器,可处理立方体贴图和角贴图贴图坐标。可直接贴图而不会产生变形或切片。 ·可产生正确物理照明的自然面光源。(See: VRayLight) ·能够更准确并更快计算的自然材质。(See: VRay material)

智能门禁管理系统说明书

IC一体式/嵌入式门禁管理系统 使用说明书

目录 1.系统简介 (3) 2.功能特点 (3) 3、主要技术参数 (4) 4、系统组成 (4) 5、设备连接 (5) 6、门禁管理系统软件 (6) 6.1 软件的安装 (6) 6.2 人事管理子系统 (7) 6.3 一卡通管理系统 (9) 6.4 门禁管理子系统 (12) 7. 调试操作流程 (28) 8、注意事项 (28)

1.系统简介 在高科技发展的今天,以铁锁和钥匙为代表的传统房门管理方式已经不能满足要求,而集信息管理、计算机控制、Mifare 1 IC智能(射频)卡技术于一体的智能门禁管理系统引领我们走进新的科技生活。 Mifare 1 IC智能(射频)卡上具有先进的数据通信加密并双向验证密码系统,卡片制造时具有唯一的卡片系列号,保证每张卡片都不相同。每个扇区可有多种密码管理方式。卡片上的数据读写可超过10万次以上;数据保存期可达10年以上,且卡片抗静电保护能力达2KV以上。具有良好的安全性,保密性,耐用性。 IC卡嵌入式门禁管理系统以IC卡作为信息载体,利用控制系统对IC卡中的信息作出判断,并给电磁门锁发送控制信号以控制房门的开启。同时将读卡时间和所使用的IC卡的卡号等信息记录、存储在相应的数据库中,方便管理人员随时查询进出记录,为房门的安全管理工作提供了强有力的保证。 IC卡嵌入式门禁管理系统在发行IC卡的过程中对不同人员的进出权限进行限制,在使用卡开门时门禁控制机记录读卡信息,在管理计算机中具有查询、统计和输出报表功能,既方便授权人员的自由出入和管理,又杜绝了外来人员的随意进出,提高了安全防范能力。 IC卡嵌入式门禁管理系统,在线监控IC卡开门信息、门状态,给客户以直观的门锁管理信息。 IC卡嵌入式门禁(简称门禁读卡器,门禁控制机,控制器)是目前同行业产品中体积较小的门禁,可以嵌入到市场上几乎所有的楼宇门禁控制器中,解决了因为楼宇门禁控制器内部空间小所带来的麻烦,是楼宇门禁控制器的最佳配套产品;它绝不仅仅是简单的门锁工具,而是一种快捷方便、安全可靠、一劳永逸的多功能、高效率、高档次的管理系统。它能够让你实实在在享受高科技带来的诸多实惠和方便。 2.功能特点 2.1.IC卡嵌入式门禁具有的功能: 2.1.1使用MIFARE 1 IC卡代替钥匙,开门快捷,安全方便。 2.1.2经过授权,一张IC卡可以开启多个门(255个以内)。 2.1.3可以随时更改、取消有关人员的开门权限。 2.1.4读卡过程多重确认,密钥算法,IC卡不可复制,安全可靠。 2.1.5具有512条黑名单。

相关主题
文本预览
相关文档 最新文档